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Abstract

VIGRA is a portable and highly flexible library for fundamen-
tal image processing and analysis tasks. It uses C++ generic
programming techniques to adapt itself to different problems
and environments without noticeable abstraction overhead.
VIGRA is especially strong in multidimensional data process-
ing and learning-based image analysis. It offers parallelizable
Python bindings that are fully integrated with the standard
numpy numerical package. Current development efforts con-
centrate around more advanced parallelization and the unifi-
cation of regular and irregular (grid- vs. graph-based) pro-
cessing.

1 Goals

Image analysis is characterized by an abundance of sophisti-
cated algorithms. Implementing and testing these algorithms
is often difficult and time-consuming. This leads to a very un-
desirable situation: Many people put significant effort into the
design and development of new algorithms, but use naive solu-
tions for the underlying basic building blocks because better
ones would be too costly to implement. For example, sev-
eral papers describe complex optimization methods for im-
age segmentation, but then use extremely simple image fea-
tures (e.g. intensity differences between neighboring pixels)
for data-dependent energy terms in their objective functions.
When these methods are applied, it remains unclear if possi-
ble segmentation errors are just caused by the naive features,
or by the intrinsic difficulty of the optimization problem. As
a consequence, evaluation and comparison with alternative
approaches become very hard, since the reasons for observed
differences cannot be determined.
Obviously, this dilemma could be solved when reusable ver-

sions of important algorithmic building blocks were available.
However, research into reusable software components has tra-
ditionally focused more on data structures than algorithms.
Suitable programming techniques for reusable algorithms have
only emerged in the last 15 years or so. The reusability
problem in image analysis is further aggravated by the huge
amount of data to be processed. It is therefore not acceptable
to pay a significant speed penalty for the sake of reusability.
This is a major limitation of rapid prototyping platforms such
as Matlab: While such platforms contain reusable algorithms
for many recurring problems, the techniques used for combin-
ing these building blocks into entire applications incur a large
abstraction overhead (both in terms of speed and memory)
that severely limits the problem sizes which can be reason-
ably tackled.
VIGRA (“VIsion with GeneRic Algorithms”) started in

1997, shortly after the introduction of generic programming
and template meta-programming into the C++ language. It
set out to make use of these new techniques for the design
of reusable image analysis algorithms that are as efficient as
their non-reusable counterparts. Programmers should be able
to implement their algorithms on a higher level of abstraction,
and let VIGRA’s meta-programming functionality take care of
code adaptation and optimization for a particular application
and environment.

VIGRA takes a conservative attitude to the choice of algo-
rithms it provides: By and large, only algorithms that have
stood the test of time are included in the public version. This
also means that some fashionable algorithms are missing be-
cause their generality has not been demonstrated convincingly
in the literature. VIGRA is strong at multidimensional im-
age processing as it always attempts to implement algorithms
for arbitrary many dimensions if this is efficiently possible
(e.g. convolution and distance transforms). Otherwise, it at
least tries to provide versions for 2- and 3-dimensional inputs.
All algorithms are subjected to extensive unit and regression
testing (almost 1/3 of the VIGRA source code is test code).
Quality always takes precedence over quantity.

2 History

VIGRA originates from Ullrich Köthe’s PhD project during
the late 1990ies, and an extensive description of the early de-
sign appears in the thesis [7]. Many of the underlying ideas
were also described in a series of papers [5, 10, 6]. VIGRA’s
original aim was the generalization of the iterator concepts
in the C++ standard template library (STL) to two dimen-
sions and the implementation of reusable image processing
algorithms on top of theses iterators.
After initial release it turned out that the most frequently

requested feature was a module for the transparent import and
export of common image file formats. Therefore, the ’impex’
module was added in 2002. It sets itself apart from similar li-
braries (like ImageMagick) because it supports all pixel types
(including ’int32’, ’float’, and ’double’, provided the under-
lying file format can handle them), which is important when
image processing is to be used as a measurement and analysis
device (and not just as an artistic tool like in PhotoShop or
gimp).
A major obstacle in VIGRA’s portability was finally re-

solved in 2003 when Microsoft released its first compiler im-
plementing the required advanced template support. Before
that, endless workarounds and compromises were needed to
compile VIGRA on Windows. It is hoped that new language
features (like C++11) will not again take five years until they
make their way to all platforms.
Data structures from discrete geometry such as cell com-

plexes, combinatorial maps, and the GeoMap [11, 13] have
played an important role in VIGRA from the very beginning.
We were able to design a very convenient and efficient abstract
interface for these data structures that was successfully used
in generic implementations of many segmentation algorithms,
especially hierarchical ones. On several reasons, these algo-
rithms and data structures haven’t yet been included into the
public VIGRA version.
The next major extension was the introduction of the mul-

tidimensional array class in 2003 and the subsequent imple-
mentation of multidimensional image processing and analysis
algorithms. Multidimensional arrays provide two abstract in-
terfaces – hierarchical iterators and array views – and the
latter turned out to be much more convenient for algorithm
implementers. Extension of these capabilities has become an
ongoing effort since then, including powerful import/export
functionality on the basis of the HDF5 standard [1].

1



The years 2004 and 2005 saw the introduction of dedicated
numerical functionality, so that VIGRA no longer depended
on external libraries for basic linear algebra and decomposition
tasks such as eigenvalue computation. Meanwhile, this part
of the library has grown considerably and includes optimiza-
tion algorithms for least squares, quadratic programming, and
sparse decomposition, as well as total variation optimization.
The spline image view classes introduced at around the

same time transparently extend the image domain from the
integer grid to the real plane and thus provide an indispens-
able foundation for the subpixel-accurate watershed algorithm
[12, 15] and the subpixel GeoMap [13]. Subpixel segmentation
results obtained with these methods later formed the basis for
a theoretical error analysis which, for the first time, exactly
matches the findings of corresponding experimental evalua-
tions [8, 9, 14].
Machine learning started to become an important part of

VIGRA in 2009. In particular, the library contains a very fast
and flexible implementation of the random forest [4] which is
quickly gaining popularity in classification and regression due
to its low error rate and ease of use.
A big infrastructure effort in 2010 created a completely new

build system on the basis of CMake which lead, for the first
time, to a truly portable installation process. It also removed
the last obstacle for the official release of VIGRA’s Python
bindings, namely the portable configuration of all required
dependencies. The Python bindings itself, which had been
around (in a hard-to-install form) since 2004, were completely
rewritten to ensure full interoperability with Python’s numpy
array classes and finally released in 2010 under the name ’vi-
granumpy’.
Important VIGRA users include LibreOffice and the Hugin

Panorama Tools. VIGRA has also been chosen as the un-
derlying number crunching library for the ilastik interactive
image analysis framework [16]. ilastik is geared towards ap-
plication experts, especially in the life sciences, who need high
quality image analysis algorithms but lack the knowledge for
implementing these algorithms themselves. ilastik offers them
an intuitive graphical interface where they can interactively
provide training data and get immediate feedback on the re-
sults, so that the training can be continued until the quality is
satisfactory. Due to the large data sets involved here, VIGRA
received significant improvements in its on-demand computa-
tion and parallelization capabilities. Further improvements in
this respect, as well as the implementation of new algorithms,
are important ongoing activities of the VIGRA development
effort.

3 Contents of the Library

The library consists of two complementary parts: the actual
functionality, and the set of abstractions needed to implement
this functionality in a generic way. In this section, we only
consider the former, the latter will be discussed in section 4.
The following list refers to the publicly available functionality.

Images and Multidimensional Arrays
• templated array data structures for arbitrary dimensions

and arbitrary pixel/value types
• powerful slicing support similar to Matlab
• input/output of common image file formats (e.g. JPEG,

PNG, and TIFF, the latter including 32-bit integer, float
and 64-bit double-precision pixel types), input/output of
arbitrary dimensional and structured data to HDF5 (in-
cluding partial loading of huge datasets)

Image Processing
• multidimensional STL-style generic algorithms (e.g.

transform, inspect) and functors
• expression templates for efficient expansion of arithmetic

and algebraic expressions over arrays
• color space conversions: RGB, sRGB, R’G’B’, XYZ,

L*a*b*, L*u*v*, Y’PbPr, Y’CbCr, Y’IQ, and Y’UV
• real and complex Fourier transforms in arbitrary dimen-

sions (via FFTW)
• estimation of the camera transfer function and noise dis-

tribution

Filters
• convolution in arbitrary dimensions using separable ker-

nels in the spatial domain or arbitrary kernels in the
Fourier domain, support for anisotropic data resolution

• filter banks (e.g. Gabor and n-jets) and image pyramids
• image resizing using arbitrary kernels (e.g. splines up to

order 5), transparent on-demand interpolation to arbi-
trary real-valued coordinates using SplineImageView

• non-linear diffusion and total variation filters
• distance transforms and morphological filters in arbitrary

dimensions

Image Analysis and Segmentation
• edge and corner detection
• watersheds and region growing (many variants in 2D and

3D)
• region and object statistics using generic accumulators

Machine Learning
• classifiers (random forest, LDA, QDA)
• variable importance, feature selection
• unsupervised decomposition (PCA, PLSA)

Mathematical Tools
• linear algebra (matrix algebra, linear solvers, symmetric

and unsymmetric eigenvalues, SVD)
• optimization algorithms (linear and non-negative least

squares, ridge regression, L1-constrained least squares,
quadratic programming)

• random number generation
• number types (rationals, fixed-point, quaternion) and

fixed-size vectors

Prototyping Support
• Python and Matlab bindings

4 Design

The success of any generic library critically depends on the
power of the underlying abstractions. A good abstraction
must fulfill two conflicting criteria: For the programmer, it
should be easy to use in a wide range of contexts, and for the
compiler it should be easy to optimize into fast executables.
VIGRA is continually in search for better abstractions and has
tried a number of different ideas, but the optimal trade-off is
very much a moving target: Solutions that were too slow ten
years ago are now perfectly OK, because improved compiler
and processor technology eliminated the abstraction penalty.
The most important abstractions concern flexible access to

the image data. The original design directly generalized the
STL concepts to 2D. The resulting ImageIterators support
navigation functions like ++i.x to increment the x-coordinate,
i.y += 5 to jump five pixels along the y-coordinate, and i.x
< end.x to check for the end of iteration. Regions of interest
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can be specified by appropriately placing the start and end
iterators. Unfortunately, this design could not be extended
to multidimensional arrays. Instead, VIGRA opted for hier-
archical iterators according to [2]. Here, an iterator always
refers to a specific dimension. For example, ++iy moves the
iterator down a column (assuming that iy refers to the sec-
ond dimension), and the functions iy.begin() and iy.end()
return a new iterator pair for the current row. Starting with
an iterator for the outermost dimension, an algorithm can re-
cursively work its way down to the innermost dimension and
realize arbitrary navigation patterns in arbitrary dimensions.
An alternative approach, which is easier to comprehend

by the user, is the MultiArrayView concept which resembles
the indexing and slicing functionality pioneered by Matlab.
Single points can be accessed via the syntax view(x,y,z)
or view[point3d], when the view refers to a 3-dimensional
array. A view for a region of interest can be created
by view.subarray(start3d, end3d), and lower-dimensional
slices are obtained by one of several binding functions, e.g.
view.bindOuter(5) to bind the z-coordinate at the value 5.
The index order can be arbitrarily changed without copying
the actual data, e.g. view.transpose() simply reverses the
index order. At the beginning, this design was much slower
than the hierarchical iterators because it involves complex ad-
dress calculations in the inner loop. Meanwhile, compilers are
able to optimize this overhead away, and views have become
the array interface of choice.
Improvements in compiler technology have also made two

additional iterator concepts feasible. ScanOrderIterator
maps any multidimensional array to a flattened linear se-
quence according to the current index ordering and the cur-
rently selected subarray and slice. Since the scan order of a
view generally differs from the memory order of the raw data,
this iterator must take care of the appropriate strides. This
became as efficient as a hand-crafted loop only recently. A use-
ful variation is the CoupledIterator which performs a scan
order iteration over up to five arrays and an implicit mesh grid
simultaneously.
An important design decision made at the very beginning

was the clear separation between algorithms and data struc-
tures. Algorithms (usually implemented as free template func-
tions, but sometimes also as classes) can access data only via
generic interfaces such as the iterators or array views described
above. This has been critical to ensure backwards compati-
bility in the library’s continuing evolution.
Another important part of any generic library is type in-

ference. Generic algorithms must be able to determine
appropriate types for intermediate variables and end re-
sults on the basis of their input types. Since C++ (be-
fore C++11) does not support type inference natively, VI-
GRA comes with a sophisticated set of meta functions
(“traits classes”) that map input types to output types
and reveal other crucial information about the types to be
processed. The underlying type conversion rules are de-
fined such that rounding and overflow errors are largely
avoided and at the same time memory consumption is kept
to a minimum. Important traits provide numeric proper-
ties (NumericTraits, an extension of std::numeric_limits),
arithmetic type conversion (PromoteTraits), results of norm
computations (NormTraits), and Python-C++ compatibility
rules (NumpyArrayTraits), to name just the most important
ones.
Powerful algorithms offer a number of user options. Usually,

most of these parameters remain at their default values. We
need a design where arbitrary subsets of options can easily be
set while others are kept alone, and which remains readable at

the same time. VIGRA selected a design inspired by Python’s
keyword arguments: Algorithms are accompanied by option
objects, whose constructor sets all options to their default
values, and keyword-like functions are used to change these
values. For example, watershed seeds can be created by:
generateWatershedSeeds(

srcImageRange(gradient), destImage(seeds),
SeedOptions().minima().threshold(2.0));

when we want to use gradient minima below a value of 2.0.

5 Usage Examples

Basic array syntax is inspired by high-level languages like Mat-
lab and numpy, but without their abstraction penalty:
typedef MultiArray<3, double> Array3;
typedef MultiArrayView<3, double> View3;
typedef MultiArrayView<2, double> View2;

Array3 a(Shape3(300,200,100)); // creation
a = 1.0; // initialization
a(0,0,0) += a[Shape3(1,2,3)]; // element access
Array3 b = sqrt(a) + 4.0; // expression templates

View3 s = a.subarray(Shape3(2,3,4), Shape3(9,8,7));
View2 xy = a.bindOuter(5); // slice at z=5
View2 xz = a.bind<1>(9); // slice at y=9
View3 yzx = a.transpose(Shape3(1,2,0)); // index order

A Gaussian filter with σ = 4 in arbitrary many dimensions is
invoked by
gaussianSmoothMultiArray(

multiArrayRange(a), multiArray(b), 4.0);

Options can be set via an option object, e.g. to reduce the
filter window size (default is 3σ) to gain speed, to adjust for
anisotropic resolution of the data, or to restrict the computa-
tion to a subregion:
gaussianSmoothMultiArray(

multiArrayRange(a), multiArray(b), 4.0,
ConvolutionOptions<3>()
.filterWindowSize(2.0) // window is 2*σ
.stepSize(1, 1, 3.2) // z resolution is lower
.subarray(Shape3(40,40,10), Shape3(200,60,40)));

Region statistics of labeled images can be collected by means
of accumulators, and one can freely select the appropriate
combination of statistics for each purpose. The actual com-
putation is done using the scan order iterators described ear-
lier:
MultiArray<3, UInt32> labels(...);
typedef CoupledIteratorType<3, UInt32>::type Iterator;
AccumlatorChainArray<Iterator::value_type, Select<

RegionCenter, // compute region center,
RegionRadii, // length of principal axes,
Coord<Minimum>, Coord<Maximum> // bounding box

>�> a; // accumulator array (one for each region)
Iterator start = createCoupledIterator(labels),

end = start.getEndIterator();
collectStatistics(start, end, a);

Training of a random forest classifier, and class label predic-
tion for new data is accomplished like this:
Matrix<float> training_features(n,m), true_labels(n,1),

features(N,m) /* labels unknown here */;
... // write data into feature and label matrices
RandomForest<float> rf(RFOptions().tree_count(100));
rf.learn(training_features, training_labels);

Matrix<float> class_probabilities(N, rf.class_count());
rf.predictProbabilities(features, class_probabilities);

It can be seen that VIGRA puts great emphasis on readability.
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6 Lessons Learned and Open Problems

We already mentioned that the best trade-off between power
and simplicity of an abstraction on the one hand, and its po-
tential for good optimization and low overhead on the other
is difficult to determine and changes with the evolution of
compiler technology. Considerations of backward compatibil-
ity further complicate these decisions. The time may now
be ripe for an interface standardization effort that incorpo-
rates the experience of all existing libraries. This would also
greatly simplify the interoperation between libraries from dif-
ferent subfields of image analysis.
A related issue is the decision if a certain kind of flexibility

should be provided at runtime or at compile time. For exam-
ple, VIGRA currently fixes the dimensionality of arrays and
the loop order for their processing at compile time, whereas
other libraries (in particular the prototyping environments
numpy and Matlab) leave this to runtime. In general, run-
time flexibility leads to more generic code, but compile-time
flexibility greatly simplifies optimization. The ultimate solu-
tion is probably a sophisticated runtime optimizer, and the
speed improvements of the Java Virtual Machine indicate the
potential of this solution. But for now, C++ compile time
optimization maintains an edge, and the optimal trade-offs
between runtime and compile-time flexibility have to be re-
considered regularly.
On the user acceptance side, we found that programmers

appreciate flexibility, but also demand that the most common
cases are available with a simple syntax. For example, VI-
GRA implements several variants of the watershed transform
by means of a generic region growing algorithm. Programmers
must first call a seed creation function, instantiate a functor
for the desired cost function, and finally invoke the region
growing function, thereby gaining full freedom in the choice
of each building block. Nonetheless, these details must be hid-
den behind an easy-to-use call interface for the most popular
alternatives (e.g. the Vincent-Soille algorithm).
Testing has been absolutely crucial for the maintenance and

evolution of VIGRA over so many years. The creation of good
tests is, however, an open problem: The “correct” result of a
complex image analysis algorithm is often unknown, or even
undefined when the algorithm involves randomness and un-
certainty. A statistical theory of algorithm testing that guides
the selection of test cases and judges test results in a proba-
bilistic way would be highly desirable.
One of the most pressing open problems in VIGRA and

in image analysis in general is parallelization. Unfortunately,
many solutions proposed so far are very specific to a particu-
lar algorithm, platform, or problem. In some cases (especially
for global methods like graph-cuts), parallel algorithms fail to
demonstrate satisfactory speed-ups in realistic experiments.
A general theory and portable tools for parallelization are
largely missing. At present, VIGRA parallelizes mainly on the
Python level: Most vigranumpy algorithms can be executed in
parallel (e.g. on different tiles of a large dataset), and task al-
location and scheduling are performed by our lazyflow module
(see https://github.com/Ilastik/lazyflow). We are thus able
to achieve interactive response times on very large datasets,
but in light of the dramatic improvements in parallelization
technology that we are currently witnessing, this is certainly
not the last word.
Another important open problem is the efficient integration

of grid-based and graph-based processing. Two free graph
libraries (Lemon and boost::graph) suggest themselves for VI-
GRA integration, but their APIs differ and are less power-
ful than the abstractions in our GeoMap framework and re-
lated concepts from the discrete geometry community, e.g. the

oriented boundary graph [3]. Finding a possibility to unify
processing of regular (grid-based) and irregular (graph-based)
structures without noticeable speed penalties is a very inter-
esting challenge.
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