
Charon Suite Software Framework
modular algorithms for image processing

Jens-Malte Gottfried∗ Daniel Kondermann∗

June 27, 2012

Abstract

Here, we describe an approach to implement algorithms in a
modular way simplifying code-reusing and analysis of individ-
ual parts of algorithms. The Charon Suite software provides
base classes and interfaces for data interchange and module
collaboration arranged in so called workflows. This includes
tools for easy module generation, graphical configuration and
visualization as well as workflow execution. Additionally, we
provide a large collection of modules for optical flow estima-
tion, 3D reconstruction and general image processing tasks as
well as example workflows as starting point for experimenting
with re-arranging the algorithms.

1 History and Goals

We start with a short motivation (1.1) followed by the goals
we wanted to achieve with our software (1.2) and the project
history (1.3).

1.1 Motivation

First, we describe the widespread way of implementing algo-
rithms. A straight-forward implementation consists of some
large function or procedure, perhaps calling some subroutines
representing the algorithm steps. The final result is one mono-
lithic executable or some script which is highly tuned and per-
forms well on some test sequences or images.

Assuming some experience, the resulting code is easy to under-
stand, works efficiently and with high performance.

On the other hand, the resulting code is often very specialized
and may not be reusable for other algorithms or may be difficult
to adapt because of many implementation details or tweaks.
At least it is very difficult to keep the algoritms generic and
maintaining such a library causes much effort. Parameters for
tuning the algorithms are often hard-coded so that one really
has to read the code to figure out their values. Hence, the
parameters are invisible from outside.

Or even worse, two different implementations of the same al-
gorithm may yield different results, but it is not possible to
compare them directly because of many design choices.

Many complex algorithms consist of several steps of data pro-
cessing. Comparing similar algorithms, only some of the steps
may differ. Implementing such a similar algorithm one has to
change existing code and replace some function calls or even
perform major changes to make the data processing fit to the
second algorithm.

∗Heidelberg Collaboratory for Image Processing, University of Heidel-
berg

1.2 Goals

To simplify this, we propose to divide complex algorithms into
parts and to implement these parts separately from each other.
We call these parts modules. Although this idea is not new, we
provide a first open-source implementation of a generic frame-
work for implementing such modules with a common interface
and a well documented specification.

The modular solution has the disadvantage that there is some
overhead of module communication and that there is no possi-
bility for global optimization or tuning to reach the performance
of the monolithic version.

Given one has implemented some modules, they are reusable
in similar algorithms without changes of the module code. The
common interface hides implementation details. All one has to
do is to arrange a data processing pipeline where data is passed
from module to module.

It is possible to create new algorithms by rearranging the pro-
cessing pipeline and perhaps adding or replacing some of the
modules by new ones. Therefore, the modular approach sim-
plifies development of new algorithms.

Testing of parts of algorithms is easier than testing the whole
complex algorithm itself. It is possible to write unit tests for sin-
gle modules, simplifying debugging of the whole algorithm. For
debugging purposes, one may replace some modules by other,
already tested ones to identify which one still contains some
bugs. This way, white-box testing of the algorithms may be
realized. Using existing modules, it is less likely to have bugs
in there because they have already been tested and working.
Not having to touch working code assures that no new bugs are
introduced. Replacing only parts of the algorithm assures that
no effects are caused by implementation details in the common
code base.

Using a common module interface simplifies idea and algorithm
exchange. Modules may be published, others use them and play
around implementing some changes or developing new variants
of the published algorithm. In this case, the reusage of un-
changed parts of the algorithm assures that the new effects are
really caused by the changed modules and not by implementing
the common parts in a different way.

Another advantage of this approach is that it’s possible to store
the algorithm configuration (i.e. the workflow configuration
file) together with the experiment results making sure that the
experiment keeps reproduceable.

Using scripts that replace the parameter values in the config
files and run the workflow execution from command line, it
is possible to run sweeps or parameter iterations, even paral-
lelized.

1



1.3 History

This first Charon implementation was done by Kondermann
(2009) in his PhD thesis. Although beeing written in a modular
way, the modules were pieces of templated c++ code. These
pieces have been compiled into one large monolithic executable
resulting in huge compilation times even on small code changes.
Module interaction was controlled by hand-written text files.
This was the first running Charon implementation of a module
framework for optical flow estimation.

As a next step, configuration has been simplified by provid-
ing the GUI configuration tool Tuchulcha. Additionally, the
module base classes have been reworked to provide their meta
informations to be used during configuration.

Subsequently, the object framework has been refactored, such
that the modules are now represented as small dynamic libraries
like a plug-in mechanism. This way, the modules became in-
dependent of the management and configuration software. The
new PluginManager now acts as a factory for creating module
instances out of the dynamic libraries.

In the time afterwards, large module collections have been de-
veloped. The most important of them are called charon-utils,
charon-flow and hekate. They are described in detail in the
following sections.

Recently, the possibility of dynamic modules (see below) has
been added as a first step of implementing so called supern-
odes, i.e. modules that represent an own sub-workflow. These
supernodes are currently in focus of development and will be
available soon.

2 Content

Before describing the parts in detail, we give an overview of
the building blocks that make up the Charon-Suite software
framework (2.1), then proceed with the details (2.2) and show
the implmented algorithms (2.3).

2.1 Overview

Figure 1 shows the main blocks of the Chaoron-Suite software
framework. Each block represents a standalone software project
and may be built individually. Dependencies are visualized us-
ing arrows.

Module collections are bundles of dynamic libraries that repre-
sent single modules, i.e. parts of the algorithms as described
above. Each module classes is derived from the Parametere-
dObject class, perhaps using some intermediate classes (e.g.
handling templates).

Block Description:

charon-core: module interface specification (i.e. the base class
ParameteredObject, Parameters, Slots) and processing
pipeline management (PluginManager)

tuchulcha: GUI workflow configuration application

template-generator: application for easy module generation

Additionally there are module (library) collections for optical
flow estimation (charon-flow), 3D reconstruction (hekate)
and general image processing tasks (charon-utils).

charon-core tuchulcha
calls

Module Collections

inherit

use

PluginManager
ParameteredObject

read metadata
configure workflows

template
generator

generate code
for new modules

library applicationSymbols:

charon-utils

hekatecharon-flow

lib collection

Figure 1: Main Building Blocks of the Charon-Suite software
framework including libraries and applications

2.2 Detailed Description

We implemented a library called charon1 (named after the fer-
ryman in greek mythology). This library includes a common
module interface and manages data-interchange as well as exe-
cution of the processing pipeline. There are many helper tools
to simplify creation of modules, setup of processing pipelines
and module configuration.

We tried to keep the restrictions as small as possible. Mod-
ules are not forced to use any library, the data to be passed
may be arbitrary. Modules may even pass pointers of some in-
terface types which makes ist possible to pass e.g. functions
or other objects that are evaluated later (like e.g. interpolation
schemes). This way, one may distinguish between data-like and
object-like connections.

Even in this situation, wich may be confusing at first sight,
side effects and module dependencies stay visible in the con-
figuration graph. Unconnected modules cannot influence each
other. This is another advantage compared to the monolithic
approach where changing something in a function may cause
effects somewhere else that are hard to track.

Many modules for image processing and some flow estimation
algorithms are provided and usuable out-of-the-box e.g. us-
ing the also provided example workflows2. This includes well-
known algorithms like global optical flow estimation by Horn
& Schunck (1981) but also state-of-the-art methods like by Sun
et al. (2008). More recent algorithms are currently under de-
velopment.

One of the mentioned helper-tools is a wizard to help users
to generate new modules, the so called template-generator. It
creates the source code files needed to get the plugin working.
Slots, parameters and documentation may be configured in this
graphical interface. Later, one has to fill in the code into the
execute method and compile the module. The CMake project
files that are also generated, simplify this task so that even
beginners may get their first modules working within a few
hours.

The GUI configuration tool Tuchulcha (named after a helper-
daemon of Charon) may be used to configure the module pa-
rameters, set up and visualize the processing pipeline. It shows
the module documentation and is able to export the visualiza-
tion into graphic files (svg, png, pdf).

1http://charon-suite.sourceforge.net
2http://charon-suite.sourceforge.net/doc/examples/

2

http://charon-suite.sourceforge.net
http://charon-suite.sourceforge.net/doc/examples/


To execute the configured workflow, it calls the charon-core
base classes in a seperate process (thuchulcha-run) which may
also be used as a standalone command line application. In this
process, the PluginManager is used to generate and set up the
module instances and start the workflow.

2.3 Implemented Algorithms

Here we show, which algorithms are already implemented in
the mentioned module collections and so usable out-of-the-box.
Using the provided example configuration files, it is easy to get
these agorithms working, have a look how they work and tune
the algorithm parameters as needed.

charon-utils

Here, there are modules for data input/output based on Cimg
and Hdf5. This way, the supported file formats range from png,
jpeg, tiff to all formats supported by ImageMagic (if installed).
Hdf5 handling is done via the Vigra library.

Additionally, there are basic image manipulation modules like
blur, resize, threshold as well as linear filtering, derivative cal-
culations etc. These basic modules are used in more complex
workflows later, e.g. for data preprocessing.

charon-flow

The provided algorithms range from the early optical flow es-
timation methods like the one proposed by Horn & Schunck
(1981) to recent state-of-the-art methods. This includes iter-
ated and multiscale versions of the mentioned global method,
the learning flow algorithm by Sun et al. (2008), with the pro-
vided gaussian-mixture penalty functions as well as with char-
bonnier penalty functions as proposed e.g. by Papenberg et al.
(2006).

Recent development added the classic+nonlocal algorithm pro-
posed by Sun et al. (2010). Additionally, there are modules to
apply the global optical flow methods to depth images result-
ing in range flow aka scene-flow estimation (used in Gottfried
et al., 2011).

hekate

With this collection, it is possible to reconstruct 3D scenes using
a Structure from Motion approach (Wang & Wu, 2011; Hart-
ley & Zisserman, 2005) using feature-detection (e.g. SIFT) and
tracking. Outliers of feature correspondences may be elimi-
nated as proposed by Hartley & Zisserman (2005); Li & Hu
(2010). Meshes may be generated by Delaunay triangulation.
Additionally, cameras may be auto-calibrated by image se-
quences and the results may be used for camera tracking.

3 Design Decisions

The software framework has been implemented as a C++ li-
brary including helper tools. Some of these tools provide GUIs
that use the Qt3 libraries. We decided to implement each mod-
ule as a shared library that is loaded dynamically during work-
flow execution.

3http://qt.nokia.com

Data interchange is done similar to a signal/slot model (de-
scribed by Dexin et al., 2006) as it is used by the Qt or boost
libraries. This model implements the observer design pattern
(description e.g. in Freeman et al., 2004; Shalloway & Trott,
2004). Each module defines input and output slots which may
be connected to other modules. Modules may query which slots
are connected and e.g. only perform needed calculations and
skip generation of unneeded data.

To implement the module interface, new modules are derived
from the ParameteredObject base classes and have to register
their input/output slots and configurable parameters. Modules
override the virtual execute method that contains the code to
perform the data processing of the algorithm part the module
represents.

Recent development added the possibility to let modules deter-
mine their interface based on their configuration, i.e. to add
parameters or slots if needed (e.g. providing a parameter to
adjust the number of input/output slots). Such modules are
called dynamic modules.

Charon is platform independent and has been tested on Win-
dows, Linux and MacOS. The compiled module libraries are
platform-specific. To exchange modules in a platform indepen-
dent way, their source code has to be provided.

For project build, we use CMake as platform-independent
Makefile-generator (see Martin & Hoffman, 2010).

We provide binary distributions4 for Windows (32/64 bit),
Ubuntu packages (also work on Debian) as well as Gentoo and
Arch linux build scripts. This way, users may experiment with
the implemented modules without having to compile the whole
framework themselves.

Charon is no framework providing matrix classes, solvers or im-
age formats itself but may be integrated with arbitrary external
frameworks. Currently, we use CImg5 and the Vigra framework
by Köthe (2000) to represent image data, Qt for graphical user
interfaces and e.g. PETSc6 to solve linear equation systems.

The whole software framework is published as open-source
under the terms of the GNU Lesser General Public License
(LGPL). This way, users may publish their modules under the
terms of arbitrary licenses without violating the LGPL condi-
tions. If modules contain GPL code or other restricted code,
this has to be stated in the module documentation.

4 Usage and Examples

The Charon-Suite software framework is intended to be used
by computer vision developers. Usually it is used by students
during internships or during their bachelor, master or PhD the-
sis. This means that there are various levels of background
knowledge within the target user group. Therefore it is pos-
sible for unexperienced users to use the provided workflows as
a black-box but writing or extending the modules one has the
full flexibility to adapt algorithms to the needs.

4.1 Simple Usage Example

A very simple workflow using the image manipulation modules
from charon-utils is shown in Figure 2. An image file (penguin)
is loaded by the FileReader module which passes the loaded

4http://sf.net/apps/trac/charon-suite/wiki/InstallationGuide
5http://cimg.sourceforge.net
6http://www.mcs.anl.gov/petsc

3

http://qt.nokia.com
http://sf.net/apps/trac/charon-suite/wiki/InstallationGuide
http://cimg.sourceforge.net
http://www.mcs.anl.gov/petsc


FILEWRITER

writer
in

FILEREADER

rd
out

ROI

roi
out

IMAGEBLUR

blur

roi
in
out

Figure 2: Simple workflow loading an image and blurring a se-
lected region (penguin head). The resulting file is
printed beside the workflow visualization.

data to a ImageBlur instance. The result is then written back
to disk by the FileWriter. The blur region is selected by a ROI
(region-of-interest) which has parameters for region coordinates
(top-left, bottom-right, up to 5D).

4.2 Optical Flow Example

Figure 3 shows the module interaction of our implementation
of the algorithm by Horn & Schunck (1981). The image deriva-
tives are calculated by the plugin “diff2d”, the data term “bcce”
is assembled using a brightness model and a motion model
which introduce the horizontal and vertical optical flow com-
ponents u and v as unknowns. The plugin “l2norm” represents
the spatial term. The solver “petscsolver” builds the matrix for
solving global flow estimation and solves it numerically using
the PETSc library.

L2NORM

l2norm

flowGuess
mask
this

MOTIONMODELS_LOCALCONSTANT

mm

dx
dy
dz
dt
this

CHANNELCONVERTER

resviz

input
output

FRAMESELECT

sel

in
out
widget
roi

CIMG2VIGRAMULTIARRAY

seqconv

in
out

BRIGHTNESSMODELS_CONSTANT

bm

image
this

GBCCE

bcce

brightnessmodel
motionmodel
mask
this

FLOWQUIVER

quiv

in
flow
out

ARGOSDISPLAY

disp

vigraIn
cimgIn
widgets

FILEREADER

flowreader
out

FLOWQUIVER

gtquiv

in
flow
out

DIFF2D

diff

img
dx
dy
dt
dxx
dxy
dyy

FLOW2HSV

res2hsv

flow
out

PETSCSOLVER

solver

stencil
roi
out

FILEREADER

seqreader
out FLOW2HSV

gt2hsv

flow
out

CHANNELCONVERTER

gtviz

input
output

ROI

solverroi
out

Figure 3: Example workflow showing the central part of our
modular implementation of the algorithm by Horn &
Schunck (1981). For simplicity, the modules reading
the image data (at the left) and writing the flow re-
sult to a file (at the right) have been omitted. The
visualization has been generated usint the tuchulcha
configuration and visualization tool.

References

Xu Dexin, Tan Zhenfan and Gao Yanbin. Developing appli-
cation and realizing multiplatform based on qt framework.
Journal of Northeast Agricultural University, 3, 2006.

Elisabeth Freeman, Eric Freeman, Bert Bates and Kathy Sierra.
Head first design patterns. O’Reilly & Associates, Inc., 2004.
ISBN 0-596-00712-4.

Jens-Malte Gottfried, Janis Fehr and Christoph S. Garbe. Com-
puting range flow from multi-modal kinect data. In George
Bebis, Richard D. Boyle, Bahram Parvin, Darko Koracin,
Song Wang, Kyungnam Kim, Bedrich Benes, Kenneth More-
land, Christoph W. Borst, Stephen DiVerdi, Yi-Jen Chiang
and Jiang Ming, editors, ISVC (1), volume 6938 of Lecture
Notes in Computer Science, pages 758–767. Springer, 2011.
ISBN 978-3-642-24027-0.

Richard Hartley and Andrew Zisserman. Multiple view geom-
etry in computer vision. Robotica, 23(2):271, 2005.

Berthold K. P. Horn and Brian G. Schunck. Determining optical
flow. Artif. Intell., 17(1-3):185–203, 1981.

Daniel Kondermann. Modular optical flow estimation with ap-
plications to fluid dynamics. PhD thesis, University of Heidel-
berg, 2009. URL http://archiv.ub.uni-heidelberg.de/
volltextserver/volltexte/2010/10184.

Ullrich Köthe. Generische Programmierung für die Bildverar-
beitung. PhD thesis, Department of Informatics, Universität
Hamburg, 2000.

Xiangru Li and Zhanyi Hu. Rejecting mismatches by correspon-
dence function. International Journal of Computer Vision,
89(1):1–17, 2010.

Ken Martin and Bill Hoffman. Mastering CMake. Kitware,
Inc., USA, 5 edition, 2010.

Nils Papenberg, Andrés Bruhn, Thomas Brox, Stephan Didas
and Joachim Weickert. Highly accurate optic flow computa-
tion with theoretically justified warping. International Jour-
nal of Computer Vision, 67(2):141–158, 2006.

Alan Shalloway and James R. Trott. Design patterns explained:
a new perspective on object-oriented design. Addison Wesley,
2 edition, 2004. ISBN 0-321-24714-0.

Deqing Sun, Stefan Roth, J. P. Lewis and Michael J. Black.
Learning optical flow. In David A. Forsyth, Philip H. S. Torr
and Andrew Zisserman, editors, ECCV (3), volume 5304 of
Lecture Notes in Computer Science, pages 83–97. Springer,
2008. ISBN 978-3-540-88689-1.

Deqing Sun, Stefan Roth and Michael J. Black. Secrets of op-
tical flow estimation and their principles. In CVPR, pages
2432–2439. IEEE, 2010.

Guanghui Wang and Q.M. Jonathan Wu. Guide to Three
Dimensional Structure and Motion Factorization. Springer
Publishing Company, Incorporated, 2011.

4

http://archiv.ub.uni-heidelberg.de/volltextserver/volltexte/2010/10184
http://archiv.ub.uni-heidelberg.de/volltextserver/volltexte/2010/10184

	History and Goals
	Motivation
	Goals
	History

	Content
	Overview
	Detailed Description
	Implemented Algorithms

	Design Decisions
	Usage and Examples
	Simple Usage Example
	Optical Flow Example


