Yayi

Raffi Enficiaud

1 History & background

We are all lazy people: we want the algorithms we develop run on everything we need, although
we do not know what we need beforehand. This is why genericity is so appealing: develop once, run
possibly on many “things”. Algorithmic genericity states in first place the dissociation between the
internal representation of data structures and the algorithms that run on them, which seems quite
straightforward. However, after having developed our first generic algorithm, we see that this is not so
simple: there are several levels of genericity, as well as several means to achieve each of them, and a bit
of architectural design is required. Object Oriented Programming and template meta-programming
are both powerful tools for isolating the concepts involved in Image Processing and Mathematical
Morphology, and seem to be a good start. More than that, it turns out that meta-programming is also
an efficient way of providing the end user with both genericity and computational efficiency.

Some of the pioneering ideas were presented by Darbon et al.[4], in which the relevance of using
iterators for image processing (among other concepts,) is emphasized. This intermediate layer lead to
the abstraction of the image domain logic. In the meanwhile, Romain Lerallut and Raffi Enficiaud
started developing “Morph—M”E during their PhD. The project initially aimed at being a generic rewrite
of XLim3D [2], but soon became a complete framework for developing new algorithms for Mathematical
Morphology (see [9] and [5],) in a multidimensional and multispectral manner. The high degree of
abstraction lead to several advances in the field ([g], [10].)

Yayi aims at investigating further in the direction of generic meta-programming paradigms, in order
to cope with some of the identified limitations of genericty in general. The development of Yayi started
in 2007, as an open-source initiative with the non-restrictive Boost licence, mainly conducted by one
developer.

2 Design

The main motivation is to provide highly generic and efficient tools for developing algorithms. The
second motivation is to provide tools for developing new algorithms quickly and easily.

Yayi uses mainly three functional layers:

— C++ template layer: this is the core of Yayi, which extensively uses the C+-+ meta-template
mechanisms (template forwarding, specializing, compile time computations, etc.)

— C++ compiled layer (library).

— Python bindings: this interface is particularly convenient and suitable as an intermediate algo-
rithmic level, where pixel /neighborhood operations (eg. color processing, dilation/erosions, ...)
are used as algorithmic entities

General consideration and architecture

Cross platform It should be possible to compile Yayi on a wide range of platforms without any
modification to the original libraryﬂ. Yayi uses plain C++.

1. formerly known as “Morphee”
2. or at least a few to cover some specific issues

Tools & Build system There should always be a free tool for building Yayi, on any platform (and
Windows platform should not be an non-addressed exception.) Yayi uses CMake for its build system,
and Visual Express/Windows SDK, XCode, gce, clang... are able to compile it.

Minimal dependencies Yayi depends on a minimal set of tools, either for I/O (PNG, Jpeg, HDF5
(optional), numpy (Python, optional)) or for using relevant C++ structures (Boost C++ library [1]).
Python is optional. There is no GUI considerations.

Licence The licence should not be an issue for the users. Yayi is licensed under the permissive Boost
license. The problem is that this licence is not widely known.

3 Content

Structures

Support classes (most with python bindings)
— variants, generic pixels, generic positions, generic “bounding boxes”
— color information
— graph (directed/undirected), trees
— histograms
— priority queues

Image classes
— Image classes (generic, interface, python)
— Image processor classes
— Image neighborhood processor classes

Structuring elements
— Runtime structuring elements, pair of SE (hit-or-miss), mutable SE
— Compilation-time structuring elements

Functions & Algorithms

Basic image transforms
— Comparisons: V, A, image vs. scalars, image vs. images, with several type of predicates and
outputs
— Color transformations: channel composition/extraction, truly bijective to/from XYZ, HLS, Lab,
YUYV. Proper colour handling through appropriate structures

— Arithmetic (“47, “-”, “clamp”, “abs”, ...,), logic (“&”, “||”, ...,) mathematical (matrix transform,
log, exp, ...)

— PNG, JPeg
— HDF5 (optional)
— Numpy (python/optional)

Basic mathematical morphology
— Erosion, dilations, openings, closings
— Minkowski addition, subtraction
Geodesic erosions and dilations
— Hit or miss: Soille grey level with flat SE definition (see [11])
— Morphological gradients: thick, upper/lower half
— Algebraic opening/closing (in progress)

Reconstruction algorithms
— Morphological reconstructions (opening and closing), any dimensional on any ordered type
— Fill holes
— h-minima/maxima
— Levellings (definition of Gomila [7])

Measurements over image or non overlapping regions
— Mean, variance, median
— Min/max
— Histograms
— Circular means and variances

Local processing (with a structuring element)
— Local mean, median
— Local circular (weighted /non weighted) mean and variance

Distance algorithms
— Exact distance transform in any dimension [5]
— Geodesic, grid distances
— Color distance functions (definitions in YUV, Lab/Lab hue, HLS, hue... spaces)
— Morphological quasi-distance [6], [3]

Labelling
— Binary with/without background
— With measurements computed over the region (min/max, area)
— With/without output of the adjacency graph

Segmentation
— Isotropic implementation of the watershed with priority queues (in any dimension on any ordered
type)
— Viscous watershed [5] (not fully functional yet.)

4 Samples

Directional opening of leave images

The function filter directional open performs a directional filtering for extracting the venation.
For each directions «, it keeps structures that are not thicker than ¢; = max_thickness (imy,, =

img, — Vgat (im;p)) and longer than fo = min_length (img;; = Vsg (imyp,).)
1

1 |import math as m

2 | def createLineOriented (|, angle):

3 " Creates an oriented segment of length ["""

4 return [(trunc(i*m.cos(angle)), trunc(i*m.sin(angle))) for i in range(—I, |
+1)]

5

6 |def createLineOrientedSE(Il, angle):

7 " Creates a SE with length | and orientation angle"""

8 listpoints = createlLineOriented (|, angle)

9 return YAYI|.SE.SEFactory(YAYI.SE.e set neighborlist, 2, listpoints , YAYI.SE.
e sest neighborlist generic_single)

10

1 | def filter directional open(iml, number angles = 12, min_length = 7,

max_thickness = 5):
12 " pjirectional opening """

13
14
15
16
17
18
19
20
21
22

out = []

angle = lambda x: m.pi * x / number angles
sel = createlLineOrientedSE(max_thickness, current angle + m.pi/2)
se2 = createLineOrientedSE(min_length, current angle)
for i in range(number angles):
current _angle = angle (i)

th2 = AAbsSub(iml, MOpen(iml, se = sel))
imot22 = MOpen(th2, se = se2)
out.append(imot22)
return out, reduce(lambda x,y: MSup(x,y), out) # list and union

Polynomial fitting of the connected components

Performs a polynomial fitting of each connected component (previous image.)

1 | def connected components polynomial regression order2(im, se = sq2D):

2 """Returns a 2—polynomial for each connected component (non black)"""
3 list _of offsets = YAYI.LAB.ImagelLabelNonBlackToOffset(im, se)

4 out = []

5 for index, i in enumerate(list of offsets):

6 coords = YAYI.CORE. FromOffsetsToCoordinates(im.Size, i)

7 polyl = fit 2polynomial in_ x(coords) # fitting using numpy

8 out.append((polyl, index))

9 return out, list of offsets

References

[1] The Boost C++ librairy. http://www.boost.org.

[2] XLim3D. http://cmm.ensmp.fr/xlim3d.html.

[3] BEUCHER, S. Numerical residues. In Proceedings of the 7" International Symposium on Mathe-
matical Morphology (avril 2005), pp. 23-32.

[4] DARBON, J., GERAUD, T., AND DURET-LUTZ, A. Generic implementation of morphological
image operators. In International Symposium on Mathematical Morphology VI (2002), pp. 175—
184.

[5] ENFICIAUD, R. Multi-dimensional and multi-spectral algorithms in the field of Mathematical Mor-
phology : The meta-programming approach. PhD thesis, Centre de Morphologie Mathématique,
Ecole des Mines de Paris, 2007.

[6] ENFICIAUD, R. Queue and priority queue based algorithms for computing the quasi-distance
transform. In Image Analysis and Recognition, A. Campilho and M. Kamel, Eds., vol. 6111 of
Lecture Notes in Computer Science. Springer, 2010, pp. 35—44.

[7] GoMILA, C. Mise en correspondance de partition en vue de suivi d’objets. PhD thesis, Centre de
Morphologie Mathématique, Ecole des Mines de Paris, 2001.

[8] LavEAU, N.; AND BERNARD, C. Structuring elements following the optical flow. In Proceedings
of the Tth International Symposium on Mathematical Morphology (avril 2005), pp. 43-52.

[9] LERALLUT, R. Modélisation et Interprétation d’Images a l'aide de Graphes. PhD thesis, Centre
de Morphologie Mathématique, Ecole des Mines de Paris, 2006.

[10] LERALLUT, R., DECENCIERE, E., AND MEYER, F. Image filtering using morphological amoebas.
In Proceedings of the 7th International Symposium on Mathematical Morphology (avril 2005),
pp. 13-22.

[11] NAEGEL, B., Passar, N., AND RONSE, C. Grey-level hit-or-miss transforms—part i: Unified

theory. Pattern Recognition 40, 2 (2007), 635—647.

	History & background
	Design
	Content
	Samples

