Yayi
A generic framework for morphological image processing
IPOL

RAFFI ENFICIAUD

June 2012

(Ex.) CMM - Mines Paris

Forewords

Yayi - A generic framework for morphological image processing

http ://raffi.enficiaud.free.fr]

Recent library (1st release on August 2009)
A few developers (me : Raffi Enficiaud + sometimes : Thomas Retornaz)

Licence

Released under the Boost licence (very permissive)

Enficiaud (...) Yayi June 2012 2 /42

Why genericity is interesting 7

Multidimensional & multispectral aspects

Images domain (spanned “dimension”)
@ 2D images
@ 3D images
@ 3D + t images
o

any dimension ?

a. in which “pixel” has a sense

Pixel values
@ Binary

Scalar (integer, floats, multiprecision, ...)

°
o Color
(]

Multispectral

Enficiaud (...) Yayi June 2012 4 /42

Functions and processings

Problem n°1 : high functional redundancy

Example : adding a constant value "v" on all the points of the image.
F:VpeEJ(p)=I(p)+v

E dimension T type v type J type
2D scalar scalar e scalar
integer 8bits integer 8bits integer 16bits

v

Number of combinations

(nb dimensions x nb types)2 X nb types
(2 x 4)%2 x 4 = 256

Enficiaud (...) Yayi June 2012 5/ 42

Processings

Problem n°2 : algorithmic redundancy

Labelling
With the same data :
@ create an output image with an “id" for each cc.

@ create an output image with an “id" for each cc. that is not
“background”

@ output the adjacency graph

@ label each cc. with some measurement function (area, volume, mean,

all rely on the connected component extraction

Without meta-programming
@ development of a specific function for each need

@ development of an OO architecture that may be slow at runtime

Enficiaud (...) Yayi June 2012 6 /42

Processings

Problem n°2 : algorithmic redundancy
Labelling
With the same data :
@ create an output image with an “id"” for each cc.

@ create an output image with an “id” for each cc. that is not
“background”

@ output the adjacency graph

o label each cc. with some measurement function (area, volume, mean,

all rely on the connected component extraction

With meta-programming
@ write once the cc. algorithm
@ write several delegate template methods (one for each need)

© pass these delegates to the cc. algorithm

Enficiaud (...) Yayi June 2012 6 /42

Genericity by meta-programming approach

© Focusing the efforts on the implementation of the algorithms
@ Capitalisation
© High and efficient code reuse

© It is "easy” to make the types abstract (and to port - a first version of
- existing algorithms)

Meta-programming ?
© Types resolution
@ Specialising

Enficiaud (...) Yayi June 2012 7/ 42

Algorithms & Images

In order to have generic morphological algorithms, the following structures
should be defined :

Image Neighbourhood Ordering

Algorithm

o Image : generic image structure
e Neighbourhood : generic way to encode the topology
e Order : generic way to encode the lattice algebraic properties

Enficiaud (...) Yayi June 2012 9 /42

How to discover the image domain?

Multidimensional aspects

Write « Vpe E... »

Iterator approach

Query an domain iteration object it to the image

While it has not reached the end of the domain {
Process point p returned by it

}

Algorithm -
it

g

Enficiaud (...) Yayi

Domain processing through iteration

Multidimensional aspects

Iterators
Universal method for discrete domain (sequence of points)

Pros
© The structures act as "containers” and provide an object allowing to
scan their domain
@ Algorithms become independent of

the intrinsic coordinate system of the images (2D, 3D, 4D, ...).
the geometry of their domain (size, borders type, windows, masks,. . .)

v

Cons
@ Less efficient than pure "C" or specific approaches

@ '"Discrete” domain (points can be sequenced)

Enficiaud (...) Yayi June 2012 11 / 42

Neighbourhoods

Structuring functions

Use case Neighbourhood

linEgs function

@ Neighbourhood initialization (image,
neighbouring function)

Neighbourhood :gigtgr
@ Centring of the neighbourhood | _—
.) | Neighbourhood }
© Iteration over the neighbour elements T ,
Algorithm
© Loop back to 2 until the end of the
domain

Pros of iterator approach
© The topology is managed inside the type of the neighbourhood
@ The algorithms are independent from the type of the neighbourhood

Enficiaud (...) Yayi June 2012 12 / 42

Neighbourhoods

Structuring function

Image topology management delegated to a structuring function J

@ Romain Lerallut, Etienne Decenciere & Fernand Meyer.

Image filtering using Morphological Amoebas.
Proceedings of the 7th ISMM, 2005

Morphological Amoebas

Enficiaud (...) Yayi June 2012 13 / 42

Enficiaud (...)

Yayi overview

© Yayi overview
@ Yayi

o Web site

o Constituting modules

Yayi

Yayi

Main design objectives

Specialized for Mathematical Morphology
Open source under (very) permissive Boost licence
Reference algorithms

Highly generic, "easy” to use with different type of usage

Addresses in a generic manner the slowness problem of generic
approaches

Enficiaud (...) Yayi June 2012 15 / 42

Yayi

Design & licence

© Open source, Boost licence

@ C++ / Python : cross-platform source code, standard “compliant”
(tested platforms : Ubuntu, MacOSX, Win, x86/x64)

© Few dependencies (Boost, Jpeg, PNG, HDF5 (optional)), all under
permissive licence

@ Several “modules”
© No patented code

@ Generic and easy to extend ?

1. once the doc is available

Enficiaud (...) Yayi June 2012 16 / 42

Web site

http ://raffi.enficiaud.free.fr]

8L Jzyi

The project / HowToBuild ? / History / Licence / Changes log

What is Yayi ?

Yayi s a image processing framewark which particularly focuses on Mathematical Morphology. It s entirely written in C++ (with some
Python) using templatized code. Yay! Is highly generic: It includes the main concepts used in Mathematical Morphology In 3 powerful
framework. It 2ims at providing robust and efficient algorithms for image analysis at different levels of accessibility: C++ templates,
i+ interface, Python interface. Among its main features, one can cite:
= Images/pixels/coordinates are any dimensional and pixels can be of any ty
+ Aorthms are (st o the time) any lmenional and are able to maiplae 3 type ofpels
= It natively includes several wrapper to other data structures: graphs, trees, histos
© Severa ypes of structuring elements are provied: compile-time S, runtie SE, funcional SE,
= Yayi includes a dispatching mechanism for creating compiled libraries over farge combinatians of the templates input types
Yayi proposes a C+-+ template framework but also a complled library with predefined input/output types combinations. 1t s possible for
You Just to pIug to the C++ interface API in order to embed it in your own applications.
Yayi exposes also a Pythan interface which allows fast prototyping of new algorithms.
1 develop Yayi during my spare time and your feedback will be very much appreciated ! (my email: replace the second " of the address
of this page by an ‘@)

T have just created the google group about Yayi at the following address: hitp://aroups.coogle.com/aroup/vayi-maroholoay. (or see
below)

Downloads and latest news

Current development tag is "What s this cute blue monster with this enormous mounth 2. Things are getting more interesting lately! A
ot of functionalities and bugfixes were added in the last v0.03 release. <

After having downloaded Yayi source code, you should take a look to this section for build instructions.

© Rechercher: (Qans) Coshans | précedent) (O surlgnertout) (] Respecter a casse

"Google” group for discussions, news and distribution
No online SVN repository (code is released on archives)

Enficiaud (...) Yayi June 2012 17 / 42

Constituting modules of the library

YayiCommon : structures communes a toutes les autres librairies (types, variants, graphs, main interfaces, colours,
coordinate, errors management...)

YayilmageCore : Image and iterators interfaces and implementation, image factory and utilities. Pixels transformation
processors.

YayilO : images input/output function (PNG, JPG, RAW, HDF5, Tiff (next release or so))
YayiPixelProcessing : pixel level functions (arithmetic, logical, colour)
YayiStructuringElements : structuring elements and neighbourhood classes, predefined SE
YayiLowLevelMorphology : neighbourhood processors and basic morphological functions
YayiLabel : labelling algorithms

YayiMeasurements : measurements on images

YayiReconstruction : morphological reconstruction algorithms
YayiNeighborhoodProcessing : local transformations

YayiDistances : distance transform algorithms

YayiSegmentation : segmentation algorithms

Enficiaud (Yayi June 2012 18 / 42

Constituting layers

© Constituting layers
@ Interface layer
@ Python layer
o Template layer
@ More insights on pixelwise operations

Enficiaud (...) Yayi June 2012 19 / 42

Interface layer

Interfacing Yayi with minimal "intrusion”

Aim
Manipulating the objects without caring about the exact type.

Pros

Suitable for algorithmic developments
Fast compilation
Small overhead for switching on the appropriate template instance

Cons

Slower when executing algorithms working pixel level (variant
transformations)

Enficiaud (...) Yayi June 2012 20 / 42

Python layer - example

Using Boost.Python.

Example of use

1 import YayiCommonPython as YACOM

2 import YayilmageCorePython as YACORE

3 import YayilOPython as YAIO

4 | import YayiStructuringElementPython as YASE

5 import YayiLowlevelMorphologyPython as YALLM

6

7 | c3_f = YACOM. type (YACOM. c_3, YACOM. s_float)

8 | sc_f = YACOM. type (YACOM. c_scalar , YACOM.s_float)
9

10 | im = YAIO.readJPG(os.path.join(path_data, "release-grosse bouche.jpg"))

12 im_hls = YACORE. GetSamelmageOf(im, c3_f)
13 YAPIX.RGB_to_HLS_I1(im, im_hls)

15 | im_grey = YACORE. GetSamelmageOf(im, sc_f)
16 | YAPIX. CopyOneChannel(im_hls, 2, im_grey)

18 | im_grey2 = YACORE. GetSamelmage(im_grey)
19 | YALLM. Dilation (im_grey , YASE.SESquare2D (), im_grey2)

Enficiaud (...) Yayi June 2012 21/ 42

Template layer
Where algorithms are designed
Aim

Generic implementation of algorithms

Pros

@ Suitable for algorithmic developments, at every level (pixel,
neighbourhood, etc.)

@ No overhead, easy to use (includes)

Cons
@ Intrusive for the external client

@ Slow to compile

@ Errors hard to understand :)

Enficiaud (...) Yayi June 2012 22 / 42

Template layer

Main Image Processing components

What do we have?

© template structures (graphs, priority queues, histograms, variants,
pixels, coordinates, images, SE...)

@ pixel wise image processors
© neighbourhood image processors

These things are not new...

Enficiaud (...) Yayi June 2012 23 /42

Template layer

Example of use

1 |#include <Yayi/core/yayilmageCore/include/yayilmageCore_Impl.hpp>
2 |#include <Yayi/core/yayilmageCore/include/yayilmageUtilities_T .hpp>
3 |#include <Yayi/core/yayiPixelProcessing/include/image_copy_T .hpp>
4

5 | // simple constant generator

6 | struct dummy_generator {

7 int operator()() const {

8 return 0;

9 |}

10

u |/

12

13 | // 3D unsigned char image type

14 | typedef Image<yaUINT8, s_coordinate<3> > image_type3D;

15

16 | // instance

17 image_type3D im3D;

18

19 | // settings \& allocation

20 | im3D.SetSize(c3D(10, 15, 20));

21 | im3D. Allocatelmage();

22

23 | // "block” iterators

24 | for(image_type3D::iterator it(im3D.begin_block()), ite(im3D.end_block());
25 it 1= ite;

26 +Hit) {

27 *it = 0;

28 |}

29

30 | // equivalent to

31 | std:: generate(im3D.begin_block (), im3D.end_block (), dummy_generator());

Enficiaud (...) Yayi June 2012 24 / 42

Template layer

Example of use (continued)

. oo "o
Using “window iterators)
1 | // "windowed” iterators
2 s_hyper_rectangle <3> h(c3D(2,2,1), ¢3D(5,5,1));
3
4 | image_type3D:: window_iterator it (im3D.begin_window(h)), ite(im3D.end_window(h));
5 | std:: generate(it, ite, dummy_generator());
6
7 |// 3D float image type
8 Image<yaF_simple, s_coordinate<3> > im3Dtemp;
9
10 | // copy properties
11 im3Dtemp.set_same (im3D);
12
13 | // copy content (and cast)
14 | copy_-image_t(im3D, im3Dtemp);

Enficiaud (...) Yayi June 2012 25/ 42

Template layer

Summary

Pros

@ "Header only”? : no particular library to link, code directly generated

inside the target library/binary

Types resolved automatically by the compiler

Only needed functions/structures are generated

Very simple to use

a. almost

Cons
o Compilation time increases
@ Generated binary size increases

@ Sometimes violates licences (not for Yayi of course)

Enficiaud (...) Yayi June 2012

26 / 42

Pixelwise operators

Simple example of multiplication with a constant

Definition of a pixel functor J
Operation at pixel level
1 template <class in_t, class val_t, class out_t>
2 | struct s_mult_constant
& std ::unary_function< typename boost::call_traits <in_t >::param_type, out_t>
4 14
5 // the constant value stored in the functor
6 typename boost::add_const<val_t >::type value;
7
8 s_mult_constant (typename boost:: call_traits <val_t >::param_type p)
9 value(p)
0|
11
12 out_t operator()(typename boost::call_traits<in_t >::param_type vl) const throw()
13
14 return static_cast<out_t>(vl x value);
15
16 | };
y

Enficiaud (...) Yayi June 2012 27 / 42

Pixelwise operators

Simple example of multiplication with a constant

Definition of the image transform using the previous pixel functor

Operation at image level

1 template <class image_in_t, class val_t, class image_out_t>
2 | yaRC multiply_images_constant_t(
3 const image_in_t& imin,
4 typename boost:: call_traits <val_t >::param_type val,
5 image_out_t& imo) {
6
7 // the type of the functor
8 typedef s_mult_constant<
9 typename image_in_t:: pixel_type ,
10 val_t ,
11 typename image_out_t:: pixel_type> operator_type;
12
13 // the pixel processor instance
14 s_apply_unary_operator op_processor;
15
16 // the functor instance
17 operator_type op(val);
18
19 // the processing
20 return op_processor(imin, imo, op);
21 |}
y
Enficiaud (...) Yayi June 2012 28 / 42

Pixelwise operators
What is important here?

The s_apply_unary_operator (ie. pixel processor) contains all the logics
for :

@ extract the appropriate iterators from the images (windowed,
non-windowed)

@ call the functor at each pixel

@ in a central way for the library (improving the processor improves
everything...)

Things are getting more complicated :

© when several images are involved (binary, ternary, n-ary pixel
functors) : dependant on the geometry and the type of the images

© when one would like to dispatch the processing onto several threads

Enficiaud (...) Yayi June 2012 29 / 42

Pixelwise operators

Example 1 - binary operators (without return)

Generic processing

1 template <class it_strategy /#* = iterators_independant_tagsx/>

2 struct s_apply_op_range<it_strategy , operator_type_binary_no_return> {

3 template <class op_, class iterl, class iter2, class imagel, class image2>

4 yaRC operator()(op-& op, iterl itl, const iterl itle, iter2 it2, const iter2 it2e,
imagel&, image2&) {

5 for (; itl = itle && it2 != it2e; ++itl, ++it2) {

6 op(*itl, *it2);

7 ¥

8 return yaRC_ok;

9 }

10 s

Pros

Very generic (any kind of iterators, any kind of image type, any domain,
etc).

Cons

Very generic : misses some possible optimizations, genericity assumption
covers too many cases

v
Enficiaud (...) Yayi June 2012 30/ 42

Pixelwise operators

Example 1 - binary operators (without return)

Where the processing power is lost ?

1 | for(; itl != itle && it2 I= it2e; 4+itl, 4+it2)

@ two possibly heavy objects

@ operator++4 : x2 x N calls

© operator!=": x2 x N calls
Remark : iterators are useful for generic domain discovery, in practice,
image operands share more common properties.
Possible optimizations - geometry

@ images share the same kind of geometry (domain) :

1
2

for (; itl != itle; 4++itl)
op(xitl, im2.pixel(itl.Offset());

Enficiaud (...) Yayi June 2012 31/ 42

Pixelwise operators
Example 2 - binary operators (without return)

Possible optimizations - geometry and operands

@ images are the same (add, mult, ...)

1 | for(; itl 1= itle; ++itl){
2 ref_t p = xitl;

3 op(p, p):

4

@ "block” type iterators applied over the whole image domain (pointer
arithmetic instead of complex iterators)

@ images share the same kind of geometry (domain) and windows are of
the same size (constant shift)

1 | const offset shift = it2.Offset() — itl.Offset();
2 for (; itl != itle; ++itl)
3 op(*itl, im2.pixel(itl.Offset() + shift);

A lot of different cases should be determined at runtime!
In practice, not that much optimizations can be performed and covering
more runtime configurations would only bloat the code,

Enficiaud (...) Yayi June 2012 32 /42

Pixelwise operators

Example 3 - binary operators with simple states

Possible optimizations - threads 1

@ Simple case 1 : the functor is "read only” (not mutable), "copy
constructible” (one local instance per thread) & the iterators are
"random access” (eg. add constant, random generator, .. .)

@ Simple case 2 : the functor is "stateless” & the iterators are "random
access” (eg. arithmetic, logics, comparisons, .. .)

Possibility to distribute the processing over several threads

Enficiaud (...) Yayi June 2012 33 /42

Pixelwise operators

Example 4 - binary operators with functor “semantics”

Possible optimizations - threads & functor semantics

Less simple case : given a non-stateless functor f, 3 a function g, such
that for a partition {X;}; of the image's domain we have
f(UX;) = g(Uf(X;)) (eg. histograms, [, ...)

Enficiaud (...) Yayi June 2012 34 /42

Contents

@ Contents

@ Algorithms & functions
@ Roadmap

Enficiaud (...)

Yayi

Algorithms & functions

Currently available

@ Pixel processing
> arithmetic, logical, combinations, comparisons

> color processing

@ Basic morphology (grey scale)

> erosions, dilations, geodesic erosion/dilation
» Minkowski addition, subtraction

> hit-or-miss
>

openings, closings
@ Distances

> morphological distances
> quasi distance

> generic exact distance transform

o Labellings

> connected components with adjacency predicates
> connected components with measurements (area...)
> local extrema

> adjacency graph

> extraction of the geometry of the cc.

Enficiaud (...) Yayi June 2012 36 / 42

Algorithms & functions

Currently available

@ Reconstructions
> opening, closing by reconstruction
> levelling
@ Local transformations
> local color transform
> quantiles, means
@ Segmentation
> isotropic watershed
> viscous watershed

Enficiaud (...) Yayi June 2012 37 /42

Algorithms / functions / structures
Roadmap
Priority 0

@ multithreaded pixel-wise operations

@ documentation (a nice one)

Priority 1

@ more colour and pixels transforms

@ morphological skeleton
reducing the complexity of neighbourhood operations
more “native” SE. (homothetic, line)

morphological operations on line SE.

© 000

common image transforms (interpolations in any dimension, sobel,
bilateral, etc)

@ hierarchical segmentations

v

Enficiaud (...) Yayi June 2012 38 /42

Algorithms / functions / structures
Roadmap

Priority 2
Q (really) binary images
@ swig & matlab interface

© installation tool & precompiled libraries

Priority 3
@ lattice structure

@ graph interface to images

Priority 4
© distributed image structure (for very large data)

Enficiaud (...) Yayi June 2012 39 /42

Synthesis

© Synthesis

Enficiaud (...)

Yayi

Synthesis

Yayi ...
© open source, free, under a permissive licence
@ performs a lot of generic things you do not want to know

© features many mathematical morphology
functions/methods/algorithms

@ is waiting for your feedback !

Enficiaud (...) Yayi June 2012 41 / 42

Thank you for your attention !

Questions ?

Enficiaud (...)

Yayi

	IP, MM & meta-programming
	Forewords
	Some recall about genericity and image processing
	Why genericity?
	Morphology & structures
	Domains
	Neighbourhoods

	Yayi overview
	Yayi
	Web site
	Constituting modules

	Constituting layers
	Interface layer
	Python layer
	Template layer
	More insights on pixelwise operations

	Contents
	Algorithms & functions
	Roadmap

	Synthesis

