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Abstract

We call RGB cube the three dimensional representation of the colors of a digital image in
RGB space. It has been observed that 2D structures predominate in the color cube. They are
qualitatively explained by two main causes: image blur and texture. In this article a filtering
algorithm, the Local Linear Projection (LLP2), is used to smooth the 3D color distribution and
to reveal the underlying 2D structures of the color clusters.

Source Code

The source code (ANSI C), its documentation, and the online demo are accessible at the IPOL
web page of this article1.
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1 Overview

We call RGB cube the three dimensional representation of the colors of a digital image in RGB
space. This cube simply shows the (R,G,B) color points which actually appear in the digital image.
This visualization has, however, two main defects: it does not show the real RGB histogram. The
difference is that in the color cube each point is plotted with its own color, while in the RGB
histogram it has a grey level representing the number of pixels in the image having this color value.
It is of course impossible to display these two features simultaneously. The perspective views, which
are most used, hide the real dense cloud, which is surrounded by a fume of isolated color points.
These isolated color points, mainly due to the image noise and to compression artifacts, make an
opaque obstacle to the perspective view of the cloud. Perspective views remain nonetheless the
classic visualization tool, because the cube occupation by the color points of a natural image is far
from complete, as it can be seen in the example in Figure 1.

In [1] the authors give a comprehensive understanding of all spatial structures appearing in a
color histogram. They explore the building parts of the color cube by a qualitative analysis of image
details. They also investigate how these elementary structures are combined, and their physical
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Figure 1: Original image and its color cube.

causes. Their conclusion is that 2D structures predominate in the color cube. They are qualitatively
explained by two main causes: image blur and texture.

Besides the qualitative analysis of spatial structures in RGB space, the authors of [1] make a
quantitative evaluation supporting the 2D dimensional character of the RGB cube. To this aim a
filtering algorithm, the Local Linear Projection (LLP2) is used to smooth the color distribution and
to reveal the underlying 2D structures of the color clusters.

LLP2 replaces each RGB color in the cube by its projection onto a locally defined regression
plane, computed by Principal Components Analysis (PCA). The process is iterated some two to
four times, until the average error between corresponding colors in consecutive iterations is below a
threshold of 0.5.

Thus LLP2 estimates a 2D manifold from the unstructured cloud of points allowing for a better
visualization of the colors. This 2D manifold is usually very close to the initial cloud: on average
the displacement of the color points is around 3 (see Table 3), which is quite small in relation to
the cube dimensions (255, 255, 255). On this manifold, the color density is displayed by a brightness
value proportional to its logarithm. The density has become visible because the cloud is flattened
and the dense color points in direct sight, being no more hidden by low density color points (see
Figure 2).

The algorithm is described in the next sections, together with implementation details. Moreover,
several examples are displayed.

2 Algorithm

Given a k-dimensional manifold given by noisy samples, the problem of recovering the manifold by
denoising the samples and meshing them is a classic problem whose solution can be taken advantage
of for processing color clouds. The founding method seems to be the moving least square (MLS)
method introduced in [2]. It is proved in [3] that the MLS method of order 1, which projects the
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Figure 2: Perspective view of the color cube of the image in Figure 1 after filtering with LLP2. Each
color is displayed with a grey level proportional to the logarithm of the density in RGB space (lighter
for higher densities). The density of color points is defined in Section 7.1.

point cloud locally on its regression plane, moves the underlying surface by mean curvature motion.
This means that if the surface is flat, it hardly moves by MLS1. However, if the point cloud is noisy,
a smooth manifold is fast restored and can be meshed, as proved in [3]. MLS1 is a particular case of
the Local Linear Projection (LLP) algorithm [4], which does not assume a particular dimension. LLP
with k dimensions (LLPk) takes for each point its closest points in Euclidean distance and computes
the PCA of this neighborhood. Then, the current point is projected on the regression affine manifold
generated by the k first PCA components. This algorithm was proposed by Huo et al. [4] for the
filtering of high dimensional data. Notice that MLS1 and LLP2 are the same algorithm.

The adaptation of LLP to the color point clouds is described below. Each RGB color actually
may represent more than one pixel in the image. When applying this filtering strategy each color is
counted as many times as it appears in the image.

LLP algorithm.

For each RGB color yi, i = 1, 2, · · · , N ,

1. Find the K neighbors whose distance to yi is smaller than a given threshold T . The neighboring
colors are denoted by x1, x2, · · · , xK .

2. Compute the principal components of the set x1, x2, · · · , xK .

3. Let k (k = 0, k = 1 or k = 2) be the assumed dimension of the embedded manifold, then
project yi onto the affine subspace spanned by the first k principal components and passing
through the center of mass of the set x1, x2, · · · , xK .

The algorithm is iterated until the average difference between corresponding colors in two con-
secutive iterations is below a precision parameter ε.

In practice only LLP2 is used, since the 2D model has proven [1] to be the best adapted to the
color distributions found in natural images.
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3 Implementation Details

The complexity of the algorithm is a function of the number of colors C in the image. For each color,
a neighborhood of size (2T + 1)3 is explored (step 1 of the algorithm) and then the color point is
processed. This simple analysis leads to an upper bound of O(CT 3) operations per iteration. The
total number of iterations depends on the speed of convergence of the algorithm.

It is not possible to give an a priori estimate of the computation time in terms of the size of
the image, since there is no exact correspondence between number of pixels and number of colors.
Statistical analysis performed on 100 images from the Berkeley test dataset [5] (size 481× 321) gives
an average ratio of 4.24 pixels/color. Moreover, this ratio decreases as the image size is reduced (see
Table 1).

Scale Size (pixels) Colors Pixels/Color
1 154401 36363.13 4.24

0.75 86400 26676.66 3.24
0.5 38400 16482.54 2.33
0.25 9600 6155.44 1.56

Table 1: Number of pixels and average number of colors computed from 100 images from the Berkeley
test dataset [5] for different scale factors. The last column shows the ratio between the number of
pixels with respect to the number of colors.

The following specific implementation of the LLP algorithm has been adopted in order to reduce
the computation time while ensuring the quality of the results:

• in step 1, L1 distance is used and the value of threshold T is fixed to 10. In the Examples
section it is shown that the value of this parameter is not critical for the algorithm results,
provided that the right model of color distribution (2D model) is used.

• in step 2, the minimum number K of neighbors required for principal components analysis is
set to 10, therefore the algorithm is not applied to isolated points in RGB space. These points
keep their initial RGB value throughout the filtering process.

• an additional step has been added:

3b. Project onto the same affine subspace described in step 3 all the neighbors of yi at
distance smaller than δ. These points are no longer processed in the current iteration. δ
must be smaller than T so the affine subspace found in step 3 is a good approximation
of the subspace associated to these points. The addition of step 3b implies a maximum
reduction of the computation time of the order of (2δ + 1)3. After experimental testing
on several images (see Section 4) we have fixed δ = T/2.

• the number of iterations is controlled by ε. We fix it to 0.5, which implies an average of 3
iterations for LLP2. The value was chosen after experimental testing on several images (see
Section 4).

Statistical analysis of the computation time of the algorithm with parameters fixed to T = 10,
δ = 5 and ε = 0.5) has been performed using 100 images of the Berkeley test dataset [5]. The
average computation time for these images has been computed for decreasing scale factors. The
results, summarized in Table 2, show that the computation time has a non-linear dependency on the
image size (at least for small scale factors).
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Scale Size (pixels) Size/Size(scale 1) Time/Time(scale 1)

1 154401 1 1
0.75 86400 0.56 0.59
0.5 38400 0.25 0.33

Table 2: 100 images from the Berkeley test dataset [5] have been zoomed down with decreasing
scale factors. The size of the images is shown in the second column. The ratio between the size of
the zoomed images and their original size is displayed in the third column. The last column shows
the ratio between the average computation times of LLP2 for the zoomed images with respect to the
computation time for the original images.

4 Parameters Setting

4.1 Tests with T

The distance T is used to select the neighboring points which take part in the PCA computation. The
value of this parameter is not crucial, as illustrated in Figure 3 and Table 3. It must be remarked that
T is a distance in RGB space (not a distance between image pixels) and that in all our experiments
3 bytes per pixel are used to store color information, therefore the maximum Euclidean distance
between two points in the color cube is 255× 31/2 = 441.67.

Figure 3: The original image (top-left) is filtered with LLP2, the radius T of the filter being re-
spectively 10, 15, 20. The corresponding clouds are in the bottom row. No color alteration is
visible, which is consistent with the small variation of the cloud itself. This visual experiment is
complemented by the quantitative analysis of Table 3.

In order to numerically verify the 2D filtering stability, the root mean square errors (RMSE)
between the color clouds filtered with consecutive radii are shown in Table 3. The errors displayed in
this table are the average errors over 100 images from the Berkeley test database [5]. The outcome
of the experiment is decisive. The average distance between the cloud and its LLP2 filtered version
remains small (less that 5), regardless of the value of the filtering radius T . In addition, the distances
between filtered points for different values of the radius are also small (of the order of 2), proving that
the filtered cloud is essentially the same regardless of the filtering parameter. This table therefore
demonstrates the validity of the 2D manifold assumption. In all our experiments we have fixed
parameter T = 10.
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RMSE dT=5
T=3 1.51 2.82
T=5 2.43 2.54
T=10 3.32 2.17
T=15 3.80 2.03
T=20 4.18 1.94
T=25 4.48 1.76
T=30 4.72 1.64

Table 3: Statistical results applying LLP2 (ε = 0.5, δ = T/2) on 100 images from the Berkeley test
database [5]. First column: the radius T for LLP. Second column: average RMSE between filtered
point and original after applying LLP2. Third column: average RMSE between the final position of
a point filtered by LLP2 with radius T , and the same point filtered by LLP2 with radius T + dT ,
where dT = 5.

About the computation of RMSE. The root mean square errors (RMSE) displayed in Table 1
have been computed between two color clouds, not between two images:

RMSE =

√
1

card(κ0)

∑
c∈κ0

d2(c, T (c)),

where κ0 is the set of different colors in the first input image and T (c) is the color in the second
image that corresponds to color c in the first image (they belong to the same pixel in both images).
d(c, T (c)) is the Euclidean distance in RGB space from color c to color T (c). Observe that the
number of pixels associated to each color (its histogram value) is not taken into account.

Alternatively, the average distance between corresponding color points could have been computed:

dmean =
1

card(κ0)

∑
c∈κ0

d(c, T (c)).

4.2 Tests with δ

The parameter δ is used in the algorithm to speed up computations. Table 4 shows the average
reductions in computation time for different values of δ (with fixed radius T = 10), computed from
100 images of the Berkeley database [5]. The average RMSE between original and filtered images is
also shown.

The results show that the computation time is reduced as δ increases, while the average RMSE
remains small even for large values of the parameter. This result is explained by the smooth variations
in orientation of the local regression planes computed for each RGB point, which makes it possible
to approximate the local plane at a given point by planes computed at relatively far apart points.
It must be remarked however that RMSE is an average measure over the set of points in a color
cloud. Close observation of the clouds shows that when large values of δ are used the filtered color
clouds tend to be composed of unconnected 2D manifolds, instead of forming a smooth surface (see
Figure 4). For this reason we have chosen a compromise value δ = T/2 = 5 (since T = 10) in all our
experiments.

4.3 Tests with ε

The parameter ε is used to control the number of iterations of the algorithm. Table 5 displays the
average number of iterations for 100 images in the Berkeley test database [5] for different values of ε.
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Time/Time(δ=0) RMSE
δ = 0 1 3.30
δ = 1 0.25 3.30
δ = 2 0.11 3.30
δ = 3 0.065 3.31
δ = 5 0.036 3.32
δ = 7 0.03 3.37
δ = 10 0.028 3.56

Table 4: The first column shows the ratio between the average computation time of the LLP2
algorithm (T = 10, ε = 0.5) for different values of the speed-up parameter δ with respect to the
computation time without acceleration (δ = 0). The average RMSE with respect to the original
images is also displayed. Averages were taken over 100 images in the Berkeley test dataset [5].

Figure 4: Top, original image and its color cube. The image is filtered with the LLP2 algorithm
with T = 10, ε = 0.5 and increasing values of the speed-up parameter δ. Bottom, from left to right,
resulting cubes with δ = 0 (no acceleration), δ = 5 and δ = 10. For large values of δ (bottom-right)
the filtered color clouds tend to be composed of unconnected 2D manifolds, instead of forming a
smooth surface (bottom, left and center).

The average RMSE between original and filtered images is also shown. As the number of iterations
(and therefore the computation time) increases the dominant 2D structures become more visible, at
the expense of losing details of the color distribution (see Figure 5). As a consequence the difference
(RMSE) with the original values increases. A compromise solution has been to set ε = 0.5.
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Number of iterations RMSE
ε = 0.05 29.3 4.71
ε = 0.1 11.92 4.09
ε = 0.25 4.51 3.55
ε = 0.5 2.91 3.32
ε = 0.75 2.48 3.24
ε = 1 2.23 3.17

Table 5: The second column shows the average number of iterations of the LLP2 algorithm (T = 10,
δ = 5) computed from 100 images in the Berkeley test dataset [5]. The average RMSE with respect
to the original images is also displayed. As the number of iterations increases the difference with the
original values increases.

Figure 5: Top, original image and its color cube. The image is filtered with LLP2 with T = 10,
δ = 5 and increasing values of ε. Bottom, from left to right, resulting cubes with ε = 1, ε = 0.5 and
ε = 0.05. As the number of iterations increases the dominant 2D structures become more visible, at
the expense of losing details of the color distribution.
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5 Preprocessing and Visualization of Results

In the Overview section it was remarked that isolated colors in the RGB cube make an opaque
obstacle to the perspective view of the cloud of RGB points. LLP2 recreates a 2D manifold from
the unstructured cloud of points allowing for a better visualization of the colors. However, isolated
colors are not eliminated by LLP2 (their number of neighboring colors is below threshold K and
therefore their original value is preserved) and they still hinder visualization of the processed cube.

In order to improve the visualization of the original and filtered RGB cubes the following proce-
dure is applied:

1. Eliminate “isolated” colors from the original image. One color is labeled as “isolated” if its
number of neighbors (number of color points at L1-distance ≤ r) is below some threshold nmin.
Values r = 5 and nmin = 10 are used in all our experiments.

2. Apply LLP2 on the remaining colors.

This procedure is used in the online demo and in the examples below. Results are displayed as
follows:

• Original image.

• RGB cube of the original image after removal of isolated colors.

• RGB cube after processing with LLP2 the cube from the previous step.

• Filtered image, where pixels with “isolated” colors in the original image keep their original
color.

Isolated color points are mainly located on boundaries, and they represent a small fraction of the
total number of image colors. Tests with the 100 images of the Berkeley test dataset [5] show an
average value of 2% isolated colors per image. An average of 1% image pixels correspond to isolated
colors.

Figure 6 displays an original image, the resulting image after removal of isolated colors (pixels
set to black), the filtered image and their corresponding color cubes.

6 More Examples

This section displays (see Figure 7) some results of the application of LLP2 (including removal of
isolated points) on different images from Berkeley test dataset [5].

7 Color Density Visualization

The 2D structure of color histograms permits a simple and reliable visualization tool (LLP2) recreat-
ing a 2D color manifold from the unstructured color cloud point. On this manifold the color density
itself can be displayed by a brightness value proportional to the density of the color point.

Figure 8 shows another perspective of the filtered point clouds of the images in Figure 7, and
also displays their histogram density (lighter grey levels indicate higher densities). The density is
displayed in logarithmic scale, because a few color points can have a huge occupancy (the typical
“blue sky effect”) and therefore a linear scale would squeeze the density values. The density is only
now visible because the filtered clouds are flat and the dense color points in direct sight.
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Figure 6: Top row. From left to right, original image, the same image after removal of isolated colors
(associated pixels set to black) and filtered image. 6.02% of the colors have been removed (3.84% of
pixels). (This percentage is exceptionally high, the average removal rate being 1%.) Bottom, from
left to right, original color cube, cube after removal of isolated colors and result of LLP2 on this last
cube.

7.1 How the Color Density is Computed

The density of a color point in RGB space is a measure of the occupancy of the space in a neighbor-
hood of the point. Density values are computed as follows

ρ(c) =
∑
cs∈κ

e−d
2(c,cs)/h2 ,

where c is a color in RGB space, κ is the set of its neighbors at distance smaller or equal to T , h is
a weighting factor, and d(c, cs) is the Euclidean distance between colors c and cs in RGB space. In
this case each color is counted as many times as it appears in the image (number of pixels having
the color value). T and h have been set to T = 5 and h = T/

√
2 in all our experiments.

Image Credits

All the images are from the Berkeley Segmentation Dataset and Benchmark2.

2https://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
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Figure 7: Five images, their original cloud, their filtered cloud by LLP2 (T = 10, δ = 5, ε = 0.5),
and the image with the filtered colors. The filtered cloud is a 2D numerical manifold, being a steady
state for LLP2. There is no conspicuous alteration in the color cloud when passing to 2D, and the
image with filtered colors looks identical to the original.
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Figure 8: Densities of the filtered RGB cubes in Figure 7. Left: original image. Center: a view of
the filtered RGB cube. Right: Same view for the density. The real density is now visible because
the cloud has been flattened into a 2D manifold. Otherwise the dense color points would be hidden,
being occluded by less dense ones.
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