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Abstract

Image interpolation is the problem of increasing the resolution of an image. Linear methods
must compromise between artifacts like jagged edges, blurring, and overshoot (halo) artifacts.
More recent works consider nonlinear methods to improve interpolation of edges and textures.
In this paper we apply contour stencils for estimating the image contours based on total variation
along curves and then use this estimation to construct a fast edge-adaptive interpolation.

Source Code

The source code (ANSI C), its documentation, and the online demo are accessible at the IPOL
web page of this article1.

Keywords: image interpolation; image level-line analysis; total variation

1 Introduction

Image interpolation is the problem of increasing the resolution of an image. Linear methods have
traditionally been preferred, for example, the popular bilinear and bicubic interpolations are linear
methods. However, a linear method must compromise between artifacts like jagged edges, blur-
ring, and overshoot (halo) artifacts. These artifacts cannot all be eliminated simultaneously while
maintaining linearity.

More recent works consider nonlinear methods, especially to improve interpolation of edges and
textures. An important aspect of nonlinear interpolation is accurate estimation of edge orientations.
For this purpose we apply contour stencils, a new method for estimating the image contours based
on total variation along curves. This estimation is then used to construct a fast edge-adaptive
interpolation.

1http://dx.doi.org/10.5201/ipol.2011.g_iics
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Image Interpolation with Contour Stencils

2 Contour Stencils

The idea in contour stencils is to estimate the image contours by measuring the total variation of
the image along curves. Define the total variation (TV) along curve C

||u||TV (C) =

∫ T

0

∣∣∣∣ ∂∂tu(γ(t))

∣∣∣∣ dt, γ : [0, T ]→ C,

where γ is a smooth parameterization of C. The quantity ||u||TV (C) can be used to estimate the
image contours. If ||u||TV (C) is small, it suggests that C is close a contour. The contour stencils
strategy is to estimate the image contours by testing the TV along a set of candidate curves, the
curves with small ||u||TV (C) are then identified as approximate contours.

Contour stencils are a discretization of TV along contours. As described in [4, 5], a “contour
stencil” is a function S : Z2×Z2 → R+ describing weighted edges between the pixels of v. Stencil S
is applied to v at pixel k ∈ Z2 as

(S ? [v])(k) :=
∑

(m,n)∈Z2

S(m,n)|vk+m − vk+n|.

Defining [v](m,n) := |vm − vn|, this quantity is (with an abuse of notation) a cross-correlation
over Z2 × Z2 evaluated at (k, k). The stencil edges are used to approximate a curve C so that the
quantity (S ? [v])(k) approximates ||u||TV (C+k) (where C+k := {x+k : x ∈ C}). The image contours
are estimated by finding a stencil with small TV. The best-fitting stencil at pixel k is

S?(k) = arg min
S∈Σ

(S ? [v])(k),

where Σ is a set of candidate stencils. It is possible that the minimizer is not unique, for example
in a locally constant region of the image. For simplicity, we do not treat this situation specially and
always choose a minimizer even if it is not unique. This best-fitting stencil S?(k) provides a model
of the image contours in the neighborhood of pixel k. The stencils used in this work are shown in
Figure 1.

Figure 1: The proposed stencil set Σ. The edge weights S(m,n) are denoted by superscript α, β, γ,
δ.

For the set of candidate stencils Σ, we use 8 line-shaped stencils that were designed to distinguish
between the functions

f j(x) = x1 sin
π

8
j − x2 cos

π

8
j, j = 0, · · · , 7.

The edge weights α, β, γ, δ are selected so that on the function f(x) = x1 sin θ − x2 cos θ,

|θ − π

16
j| < π

16
−→ S

π
8
j = arg min

S∈Σ
(S ? [f ]) (see Figure 2).
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Figure 2: Normalized stencil total variations (S π
8
j?[f ]) vs. θ. Left: The first three stencils, j = 0, 1, 2.

Right: All eight stencils.

In this way, the stencils can fairly distinguish 8 different orientations. An estimate of the local
contour orientation at point k is obtained by noting which stencil is the best-fitting stencil S?(k).

For a color image, the image is converted from RGB to a luma+chroma spaceYU
V

 =

 2 4 1
−1 −2 3
4 −3 −1

RG
B


and the stencil TV is computed as the sum of (S ? [v])(k) applied to each color channel.

3 Interpolation

Given image v known on Z2, we seek to construct an image u on R2 such that

v(x) = (h ∗ u)(x), for all x ∈ Z2,

where h is the (assumed known) point spread function and ∗ denotes convolution.
The goal is to incorporate deconvolution yet maintain computational efficiency. To achieve this,

the global operation of deconvolution is approximated as a local one, such that pixels only interact
within a small window.

3.1 Local Reconstructions

For every pixel k in the input image, we begin by forming a local reconstruction

uk(x) = vk +
∑
n∈N

cn ϕS?(k)(x− n),

where N ⊂ Z2 is a neighborhood of the origin and ϕS?(k) is a Gaussian oriented with the contour
modeled by the best-fitting stencil S?(k) (see Figure 3).

The cn are chosen such that uk satisfies the discretization model locally,

(h ∗ uk)(m) = vk+m, m ∈ N .

This condition implies that the cn satisfy the linear system∑
n

(AS)m,ncn = vk+m − vk, n ∈ N ,
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Figure 3: Local reconstruction uk with oriented functions functions ϕS? .

where AS is a matrix with elements (AS)m,n = (h ∗ ϕS)(m− n). By defining the functions

ψnS(x) :=
∑
m∈N

(A−1
S )m,nϕS(x−m),

uk can be expressed directly in terms of the samples of v,

uk(x) = vk +
∑
n∈N

(vk+n − vk)ψnS?(k)(x).

3.2 Global Reconstruction

The uk are combined with overlapping windows to produce the interpolated image,

u(x) =
∑
k∈Z2

w(x− k)uk(x− k).

The window should satisfy
∑

k w(x− k) = 1 for all x ∈ R2 and w(k) = 0 for k ∈ Z2\N .

3.3 Iterative Refinement

This global reconstruction satisfies the discretization model approximately, ↓ (h ∗ u) ≈ v. The
accuracy may be improved using the method of iterative refinement. Let R denote the global
reconstruction formula

(Rv)(x) :=
∑
k∈Z2

w(x− k)
[
vk +

∑
n∈N

(vk+n − vk)ψnS?(k)(x− k)
]
,

such that u = Rv (where we consider S? as fixed parameters so that R is a linear operator). Then
the deconvolution accuracy is improved by the iteration

u0 = 0, ui+1 = ui +R
(
v − sample(h ∗ ui)

)
.

Each iteration should reduce the residual in satisfying the discretization model,

ri = v − sample(h ∗ ui).

The residual reduces quickly in practice, usually three or four iterations is sufficient for accurate
results.
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3.4 Parameters

The following parameters are fixed in the experiments:

• h is a Gaussian with standard deviation 0.5,

• N = {−1, 0, 1} × {−1, 0, 1}

• w is the cubic B-spline,

w(x, y) = B(x)B(y), B(t) =
(
1− |t|+ 1

6
|t|3 − 1

3

∣∣1− |t|∣∣3)+

• ϕS is an oriented Gaussian,

ϕS(x, y) = exp
(
− τ 2

2σ2
τ

− ν2

2σ2
ν

)
,

(
τ
ν

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)
,

with στ = 1.2 and σν = 0.6, and θ is the orientation modeled by S,

and three iterations of iterative refinement are applied (one initial interpolation and two correction
passes).

For sake of demonstration, the examples below use a PSF with a substantial amount of blur,
σh = 0.5. The default value for σh is 0.35 in the online demo associated with this article2, which
better models the blurriness of typical images.

4 Algorithm

The interpolation is computationally efficient. We first consider the complexity without iterative
refinement.

The matrices A−1
S can be precomputed for each stencil S ∈ Σ, allowing the cn coefficients to be

computed in 6|N |2 + 3|N | operations per (color) input pixel. Furthermore, since w has compact
support, u only depends on the small number of uk where w(x − k) is nonzero. Let W be a bound
on the number of nonzero terms,

#{k ∈ Z2 : w(x− k) 6= 0} ≤ W, for all x ∈ R2.

We suppose that W is O(|N |). Given the cn, each evaluation of u(x) costs O(|N |2) operations.
So for factor-d scaling, the total computational cost is O(|N |2d2) operations per input pixel. For
scaling by rational d, samples of w and ψnS can also be precomputed, and scaling costs 6|N |Wd2

operations per input pixel. For the settings used in the examples, this is 864d2 operations per input
pixel.

With iterative refinement, the previous cost is multiplied by the number of steps and there is the
additional cost of computing the residual. If h is quickly decaying, then it is accurately approximated
by an FIR filter with O(d2) taps and the residual

ri = v − sample(h ∗ ui)

can be computed in O(d2) operations per input pixel.

2http://dx.doi.org/10.5201/ipol.2011.g_iics
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5 Implementation

This software is distributed under the terms of the simplified BSD license. Please see the readme.html
file or the online documentation3 for details.

Implementation notes:

• Fixed-point arithmetic is used to accelerate the main computations.

• For efficiency in the correction passes of iterative refinement, the uk for which |vk| is small are
not added (so that they do not need to be computed),

u(x) =
∑

k∈Z2:|vk|≥T

w(x− k)uk(x− k).

Computation Time. The computation time shown in the demo is computed using the UNIX
gettimeofday function to obtain the system time in units of nanoseconds. Note that the computation
is affected by other tasks running simultaneously on the server, so the reported computation time is
only a rough estimate.

6 Examples

In Figure 4 we perform an interpolation experiment to test the performance of the proposed inter-
polation strategy.

First, a high-resolution image u0 is smoothed and downsampled by factor 4 to obtain a coarsened
image v =↓ (h ∗ u0) where h is a Gaussian with standard deviation 0.5 in units of input pixels,
σh = 0.5. This amount of smoothing is somewhat weak anti-aliasing, so the input data is slightly
aliased.

The value of σh should estimate the blurriness of the PSF used to sample the input image. It is
better to underestimate σh rather than overestimate: if σh is smaller than the true standard deviation
of the PSF, the result is merely blurrier, but using σh slightly too large creates ripple artifacts.

The method works well for 0 ≤ σh ≤ 0.7. For σh above 0.7, the method produces visible ringing
artifacts (even if the true PSF used to sample the input image has standard deviation σh). One could
expect this effect, since there is no kind of regularization in the deconvolution. In the online demo,
the default value for σh is 0.35, which reasonably models the blurriness of typical images.

Interpolation is then performed on v to produce u approximating the original image uo. The
interpolation and the original image are compared with the peak signal-to-noise ratio (PSNR) and
mean structural similarity (MSSIM) metrics (see Appendix to know how these are computed).

Table 6 shows the convergence of the residual ri = v− ↓ (h ∗ u) where the image intensity range
is [0, 1].

Iteration i ||ri||∞
1 0.05409007
2 0.01677390
3 0.00661765

3http://dx.doi.org/10.5201/ipol.2011.g_iics
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Figure 4: Interpolation experiment to test the performance of the proposed interpolation strategy.
From left to right and from top to botton: original image (332×300), input image (83×75), estimated
contour orientations, result of contour stencil interpolation (PSNR 25.77, MSSIM 0.7165, CPU time
0.109s).

6.1 Comparison with Other Methods

For comparison, the same experiment is performed with standard bicubic interpolation, Muresan’s
AQua-2 edge-directed interpolation[2], Genuine Fractals fractal zooming4, Fourier zero-padding with
deconvolution, Malgouyres’ TV minimization [1], and Roussos and Maragos’ tensor-driven diffu-
sion [3]. The first three of these methods do not take advantage of knowledge about the point
spread function, while the later three do (notice their sharper appearance). The results are shown
in Figure 5.

The contour stencil interpolation has good quality similar to tensor-driven diffusion but with an
order of magnitude lower computation time.

4onOne software. Genuine Fractals. [www.ononesoftware.com](http://www.ononesoftware.com)
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Figure 5: Interpolation results on the input image of Figure 4 for different methods. See text for
details. From left to right and from top to botton: Bicubic (PSNR 24.36, MSSIM 0.6311, CPU time
0.012s), AQua-2 (PSNR 23.97, MSSIM 0.6062, CPU time 0.016s), Fractal Zooming (PSNR 24.50,
MSSIM 0.6317), Fourier Zero-Padding with Deconvolution (PSNR 25.70, MSSIM 0.7104, CPU time
0.049s), TV Minimization (PSNR 25.87, MSSIM 0.7181, CPU Time 2.72s), Tensor-Driven Diffusion
(PSNR 26.00, MSSIM 0.7297, CPU Time 5.11s).
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6.2 Geometric Features

The experiment shown in Figure 6 on a synthetic image tests the method’s ability to handle different
geometric features.

Figure 6: Interpolation experiment to test the method’s ability to handle different geometric features.
From left to right and from top to botton: original image (320×240), input image (80×60), estimated
contour orientations, result of contour stencil interpolation (PSNR 21.23, MSSIM 0.8548, CPU time
0.078s).

6.3 Textures

Because the method is sensitive to the image contours, oriented textures like hair can be reconstructed
to some extent. Interpolation of rough textures with turbulent contours is less successful. Some
results on textured images are shown in Figure 7.

6.4 Noisy Images

A limitation of the method is the design assumption that noise in the input image is negligible. If
noise is present, it is amplified by the deconvolution. The sensitivity to noise increases with the PSF
standard deviation σh, which controls the deconvolution strength. Similarly, if σh is larger than the
standard deviation of the true PSF that sampled the image, then the method produces significant
oscillation artifacts because the deconvolution exaggerates the high frequencies. Figure 8 displays
some interpolation results on noisy images.
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Figure 7: Interpolation experiment to test the method’s ability to handle textures. From top to
botton: original images (left: 392 × 304; right: 332 × 304), input images (left: 98 × 76; right:
83× 76), result of contour stencil interpolation (left: PSNR 33.24, MSSIM 0.7762, CPU time 0.129s;
right: PSNR 22.47, MSSIM 0.6051, CPU time 0.115s).

Appendix. Image Quality Metrics.

6.5 Lp Metrics

Let A and B be two color images to be compared, each with N pixels. We consider the images as
vectors in R3N with each pixel represented by red, green, blue intensities in {0, 1, · · · , 255}. Several
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Figure 8: Interpolation results on noisy images. The top row shows the input images, from left to
right: clean input, JPEG compressed and quantized colors. The bottom row shows their interpo-
lations, from left to right: PSNR 26.48, MSSIM 0.8196; PSNR 20.38, MSSIM 0.5244; PSNR 18.30,
MSSIM 0.3393.

standard metrics can then be defined in terms of lp norms.

• Maximum absolute difference := ||A−B||∞,

• Mean squared error (MSE) := 1
3N
||A−B||22,

• Root mean squared error (RMSE) :=
√
MSE = 1√

3N
||A−B||2,

• Peak signal-to-noise ratio (PSNR) := 10 log10
2552

MSE
= log20

255
RMSE

.

For the first three metrics, a smaller value implies a smaller discrepancy between A and B. For
PSNR, a larger value implies a smaller discrepancy, with PSNR = ∞ when A = B.

6.6 MSSIM

The mean structural similarity (MSSIM) index5 is a somewhat more complicated metric designed to
agree better with perceptual image quality.

5https://ece.uwaterloo.ca/~z70wang/research/ssim/
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We first describe MSSIM on grayscale images. Let w be a Gaussian filter with standard deviation
1.5 pixels, and compute the following local statistics

µA = w ∗ A, µB = w ∗B,
σ2
A = w ∗ (A− µA)2, σ2

B = w ∗ (B − µB)2,

σAB = w ∗
(
(A− µA)(B − µB)

)
.

At every pixel, the structural similarity (SSIM) index is calculated as

SSIM :=
(2µAµB + C1)(2σAB + C2)

(µ2
A + µ2

B + C1)(σ2
A + σ2

B + C2)
,

where C1 = (0.01 ·255)2 and C2 = (0.03 ·255)2. The mean SSIM (MSSIM) is the average SSIM value
over the image.

For color images, we compute the MSSIM over each channel and take the average,

MSSIM := 1
3
(MSSIMred + MSSIMgreen + MSSIMblue).

The MSSIM index is always between 0 and 1. A larger value implies smaller discrepancy.
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