
Image Processing On Line

Image Interpolation with Geometric Contour Stencils
Pascal Getreuer

Pascal Getreuer pascal.getreuer@cmla.ens-cachan.fr, CMLA, ENS Cachan

Communicated by Gabriele Facciolo gabriele.facciolo@upf.edu, DTIC, Universitat Pompeu
Fabra
Edited by Pascal Getreuer pascal.getreuer@cmla.ens-cachan.fr, CMLA, ENS Cachan

Overview

We consider the image interpolation problem where given an image v with uniformly-sampled
pixels vm,n and point spread function h, the goal is to find function u(x,y) satisfying

so that u approximates the underlying function from which v was sampled.

This article is a joint submission with [8] and improves upon the IPOL article Image
Interpolation with Contour Stencils [7]. In [7], contour stencils are used to estimate the image
contours locally as short line segments. This article begins with a continuous formulation of
total variation integrated over a collection of curves and defines contour stencils as a consistent
discretization. This discretization is more reliable than the previous approach and can
effectively distinguish contours that are locally shaped like lines, curves, corners, and circles.
These improved contour stencils sense more of the geometry in the image.

Interpolation is performed using an extension of the method described in the previous article.
Using the improved contour stencils, there is an increase in image quality while maintaining
similar computational efficiency.

References

1. H. Federer. “Curvature measures.” Transactions of the American Mathematical Society, 93,
pp. 418–491, 1959.

2. D. L. K. Fa. “2xSaI : The advanced 2x Scale and Interpolation engine.” 2001.
3. M. Stepin. “HQ4x magnication lter.” 2003.
4. D. D. Muresan, “Fast edge directed polynomial interpolation.” in ICIP (2), pp. 990–993,

2005.
5. P. Getreuer. “Contour stencils for edge-adaptive image interpolation.” Proc. SPIE, vol.

7257, 2009.
6. P. Getreuer. “Image zooming with contour stencils.” Proc. SPIE, vol. 7246, 2009.
7. P. Getreuer. “Image Interpolation with Contour Stencils.” Image Processing On Line, 2011.
8. P. Getreuer. “Contour Stencils: Total Variation along Curves for Adaptive Image

published
reference

2011-09-01
Pascal Getreuer, Image Interpolation with Geometric Contour Stencils, Image Processing On Line, 2011.
http://dx.doi.org/10.5201/ipol.2011.g_igcs

http://www.ipol.im/
http://dx.doi.org/10.5201/ipol
http://dx.doi.org/10.5201/ipol.2011.g_igcs
http://www.getreuer.info/
mailto:pascal.getreuer@cmla.ens-cachan.fr
mailto:gabriele.facciolo@upf.edu
mailto:pascal.getreuer@cmla.ens-cachan.fr
http://www.ipol.im/pub/algo/g_image_interpolation_with_contour_stencils
http://dx.doi.org/10.2307%2F1993504
http://www.xs4all.nl/~vdnoort/emulation/2xsai/
http://www.hiend3d.com/hq4x.html
http://dx.doi.org/10.1109/ICIP.2005.1530224
http://dx.doi.org/10.1117/12.806014
http://dx.doi.org/10.1117/12.805934
http://www.ipol.im/pub/algo/g_image_interpolation_with_contour_stencils
http://dx.doi.org/10.1137/100802785

Interpolation.” SIAM J. on Imaging Sciences, vol. 4, no. 3, pp. 954–979, 2011.

Online Demo

An online demo of this algorithm is available.

Introduction

The goal of the method is, given image vm,n, to construct a function u(x,y) that approximately
satisfies

in such a way that the contours of u are close to the contours in v. The function h is a point
spread function (PSF) that models how v was sampled. The reason for including it is that
interpolation in this manner incorporates deconvolution, which sharpens the image and usually
improves perceived image quality.

The proposed method only solves vm,n = (h∗u)(m,n) approximately. Solving it exactly is a
global and computationally formidable problem, yet it can be accurately and efficiently
approximated locally.

Input Linear Interpolation Nonlinear Interpolation

Comparison of linear cubic B-spline interpolation and the proposed nonlinear method.
Nonlinear interpolation adapts to the edge orientations, significantly reducing jagged edge

artifacts and overshoots.

Two desirable properties of image interpolation are to limit jagged edge artifacts as well as
overshoots and ringing artifacts. In other words, the interpolation should reproduce edges at any
orientation and it should not overshoot or oscillate unnecessarily. To capture both of these
objectives, we aim to have contour consistency: at any point, the orientation of the contours in u
are the same as the orientation of the contours in v. It is not possible to achieve this with a
linear method, nonlinearity is crucial to adapt to the image edges and geometry.

The proposed method has two steps:

1. Estimate the contours in v.
2. Interpolate the image according to the estimated contours.

http://www.ipol.im/pub/demo/g_interpolation_geometric_contour_stencils/
http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/cam-nn.png
http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/cam-lin.jpg
http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/cam-nonlin.jpg

An example collection of
curves ψ−1(λ) of a function

For the first step, we develop a method called contour stencils based on measuring total
variation along curves. For the second step, we construct the interpolant as a linear combination
of oriented Gaussian functions. To find a solution that accurately satisfies vm,n = (h∗u)(m,n),
we apply the iterative refinement algorithm: an initial interpolation is performed, and this is
used to compute a prefiltered input that is adjusted such that its interpolation satisfies
vm,n = (h∗u)(m,n) more accurately. Multiple passes of prefiltering can be performed to reach a
desired level of accuracy.

Total Variation Along Curves

Define the total variation (TV) along curve C

where γ is a smooth parameterization of C. The motivating idea of contour stencils is that if the
TV along a curve C is small, then C is approximately a contour.

In [5], [6], [7], contour stencils are defined as the discrete TV estimate

where describes weighted edges, that is, the edge weight between pixels m and
n is , where a larger value implies a stronger connection. These edges are selected so that
the stencil approximately follows C.

Discretization

The key improvement compared to [7] is a revised
discretization of contour stencils. Instead of consider the TV
along a single curve, we consider the integral over a collection
of curves

where the collection of curves are the contours of a function
 Provided regularity conditions on u and ψ, the coarea

formula [1] allows the integral to be rewritten as

We define contour stencils as a discretization of this integral. Suppose that the domain Ω is the
square {x : |x1| < R, |x2| < R}. Given a resolution h = R/N, Ω is partitioned into cells Ωi,j of size
h×h. Defined the average of ∇ψ⊥ over each cell,

http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/psi-c.png

Let T be a triangulation of Ω that splits each Ωi,j into two triangles. A cell can be split into two
triangles in two ways. The choice of splitting is along the diagonal which is closer to the
direction of in that cell. Let denote the piecewise linear interpolation that agrees with u at
the grid points (hi,hj) and is affine on each triangle of T. Then the TV integral is discretized
as

We call the discretized vector field a contour stencil because it describes a predetermined
pattern of contours to test on the image. Over a single cell, the integral can be evaluated in
closed form as

where (α,β)T is the value of in Ωi,j and ui,j := u(hi,hj). The choice of splitting the cell is such
that the (α ± β) factors cancel at diagonal orientations where |α| = |β| . The integral over the
whole domain is

As shown in [8], is a consistent discretization with first-order accuracy.

To extend to vector-valued images, the TV is computed as the sum of applied to each
component. For color images, we use the color components in YPBPR representation,

Geometric Features

http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/mesh.png

To design a contour stencil , we must select function ψ. Since the observed image is supposed
as having been blurred by PSF h, we use ψ = h ∗ φ to estimate contours of the observed image
and then refer to φ as a model of the contours of the underlying image.

The function φ is selected as a signed distance function from an elementary curve C, that is, φ is
a solution of

A distance function is a good choice for φ since its contours are uniformly spaced and
approximately parallel. The stencil is then obtained by discretizing ψ = h ∗ φ as

Then, the stencil is divided by so that the vector field has normalized average magnitude.
This way the TV estimates of different stencils are fairly compared.

Contours of φ for several different curves.

Lines. The most basic curve is a straight line, C = {x2 = 0}, which has distance function φ(x) =
x2.

Circles. A circle C = {x1
2 + x2

2 = 1} has distance function φ(x) = (x1
2 + x2

2)½ − 1. Notice that
the contours of φ includes all circles centered at the origin, so stencils based on this distance
function have a scale invariance. For this reason, we treat the circle as an isotropic model of the
contours, as it prefers no direction and has arbitrary curvature.

Corners. A right-angle corner C = {x1x2 = 0, x1, x2 ≥ 0} has distance function φ(x) = min{x1,
x2}.

Parabolas. To represent curves, it is desirable to have the distance function for a parabola C =
{x2 = ax1

2/2}. To compute its distance function, consider a starting location (s, as2/2) on the
curve. The orthogonal direction from the curve at this point is (−∂s as2/2, 1) = (−as, 1).
Therefore, solving along characteristic lines, the distance function is

for t sufficiently close to zero. The characteristics can cross for large t, where the characteristic
producing the minimum value is the correct solution.

To express φ directly, we must solve for s and t in terms of x in

http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/c-line.png
http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/c-circle.png
http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/c-parabola.png
http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/c-corner.png

Eliminating t yields a cubic polynomial in s,

For positive a, the solution selecting the appropriate root is

where z = (1 − ax2)2/(3a2). Finally, the signed distance is obtained as φ(x) = (1 + a2s2)½ (x2 −
as2/2).

Stencil Selection

At every pixel k in the image, contour stencils are tested over a neighborhood of k. The contour
stencil with the smallest TV estimate is selected as a model of the underlying contours,

where Σ is a set of candidate stencils.

Lines Parabolas Corners Circle

Stencils for different kinds of features.

To detect geometric features at different orientations, stencils from multiple rotations of the
distance functions are used

The stencil set Σ used in the examples comprises 32 line-shaped stencils at orientations
θ = j(π/32), 8 corner-shaped stencils, 8 parabola-shaped stencils with a = 2−½, and another 8
parabola-shaped stencils with a = 1 at orientations j(π/4), and a circle-shaped stencil for a total
of 57 stencils. Instead of a square neighborhood, we use a 12-cell neighborhood approximating
a disk for better isotropy.

A small neighborhood size is desirable so that TV estimates are localized and computationally
efficient. On the other hand, a larger neighborhood aggregates more samples, which improves

http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/s-lines.png
http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/s-parabolas.png
http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/s-corners.png
http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/s-circle.png

robustness against noise and accuracy in distinguishing different structures. The proposed 12-
cell neighborhood seems to be a good balance of these considerations.

It is possible that the minimum in

is not unique. To ensure a stable minimum, the separation is tested between the TV estimates of
the best and second best stencils,

The best-fitting stencil is accepted if this quantity is above the threshold, otherwise, the
estimation falls back to an isotropic model. This ensures that a perturbation v' of v with
||v' −v||∞ < T does not change the best-fitting stencil. The threshold is set at T = 10−4 relative to
pixel intensities in the range [0,1].

Although the stencil set Σ used here has 57 stencils, reasonably good results are possible with
far fewer stencils. For example, [7] uses only 8 line-shaped stencils, and this is sufficient for a
rough estimation of the contours and simplifies implementation. The advantage of using a larger
stencils set is that more rotations and more geometric structures allow for a finer estimation,
which improves image interpolation quality.

Computationally, the cost of contour estimation with contour stencils is small compared to
interpolation itself. The TVs can be efficiently approximated by first computing the Vi,j cell
TVs at uniformly spaced orientations and then combining them to obtain the stencil TVs (see
Stencil Selection in the Algorithm section). With this approach, the cost does not depend
significantly on the size of the stencil set.

Interpolation

The interpolation is an extension of the method in [7] to stencils of any shape. The interpolation
is constructed locally about each pixel over a small window, then these local reconstructions are
combined to obtain the global interpolation.

Local reconstruction with oriented functions Left: Reconstruction with a line-shaped stencil.
Center: With a parabola-shaped stencil. Right: With the circle stencil.

For every pixel k in the input image v, let

http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/localrec.png

where is a neighborhood of the origin, the cn are coefficients to be determined, and is
a function oriented in the direction

with anisotropy

so that it follows the contours modeled by the best-fitting stencil (k) at point k + n. The larger
the anisotropy parameter, the more strongly the function points in the direction If is zero,
then should prefer no direction. The essential changes compared to [7] are that the may
have a different orientations for different points n in the window and the use of the anisotropy
parameter.

T h e cn coefficients are selected so that the discretization model is satisfied locally,
(h ∗ uk)(m) = vk+m for m ∈ . This implies the cn satisfy

where is a matrix with elements .

The global interpolation is obtained by combining the uk,

where w is a window function satisfying ∑k w(x − k) = 1 for all x ∈ and w(k) = 0 for k ∈

It is convenient for computation to define the functions

then the interpolation can be expressed directly in terms of v as

Iterative Refinement (Prefiltering)

Although each uk locally satisfies the discretization model exactly, the global interpolation u
only satisfies sample(h ∗ u) = v approximately. To improve the accuracy in satisfying the
discretization model, we use iterative refinement as in [7].

Iterative refinement is an algorithm for finding a solution of a linear system Ax=y using an

approximate right inverse B:

Equivalently, iterative refinement can be expressed in terms of modifying the right-hand side y:

I f A is invertible, then the error in xi is ei := A−1(y − Axi) = A−1ri and the iteration adds the
correction Bri to approximate ei. More generally, iterative refinement can be applied to an
underdetermined system where AB is close to identity. The iteration converges if (I − AB) is a
contraction,

Let denote the operator

The interpolation is nonlinear because depends on the best-fitting stencils . However,
regarding the stencils as fixed parameters, is a linear operator on v. The operation
sample(h∗⋅) has the role of A and has the role of the approximate right inverse B. In [7], the
deconvolution accuracy is improved by the iteration

It is equivalent but computationally advantageous to iterate as modifying v,

In this form, v is prefiltered and the final interpolation is evaluated directly as . The
convenience of this approach is that the grid used to approximate the interpolation and
convolution need not be the same as the grid used for the final interpolation. It is
computationally efficient and only a small loss in accuracy to compute vi on a coarser grid than
the grid used for the final interpolation. By using this prefiltering approach to iterative
refinement, the proposed method is faster than [7], especially for large interpolation factors.

To ensure convergence, suppose that C < 1 exists such that for any v and k

then vi converges in and ui converges uniformly to u that satisifies sample(h ∗ u) = v exactly.
Unfortunately, we have no proof of a practical condition that guarantees C < 1. Numerical
experiments suggest that the iteration converges reliably with the suggested parameters and h
with standard deviation less than 0.8.

Parameters

The following parameters are fixed in the experiments:

h is a Gaussian with standard deviation 0.5,
= {-1,0,1}×{-1,0,1},

w is the cubic B-spline,

 is an oriented Gaussian,

with στ = 1.2 and σν = στ(1 − μ4/2), and θ and μ are the orientation and anisotropy parameters
for at n,

and three iterations of iterative refinement are applied (two passes of prefiltering and one final
interpolation).

Algorithm

Constructing the Stencils

The first step is to construct the contour stencils. For each type of geometric feature, the signed
distance function φ needs to be determined or numerically approximated. Distance functions for
several elementary curves are given in the previous section. For each φ, the corresponding
stencil is obtained by averaging over cells,

where ψ = h ∗ φ and h is the point spread function. This two-dimensional integral over the cell
is simplified by applying the fundamental theorem of calculus,

For numerical implementation, φ and h can first be evaluated on a fine grid and convolved to
approximate ψ. The one-dimensional integrals along the cell boundaries can then be performed
by trapezoidal rule to obtain the stencil Finally, is divided by so that all stencils have
the same average magnitude.

Interpolation Precomputations

Some quantities can be precomputed to speed up the interpolation. For each stencil, the
orientation and anisotropy parameters are computed,

where n ∈ = {−1,0,1}×{−1,0,1}. Note that the orientation is in general different for each
point in but the anisotropy parameter is the same. The integrals can be approximated by the
same approach used in the stencil construction.

Next, the interpolation matrix is computed

where the are determined by the orientation and anisotropy parameters determined in the
previous step. For a Gaussian PSF h, the convolution can be evaluated in closed form,

with or for general h the convolution can be approximated by numerical
quadrature. The inverse of the interpolation matrix is computed and stored for later use in the
interpolation.

For scaling by an integer scale factor, samples of the functions and the window function w
can be precomputed as well,

Notice that the stencil set construction and interpolation precomputations can all be done prior
to knowing the input image. So for a fixed h and scale factor, these only need to be computed
once to interpolate any number of images.

Stencil Selection

Before the interpolation itself, the best-fitting stencil is determined for each pixel k of the input
image,

where

and (α,β)T is the value of in Ωi,j. The TV estimates of the best and second best stencils are
compared. If the difference is above a threshold

then the best-fitting stencil is accepted. Otherwise, the circle stencil is selected an isotropic
model of the contours at this point.

To speed up the computation of the TV estimates, the Vi,j can first be computed for each cell of
the image at uniformly spaced orientations,

The are then approximated by using the closest orientation

The advantage of this approach is that the cell TV estimates are reused many times in
evaluating the TV for different stencils and between the overlapping neighborhoods of nearby
pixels.

Interpolation

Here we describe how to evaluate operator for a single pass of the interpolation.

For scaling by an integer scale factor, the interpolation is computed as

Since w has compact support, only a few terms are nonzero for each x. Interpolation is very
efficient in this case because w and can be precomputed, so the computation amounts to
multiply-add operations.

For scaling by a non-integer scale factor or interpolation at arbitrary points, the coefficients cn
k

are computed for each local reconstruction uk,

Then the global interpolation is computed as

The bottleneck operation in this formula are the many evaluations of the oriented Gaussian

functions A substantial speed improvement is gained by using look up tables for the exp and
trigonometry functions in these evaluations.

Iterative Refinement (Prefiltering)

Iterative refinement can be applied so that the interpolation more accurately approximates
vm,n = (h∗u)(m,n). This refinement sharpens the interpolation, which usually improves the
perceived image quality. Iterative refinement is implemented by prefiltering the input image,

For a typical PSF h, only two or three passes of iterative refinement are needed for
convergence. Note that the best-fitting stencils are selected once and are fixed for each
evaluation of To approximate the interpolation and convolution , the interpolation is
performed on a grid with twice the resolution of v, and the convolution is approximated by
discrete convolution.

The final interpolation is obtained by interpolating the prefiltered image u = vi at the desired
points.

Complexity

The complexity of the interpolation is the same as in [7]. Each evaluation of for factor-d
scaling costs O(2d2) operations per input pixel. For an integer scale-factor with the settings
used in the examples, the cost is 864d2 operations per input pixel.

Implementation

This software is distributed under the terms of the simplified BSD license.

source code zip tar.gz
online documentation

Please see the readme.html file or the online documentation for details.

Examples

In the examples, h is a Gaussian with standard deviation 0.5. In practice, the standard deviation
o f h should estimate the blurriness of the actual PSF used to sample the input image. It is
preferable to underestimate this value rather than overestimate: if it is smaller than the true
standard deviation of the PSF, the result is blurrier, while using a standard deviation slightly to
large creates ripple artifacts, which is visually more destructive. In the online demo, the default
value for the standard deviation σh is 0.35, which reasonably models the blurriness of typical
images.

The first two examples demonstrate the contour estimation. At every pixel in the image, the
best-fitting stencil is determined, and a small line is drawn to indicate the estimated contour

 modeled by the stencil. The stencil set includes lines, parabolas, corners, and the circle, so

http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/src.zip
http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/src.tar.gz
http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/srcdoc/index.html
http://www.ipol.im/pub/demo/g_interpolation_geometric_contour_stencils/

the method is able to distinguish these different geometric features. The lines are colored
according to the type of feature.

In the first image, straight lines are selected as the contour model for most of the image and
parabolas and some corners are used along the curving edge of the star.

Input Estimated Contours

The next image demonstrates contour estimation on a natural image. Again, straight lines are
selected over the low curvature parts of the image and parabolas and corners are selected in the
sharper curves. Contour estimation is chaotic in the background of the image, which is textured
but nearly constant (for example, along the top center and in lower right corner of the image).
The estimation includes many corners in these regions, suggesting high curvature.

http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/star-nn.png
http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/star-ci.png

Input

Estimated Contours

Next we examine the effects of iterative refinement for factor-4 image scaling. The interpolation
u1 is created from the input data directly, . Interpolation u3 is created after applying two
passes of prefiltering to the input, , which visibly sharpens the image and improves the
PSNR and MSSIM (How are these metrics computed?).

Image Quality Metrics

Lp Metrics

Let A and B be two color images to be compared, each with N pixels. We consider the images
as vectors in with each pixel represented by red, green, blue intensities in {0, 1, …, 255}.
Several standard metrics can then be defined in terms of norms.

http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/face-nn.png
http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/face-ci.png

Maximum absolute difference ,
Mean squared error (MSE) ,
Root mean squared error (RMSE)
 ,

Peak signal-to-noise ratio (PSNR)

 .

For the first three metrics, a smaller value implies a smaller discrepancy between A and B. For
PSNR, a larger value implies a smaller discrepancy, with PSNR = ∞ when A = B.

MSSIM

The mean structural similarity (MSSIM) index is a somewhat more complicated metric designed
to agree better with perceptual image quality.

We first describe MSSIM on grayscale images. Let w be a Gaussian filter with standard
deviation 1.5 pixels, and compute the following local statistics:

At every pixel, the structural similarity (SSIM) index is calculated as

where C1 = (0.01 ⋅ 255)2 and C2 = (0.03 ⋅ 255)2. The mean SSIM (MSSIM) is the average
SSIM value over the image.

For color images, we compute the MSSIM over each channel and take the average,

The MSSIM index is always between 0 and 1. A larger value implies smaller discrepancy.

Computation Time

The computation time shown in the demo is computed using the UNIX gettimeofday function to
obtain the system time in units of nanoseconds. Note that the computation is affected by other
tasks running simultaneously on the server, so the reported computation time is only a rough
estimate.

http://www.ece.uwaterloo.ca/~z70wang/research/ssim

Exact Input

u1 (initial interpolation)
PSNR 27.58, MSSIM 0.8434, CPU Time

0.073s

u3 (two passes of prefiltering)
PSNR 28.11, MSSIM 0.8571, CPU Time

0.102s

The proposed method is an improvement over the previous method [7]. The most visible
difference is improved quality on corners. The estimated contours below visualize how the
proposed method adapts to the fine geometry of the window frame and the crenellated
overhang.

Exact Input Proposed method estimated
contours

Previous method [7]
 PSNR 18.52, MSSIM

0.5351

Proposed method
 PSNR 18.79, MSSIM

0.5476

http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/ivy-uo.jpg
http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/ivy-nn.png
http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/ivy-u-r0.jpg
http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/ivy-u-r2.jpg
http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/k08-uo.jpg
http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/k08-nn.png
http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/k08-ci.png
http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/k08-u-l.jpg
http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/k08-u-g.jpg

The previous method has a tendency to join contours that are not actually connected, giving
textured regions an unnatural painted quality. The proposed method reduces this effect
somewhat. There is a subtle improvement in the fur in this image.

Exact Input

Previous method [7]
PSNR 22.47, MSSIM 0.6051, CPU time

0.115s

Proposed method
PSNR 22.69, MSSIM 0.6161, CPU Time

0.091s

As another example, the painted effect is reduced on the rough textures of this image.

http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/eye-uo.jpg
http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/eye-nn.png
http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/eye-u.jpg
http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/eye-u-g.jpg

Exact Input

Previous method [7]
PSNR 25.77, MSSIM 0.7165, CPU time

0.109s

Proposed method
PSNR 25.99, MSSIM 0.7256, CPU Time

0.077s

Since the method tries to preserve the structure of the image contours, it can partially recover
oriented textures where the contour lines flow smoothly.

Sweater Towel Grass Mud

A closely related problem to natural image interpolation is pixel art scaling. Pixel art images are
created at the pixel level, usually at low resolution with a limited number of colors. Edge
adaptivity is especially important for pixel art scaling to prevent jagged edge artifacts. This
example compares several methods for factor-4 pixel art scaling. Pixel art is better modeled as

http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/frog-uo.jpg
http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/frog-nn.png
http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/frog-u.jpg
http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/frog-u-g.jpg
http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/sweater-nn.png
http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/towel-nn.png
http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/plant-nn.png
http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/mud-nn.png
http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/sweater-cwi.jpg
http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/towel-cwi.jpg
http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/plant-cwi.jpg
http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/mud-cwi.jpg

point-value samples rather than weighted averages, so the proposed method is applied with PSF
h = δ for this example.

Input Bilinear

Super 2×SaI [2] HQ4X [3]

AQua-2 [4] Proposed

For reference, bilinear interpolation is included to demonstrate that it is not satisfactory for pixel
art scaling. Super 2×SaI [2] and HQ4X [3] are methods specialized for pixel art scaling,
producing sharp cartoon-like results. Super 2×SaI is only defined for factor-2 scaling, so the
method was applied twice for this interpolation. AQua-2 [4] and the proposed method perform
reasonably since they are edge adaptive, though they are blurrier than Super 2×SaI and HQ4X.
However, notice that none of the methods plausibly interpolate the dithered gradient in the
background.

This material is based upon work supported by the National Science Foundation under Award No. DMS-1004694. Any
opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation. Work partially supported by the MISS project of Centre
National d'Etudes Spatiales, the Office of Naval Research under grant N00014-97-1-0839 and by the European Research
Council, advanced grant “Twelve labours.”

image credits

 Cameraman standard test image

http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/snail-nn.png
http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/snail-bl.jpg
http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/snail-super2xsai.png
http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/snail-hq4x.png
http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/snail-aqua2.jpg
http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/snail-cwi.jpg
http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/cam-nn.png

 Pascal Getreuer

 Pascal Getreuer

 Jan Miller, U.S. Fish and Wildlife Service

 Kodak Image Suite, image 8

 Gary Kramer, U.S. Fish and Wildlife Service

 John D. Willson, USGS Amphibian Research and Monitoring Initiative

 Pascal Getreuer

 Pascal Getreuer

 Pascal Getreuer

 Pascal Getreuer

 Pascal Getreuer

 © 2009-2012, IPOL Image Processing On Line & the authors • ISSN:2105-1232 • DOI:10.5201/ipol

http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/star-nn.png
http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/face-nn.png
http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/ivy-nn.png
http://www.fws.gov/digitalmedia/cdm4/item_viewer.php?CISOROOT=/natdiglib&CISOPTR=6846&CISOBOX=1&REC=5
http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/k08-uo.jpg
http://r0k.us/graphics/kodak/
http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/eye-uo.jpg
http://www.fws.gov/digitalmedia/cdm4/item_viewer.php?CISOROOT=/natdiglib&CISOPTR=203&CISOBOX=1&REC=18
http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/frog-uo.jpg
http://armi.usgs.gov/gallery/detail.php?search=Genus&subsearch=Bufo&id=323
http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/sweater-nn.png
http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/towel-nn.png
http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/plant-nn.png
http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/mud-nn.png
http://www.ipol.im/pub/algo/g_interpolation_geometric_contour_stencils/snail-nn.png
http://www.ipol.im/meta/copyright/
http://www.worldcat.org/issn/2105-1232
http://dx.doi.org/10.5201/ipol

	Overview
	References
	Online Demo
	Introduction
	Total Variation Along Curves
	Discretization
	Geometric Features
	Stencil Selection
	Interpolation
	Iterative Refinement (Prefiltering)
	Parameters

	Algorithm
	Constructing the Stencils
	Interpolation Precomputations
	Stencil Selection
	Interpolation
	Iterative Refinement (Prefiltering)
	Complexity

	Implementation
	Examples
	Image Quality Metrics
	Lp Metrics
	MSSIM
	Computation Time

