
 IPOL Journal · Image Processing On Line

Linear Methods for Image Interpolation
Pascal Getreuer

article demo archive

Communicated by Gabriele Facciolo
Demo edited by Pascal Getreuer

Pascal Getreuer pascal.getreuer@cmla.ens-cachan.fr, CMLA, ENS
Cachan

Overview

Given input image v with uniformly-sampled pixels vm,n, the goal of
interpolation is to find a function u(x,y) satisfying

such that u approximates the underlying function from which v was
sampled. Another way to interpret this is v was created by subsampling,
and interpolation attempts to invert this process.

We discuss linear methods for interpolation, including nearest neighbor,
bilinear, bicubic, splines, and sinc interpolation. We focus on separable
interpolation, so most of what is said applies to one-dimensional
interpolation as well as N-dimensional separable interpolation.

References

1. C.E. Shannon, “A Mathematical Theory of Communication,“ Bell
System Technical Journal, vol. 27, pp. 379–423, 623–656, 1948.

2. G. Strang and G. Fix, “A Fourier analysis of the finite element
variational method,” Constructive Aspects of Functional Analysis,

published
reference

2011-09-27
PASCAL GETREUER, Linear Methods for Image Interpolation,
Image Processing On Line, 1 (2011).
http://dx.doi.org/10.5201/ipol.2011.g_lmii

Edizioni Cremonese, Rome, pp. 795–840, 1973.
3. R. Keys, “Cubic Convolution Interpolation for Digital Image Processing,”

IEEE Trans. Acoustics, Speech, and Signal Processing, 29(6), 1981.
4. A. Aldroubi, M. Unser, and M. Eden, “Cardinal spline filters: stability and

convergence to the ideal sinc interpolator,” Signal Processing, vol. 28,
no. 2, pp. 127–138, 1992.

5. A. Schaum, “Theory and design of local interpolators,” CVGIP: Graph.
Models Image Processing, vol. 55, no. 6, pp. 464–481, 1993.

6. M. Unser, “Splines: A Perfect Fit for Signal/Image Processing,” IEEE
Signal Processing Magazine, 16(6), pp. 22–38, 1999.

7. P. Thévenaz, T. Blu, and M. Unser, “Interpolation Revisited,” IEEE
Trans. Medical Imaging, vol. 19, no. 7, pp. 739–758, 2000.

8. T. Blu, P. Thévenaz, and M. Unser, “MOMS: Maximal-Order
Interpolation of Minimal Support,” IEEE Trans. Image Processing,
vol. 10, no. 7, pp. 1069–1080, 2001.

9. E. Meijering, “A Chronology of Interpolation: From Ancient Astronomy to
Modern Signal and Image Processing,” In Proceedings of the IEEE, 90,
pp. 319–342, 2002.

10. F. Malgouyres and F. Guichard, “Edge direction preserving image
zooming: A mathematical and numerical analysis,” SIAM J. Numerical
Analysis, 39(1), pp. 1–37, 2002.

11. B. Fornberg, E. Larsson, N. Flyer, “Stable computations with Gaussian
radial basis functions,” SIAM J. Sci. Comput. 33, pp. 869–892, 2011.

12. FFmpeg, http://www.ffmpeg.org.

Online Demo

An online demo of this algorithm is available.

Notations

We use the following normalization of the Fourier transform,

the transform of a function f is denoted by hat. We will also use the bilateral
Z-transform. The Z-transform of a sequence cn is

We denote the sequence with a subscript cn and its Z-transform as c(z).

Interpolation Kernels

Linear interpolation can be abstractly described as a linear operator Z
mapping samples v to a function u := Z(v). We define two properties on Z.

1. Let Sk,l denote shifting, Sk,l(v)(m,n) := vm−k,n−l. Z is said to be shift-
invariant if for every v and (k, l),

2. Let vN denote the restriction of v to the set {−N,…,+N}2, then Z is said
to be local if for every v and (x, y),

If Z is a linear, shift-invariant, local operator from to , then there
exists a unique function K ∈ L1 called the interpolation kernel such that Z(v)
can be written as a convolution [10]:

The conditions for this result are mild and are satisfied by most linear
interpolation methods of practical interest.

The properties of the kernel K, like symmetry, regularity, and moments,
imply properties of the interpolation. For four-fold rotational symmetry, K is
usually designed as a tensor product K(x,y) = K1(x)K1(y), where K1 is a
symmetric function. Such a kernel also has the benefit that the interpolation
is separable, the interpolation can be decomposed into one-dimensional
interpolations along each dimension.

Similarly in three (or higher) dimensions, it is convenient to use a separable
kernel K(x,y,z) = K1(x)K1(y)K1(z) so that the interpolation decomposes into
one-dimensional interpolations. More generally, one can use different one-
dimensional kernels along different dimensions, K(x,y,z) = K1(x)K2(y)K3(z).
For instance, it may be more appropriate to use a different kernel for the
temporal dimension than for the spatial dimensions in video interpolation.

In order to have the interpolant agree with the known samples Z(v)(m,n) =
vm,n, it is easy to see that the requirements are K(m,n) = 0 for all integer m
and n, except at the origin where K(0,0) = 1. K is said to be an interpolating
function if it satisfies these requirements.

Two-Step Interpolation

T h a t K must be interpolating can be an inconvenient restriction. It
complicates the problem of finding a kernel K that also satisfies other
design objectives. It can also be an obstacle computationally. In some
cases such as spline interpolation, K has infinite support, yet the interpolant
can be expressed as a linear combination of compact support functions (the
B-splines).

Suppose that one dimensional data fm is to be interpolated. An alternative
approach is to begin with a basis function φ(t) and then express the
interpolant as a linear combination of {φ(t − n)},

where the coefficients cn are selected such that

That is, interpolation is a two-step procedure: first, we solve for the
coefficients cn and second, the interpolant is constructed as ∑cnφ(t − n).

To solve for the coefficients, notice that fm = ∑cnφ(m − n) is equivalent to a
discrete convolution fm = (c ∗ p)m where pm = φ(m). This suggests solving
for cn under the Z-transform as

Let (p)−1 deonte the convolution inverse of p, which is the sequence such
that p ∗ (p)−1 = δ where δ is the unit impulse (δ0 := 1 and δm := 0

otherwise). Using (p)−1 we obtain cn by “prefiltering” as

A unique convolution inverse exists in many practical cases of interest [7]. If
it exists and φ is real and symmetric, then (p)−1 can be factored into pairs
of recursive (infinite impulse response) filters, allowing for an efficient in-
place calculation. Finally, the interpolant is obtained as ∑cnφ(t − n).

It is possible to express this two-step interpolation procedure in terms of an
interpolation kernel,

For example, the following figures illustrate this relationship for cubic and
septic (7th) B-spline interpolation where φ are the cubic and septic B-
splines. In both cases, φ is not an interpolating function, but prefiltering with
(p)−1 yields a kernel K1 that is interpolating.

Two-step interpolation where φ is the cubic B-spline.

Two-step interpolation where φ is the septic B-spline.

Interpolation Properties

An interpolation method Z has approximation order J if it reproduces
polynomials up to degree (J − 1).

Let Z and K1 be defined from a function φ as in the previous section. The
Strang–Fix conditions [2] provide the following equivalent conditions to
determine the approximation order.

1. Z has approximation order J,
2.

3.

where denotes the j_th derivative of and . Aside from
approximation order, another property of interest is the L2 interpolation
error. Let and define fδ(t) = ∑f(δn)K1(t − n) for δ_ > 0. The
interpolation error is approximately

This approximation is exact for bandlimited functions. Otherwise, it is equal
to the average L2 error over all translations of f. The function Eint is called
the interpolation error kernel, and it can be interpreted as predicting the
error made in interpolating sin(2πξt). Asymptotically as δ → 0,

The decay of the error is dominated by the approximation order J. When
comparing methods of the same approximation order, the constant Cint is
also of interest [7].

Kernel Normalization

A basic and desirable quality of an interpolation method is that it reproduces
constants, which is equivalent to

If the kernel does not reproduce constants, it can be the normalized to fix
this as

provided that the denominator does not vanish. Normalization ensures that
the interpolation weights sum to 1. Interpolation with the normalized kernel
reproduces constants: suppose fn = c, then

Nearest Neighbor

The most widely used methods for image interpolation are nearest
neighbor, bilinear, and bicubic interpolation.

Nearest Neighbor Bilinear Bicubic

Nearest neighbor, bilinear, and bicubic applied to the same uniformly-
spaced input data.

The nearest neighbor interpolation of v is the piecewise constant function

where [⋅] denotes rounding to the nearest integer. That is, u(x,y) is defined
as the value of the input sample that is closest to (x,y). For this reason,
nearest neighbor interpolation is sometimes called “pixel duplication.” The
interpolation kernel for nearest neighbor is

The nearest neighbor idea can be applied to very general
kinds of data, to any set of samples that has a notion of distance between
sample locations. The interpolant is constant within the Voronoi cell around
each sample location.

Nearest neighbor scattered data interpolation.

Bilinear

The bilinear interpolation of v is the continuous function

where ⌊⋅⌋ denotes the floor function and is the
fractional part. The interpolation kernel is

where (⋅)+ denotes positive part.

Within each cell [m,m+1]×[n,n+1], the interpolation is a convex combination
of the samples located at the cell corners vm,n, vm+1,n, vm,n+1, vm+1,n+1.
Because this combination is convex, the interpolation is bounded between
m i n v and m a x v and does not produce overshoot artifacts. Bilinear
interpolation reproduces affine functions: if vm,n = am + bn + c then u(x,y) =
ax + by + c.

Bilinear interpolation is arguably the simplest possible separable method
that produces a continuous function. It is extremely efficient and on many
platforms available in hardware, making it practical for realtime applications.

A closely related method to bilinear interpolation is linear interpolation.
Given a triangulation of the sample locations, each triangle is interpolated
by the affine function that satisfies the data at the triangle vertices.

Bicubic

Bicubic interpolation [3] uses the interpolation kernel

Cubic interpolation
kernel.

Surface plot of
K1(x)K1(y). Yellow

circles indicate local
maxima.

The sinc function.

where α is a free parameter. This function is derived
by finding a piecewise cubic polynomial with knots at
the integers that is required to be symmetric, C1

continuous, and have support in −2<t<2. These
conditions leave one remaining degree of freedom
represented by α. For any value of α, K1 has
extremal points at t = 0 and ±4/3.

The values −1, −0.75, and −0.5 have been proposed
for α, motivated by various notions of optimality [9].
The choice α = −0.5 is particularly compelling. Bicubic interpolation is third-
order accurate with α = −0.5 and only first-order accurate for any other α.
Furthermore, α = −0.5 is optimal in a sense of matching the sinc kernel and
is also optimal in terms of Eint. All examples and comparisons with bicubic
here use α = −0.5.

Comparison of the nearest neighbor, bilinear, and bicubic kernels and the
sinc.

Sinc

The Whittaker–Shannon interpolation [1] of v is

where sinc(t) := sin(πt)/(πt) for t ≠ 0 and

Surface plot of
sinc(x)sinc(y). Yellow
circles indicate local

maxima.

sinc(0) := 1 is the interpolation kernel. The
interpolation is such that u is bandlimited, that is,
its Fourier transform is zero for frequencies
outside of [−½,½]. This interpolation is also
often called “sinc interpolation” or “Fourier zero-
padding.” The extremal points of the sinc kernel
are solutions of the equation πt = tan(πt), which
include t ≈ 0, ±1.4303, ±2.4590, ±3.4709,
±4.4774.

The powerful property of sinc interpolation is that it is exact for bandlimited
functions, that is, if vm,n = f(m,n) with

then the interpolation reproduces f. Proof

We can verify this result for f∈L1 from two Fourier properties: first, the
Fourier transform of sinc is the rectangular pulse

and second, the Poisson formula

Applying these two properties, the Fourier transform of the interpolant is

In the second equality, the sum-integral interchange is justified by
dominated convergence. The final quantity is equal to if is zero
outside of the region [−½,½]×[−½,½].

The Lanczos-3 kernel.

In some ways, sinc interpolation is the ultimate interpolation. It is exact for
bandlimited functions, so the method is very accurate on smooth data.
Additionally, Fourier zero-padding avoids staircase artifacts, it is effective in
reconstructing features at different orientations. Under an aliasing
condition [10], Fourier interpolation reproduces cylindrical functions f(x,y) =
h(αx + βy).

The disadvantage of sinc interpolation is that in aliased images it produces
significant ripple artifacts (Gibbs phenomenon) in the vicinity of image
edges. This is because sinc(x) decays slowly, at a rate of 1/x, so the
damage from meeting an edge is spread throughout the image. Moreover,
bandlimitedness can be a distorted view of reality. Thévenaz et al. [7] give
the following amusing example: consider the air/matter interface of a patient
in a CT scan, then according to classical physics, this is an abrupt
discontinuity and cannot be expressed as a bandlimited function. Antialias
filtering is not possible on physical matter, and any attempt to do so would
probably be harmful to the patient.

Nearest
Neighbor

Bilinear Bicubic Lanczos-3 Cubic B-
Spline

Sinc

Linear interpolation of a step edge: a balance between staircase artifacts
and ripples.

Windowed Sinc Approximations

A solution to limiting the ripple artifacts of the sinc
kernel is to approximate it with a compactly-
supported function

where w is a window function. A popular choice in
image processing is the Lanczos window,

Surface plot of the
Lanczos-3 kernel. Yellow

circles indicate local
maxima.

The cubic B-spline.

where n is a positive integer usually set to 2 or 3.
The Lanczos kernels do not reproduce constants
exactly, but can be normalized to fix this as described in the section on
Kernel Normalization. There are many other possibilities for the window, for
example Hamming, Kaiser, and Dolph–Chebyshev windows to name a few,
each making different tradeoffs in frequency characteristics.

Comparison of the normalized Lanczos kernels and the sinc.

Splines

Define the B-splines,

The B-spline functions are optimal in the sense that, among all piecewise
polynomials with uniformly spaced knots, the B-splines have the maximal
approximation order and are maximally continuous for a given support.

The B-spline βJ−1 has approximation order J. For J > 2, βJ−1 is not
interpolating, so prefilting must be applied as described in the section on
Two-Step Interpolation where βJ−1 takes the role of φ.

A s J→∞, B-spline interpolation converges to Whittaker–Shannon
interpolation in a strong sense: the associated interpolation kernel K1

converges to the sinc both in the spatial and Fourier domains in Lp for any

1 ≤ p < ∞, see [4], [6]. This convergence is illustrated in the figure below
with K1 and its Fourier transform for degrees 1, 3, 5, and 7.

Comparison of the B-spline interpolation kernels and the sinc.

Aside from the B-splines, there are numerous other piecewise polynomial
methods for interpolation in the literature. One example is the class of
Maximum Order and Minimal Support (Moms) functions introduced by Blu,
Thévenaz, and Unser [8], which are linear combinations of βJ−1 and its
derivatives,

The B-splines are a special case within the class of Moms. The B-splines
are the Moms with maximum regularity, they are (J − 2) times continuously
differentiable.

Within the Moms, the “o-Moms functions” are the Moms defined by
minimizing the quantity

The o-Moms functions have the same approximation order and support as
the B-splines, but the Cint constant is smaller. So compared to the B-

splines, the advantage of o-Moms is that they have lower asymptotic L2

interpolation error. On the other hand, o-Moms are less regular than the B-
splines.

The splines proposed by Schaum [5] are also within the class of Moms.

Schaum splines have the property that they are interpolating, so prefiltering
is not needed. However, for a given support size, the approximation
constant Cint is worse than with the o-Moms of the same support.

The first few even-order o-Moms are

Order J φ(t)
2
4
6
8
10
12

A note on numbering: Usually, with a piecewise polynomial method, its
approximation order is L but its highest degree is (L − 1). We refer to
methods by degree, for instance “o-Moms 3” and “β3” are methods that are
locally cubic polynomial and have approximation order 4.

Radial Basis Functions

A radial basis function (RBF) is a function φ such that

RBF interpolation is useful for scattered data interpolation. L e t (xn,yn)
denote the location of the nth sample, then the interpolant is

where the coefficients cn are solved such that u(xn,yn) = vn. If the samples
are uniformly spaced, then the cn can be found as described in the section
on Two-Step Interpolation.

Popular choices for φ include

• Thin plate splines φ(r) = |εr|nlog|εr|, n even
• Bessel φ(r) = J0(εr)

• Gaussian φ(r) = exp(−(εr)2)
• Multiquadric φ(r) = (1 + (εr)2)½

• Inverse multiquadric φ(r) = (1 + (εr)2)−½

• Inverse quadratic φ(r) = (1 + (εr)2)−1

where ε is a positive parameter controlling the shape. A challenging
problem is that smaller ε improves interpolation quality but worsens the
numerical conditioning of solving the cn. A topic of interest beyond the
scope of this article is RBF interpolation in the limit ε → 0. For example,
[11] investigates numerically stable interpolation for small ε with Gaussian
φ.

Methodology

Boundary handling

A technicality is how to handle the image boundaries. The interpolation
formulas may refer to samples that are outside of the domain of definition,
especially when interpolating at points near or on the image boundaries.

The usual approach is to extrapolate (pad) the input image. Several
methods for doing this are

Constant extension, …aaaabcdeeee…
Half-sample symmetric extension, …cbaabcdeedc…
Whole-sample symmetric extension, …dcbabcdedcb…

Image scaling

Suppose v is an M×N image with samples vm,n, m = 0,…M − 1, n = 0,
…N − 1, which are located on the integer grid .

For scaling v by a (possibly non-integer) factor d, a choice for where to
resample the function u is on a top-left-anchored grid of points

with M ′ = [dM], N ′ = [dN], where [⋅] is a rounding convention.

Example top-left-anchored grids. Open circles denote input samples and
filled circles denote interpolation samples.

Another choice is the centered grid of points

where sr,M,M ′ = (1/d − 1 + M − M ′ /d)/2. If d is integer, the offsets simplify
t o s = (1/d − 1)/2. Although more complicated, the centered grid has the
advantage that interpolation with a symmetric kernel on this grid commutes
with flipping the image.

Example centered grids. Open circles denote input samples and filled
circles denote interpolation samples.

For an odd integer scale factor and interpolation with a symmetric kernel,
the two grids are related in a simple way through adding and removing
border samples. Interpolation performed on the top-left-anchored grid is
converted to an interpolation on the centered grid by removing (d − 1)/2
rows and columns from the bottom and right borders and extrapolating
(according to the boundary extension) the same number of rows and
columns on the top and left.

Domain mapping

Aside from changing image resolution, another application is to deform or
map the domain of the image. That is, the mapped coordinates (x',y') are
related to the original coordinates (x,y) by

Let u(x,y) be an interpolation of v, then the deformed image is obtained by
resampling as

For example, two simple mappings are

Sub-pixel translation

Rotation

Other applications include parallax correction, lens distortion correction,
image registration, and texture mapping.

Algorithm

Linear interpolation amounts to evaluating the sum

Choices of algorithms to do this efficiently depend on K and the sampling
locations. Keep in mind that the sum is conceptually over the infinite integer
grid, so vm,n should be replaced with an appropriate boundary extension
when m,n is beyond the domain of the image.

Nearest neighbor, bilinear, and bicubic

Suppose the interpolation method has a separable kernel K(x,y) =
K1(x)K1(y) with compact support, K1(x) = 0 for x ≥ R. Then interpolation at
point (x,y) can be implemented as

where there are L×L nonzero terms in the sum. The values of K1 can be
reused so that K1 only needs to be evaluated for only 2_L_ different

arguments.

For image scaling, it is possible to interpolate more efficiently by exploiting
the separable structure of the sampling points. Let vm,n, m = 0,…, M − 1,
n = 0,…, N − 1 be the given image, which is to be interpolated on the grid of
points (xm′,yn′) for m′ = 0,…, M ′ − 1, n′ = 0,…, N ′ − 1. Interpolation is
performed by first interpolating along the y direction,

for m = 0,…, M − 1, n′ = 0,…, N ′ − 1, and then along the x direction,

for m′ = 0,…, M ′ − 1, n′ = 0,…, N ′ − 1.

An efficient way to implement the one dimensional interpolations is to
express them as multiplication with a sparse matrix:

A is a sparse matrix of size N ′ × N and B is a sparse matrix of size M ′ × M.
Away from the boundaries, the matrix entries are

Near the boundaries, the matrix entries need to be adjusted according to
the boundary extension. Define

Half-sample symmetric
Whole-sample symmetric

Constant extension

then the matrix entries near the boundaries are computed as

and similarly for B. This sparse matrix approach is used by the libswscale
library in FFmpeg [12] for scaling video frames. It is especially well-suited
for video, as A and B only need to be constructed once to interpolate any
number of frames.

If the interpolation locations are uniformly spaced with a rational period, tn′ =
t0 + n′⋅a/b, then another approach is to compute one-dimensional
interpolation through convolution. Given n′, let s = b⌊n′/b⌋ and r be such that
n′ = bs + r, then

Lanczos

Interpolation with the Lanczos kernels does not exactly reproduce
constants. To fix this, the Lanczos kernels should be normalized as
described in the section on Kernel Normalization.

Kernel normalization can be incorporated efficiently into the algorithms
discussed in the previous section. For the interpolation of a single point
(x,y), the normalized interpolation is

For the sparse matrix approach, kernel normalization is achieved by scaling
each matrix row so that it sums to one. Similarly for the convolution
approach, hr should be scaled so that it sums to one.

Splines

For spline methods, implementation is as described in the section on Two-
Step Interpolation. The method is determined by the choice of basis
function φ, for example, φ may be a B-spline or an o-Moms function.

Given a basis function φ, define pm = φ(m). For the prefiltering step, the

convolution inverse (p)−1 is needed. We look first at the cubic B-spline as

an example. For the cubic B-spline, p(z) = (z + 4 + z−1)/6 and

where r = 3½ − 2. The first factor corresponds to the first-order causal
recursive filter

The left endpoint c'0 can be computed depending on the boundary
extension,

Half-sample symmetric

Whole-sample symmetric

Since |r| < 1, the terms of the sum are decaying, so in practice we only
evaluate as many terms as are needed for the desired accuracy.

The second factor corresponds to the first-order anti-causal recursive filter

The right endpoint c''N−1 can be computed according to the boundary
extension as

Half-sample symmetric
Whole-sample symmetric

Finally, the constant scale factor is applied cn = 6_c''n_. The cost of
prefiltering is linear in the number of pixels. Prefiltering can be computed in-
place so that the prefiltered values overwrite the memory used by the input.
For prefiltering in two-dimensions, the image is first prefiltered along each
column, then the column-prefiltered image is prefiltered along each row.

More generally, if φ is symmetric and compactly supported, then p(z) has
the form

where the rj and 1/rj are the roots of the polynomial z−Jp(z). We enumerate

the roots so that |rj| < 1. The Z-transform of (p)−1 is

Therefore, prefiltering can be performed as a cascade of first-order
recursive filters using the same algorithm as for the cubic B-spline. The
table below lists the roots and the constant scale factor for several B-
splines and o-Moms.

Method 1/aJ rj
β2 8 −3 + 8½

β3 3! 3½ − 2
β5 5! −4.309628820326465×10−2,

−4.305753470999738×10−1

β7 7! −9.148694809608277×10−3,
−1.225546151923267×10−1,
−5.352804307964382×10−1

β9 9! −2.121306903180818×10−3,
−4.322260854048175×10−2,
−2.017505201931532×10−1,
−6.079973891686259×10−1

β11 11! −5.105575344465021×10−4,
−1.666962736623466×10−2,
−8.975959979371331×10−2,
−2.721803492947859×10−1,
−6.612660689007345×10−1

Method 1/aJ
o-Moms
3

21/4 (105½ − 13)/8

o-Moms
5

7920/107 −7.092571896868541×10
−4.758127100084396×10

o-Moms
7

675675/346 −1.976842538386140×10
−1.557007746773578×10
−5.685376180022930×10

Once the image has been prefiltered c = (p)−1 ∗ v, interpolation at a point
(x,y) is computed as

This second step is essentially the same formula as in the section on
nearest neighbor, bilinear, and bicubic, and the same algorithms can be
used to perform this step. The only differences are that the prefiltered
image c is used in place of v and φ is used in place of K1.

Sinc

For sinc interpolation with an integer scale factor, interpolation can be
implemented using the fast Fourier transform (FFT). This approach follows
from observing that the sinc interpolant is the unique image that is
bandlimited and agrees with the input data.

The input image is first padded to twice its size in each dimension with half-
symmetric extension and transformed with the FFT. The interpolation is
then constructed in the Fourier domain by copying the transform
coefficients of the padded input image for the lower frequencies and filling
zeros for the higher frequencies. The final interpolation is obtained by
inverse FFT and removal of the symmetric padding. For real-valued input
data, some computational savings can be made by using a real-to-complex
FFT and complex-to-real inverse FFT to exploit the complex conjugate
redundancy in the transform. The complexity of the interpolation is O(N
log N) for N output pixels.

Implementation

This software is distributed under the terms of the simplified BSD license.

source code zip tar.gz
online documentation

Fourier transforms are implemented using the FFTW library. Please see the
readme.html file or the online documentation for details.

Examples

Scaling smooth data

The smooth function cos((x2 + y2)/10) is sampled on the grid {0.5,1.5,
…,15.5}×{-15.5,-14.5,…,15.5} and interpolated on the centered grid with
scale factor 4. The figure below compares the interpolation result using
various linear methods, along with the root mean squared errors (RMSE)
between the interpolation and the exact image.

Exact
Nearest
RMSE
59.2

Bilinear
RMSE
47.2

Bicubic
RMSE
39.0

Lancoz
2

RMSE
38.8

Lancoz
3

RMSE
33.8

Lanczos
4

RMSE
31.9

Sinc
RMSE
27.2

β3

RMSE
33.7

o-Moms
3

RMSE
31.8

β5

RMSE
30.9

o-Moms
5

RMSE
30.4

β7

RMSE
29.7

o-Moms
7

RMSE
29.4

β9

RMSE
29.0

β11

RMSE
28.5

For this example, higher-order methods tend to perform better. The o-
Moms perform slightly better than the B-splines of the same order. Sinc
interpolation yields the best result.

Scaling piecewise smooth data

We repeat the previous experiment with piecewise smooth data. The image
is discontinuous at the edges, so the bandlimited hypothesis of sinc
interpolation is severely violated. Sinc interpolation and other higher-order
methods produce strong artifacts near edges. The bicubic and Lanczos-2
interpolations have the lowest RMSE in this case.

Exact
Nearest
RMSE

Bilinear
RMSE

Bicubic
RMSE

Lancoz
2

RMSE

Lancoz
3

RMSE

Lanczos
4

RMSE

Sinc
RMSE

32.2 25.6 24.5 24.5 24.8 25.1 26.3

β3

RMSE
24.7

o-Moms
3

RMSE
24.9

β5

RMSE
25.1

o-Moms
5

RMSE
25.2

β7

RMSE
25.4

o-Moms
7

RMSE
25.5

β9

RMSE
25.6

β11

RMSE
25.7

Texture mapping

A 3D scene of a plane and a sphere is texture mapped with an image.
Texture mapping is an example of domain mapping, where in this case the
image domain is mapped to the projected plane and sphere surfaces.

Texture Nearest Bicubic

This mapping is derived through reverse ray tracing . For each pixel of the
rendering of the 3D scene, a ray of light is virtually traced in reverse. The
light ray begins from the eye of the observer, passes through a pixel of the
screen, and continues into the 3D scene. The ray may then intersect the
plane or the sphere (or nothing, if the ray continues into the background).

Reverse ray tracing. A ray of light is traced from the observer into the 3D
scene.

The ray's intersection point (X,Y,Z) with the 3D scene determines the color
of its pixel. The plane is texture mapped as x = X mod M, y = Z mod N. The
sphere is texture mapped as x = θ, y = φ, where θ and φ are the spherical
angles of the intersection.

Image rotation

Image rotation is another application that for a general rotation angle
requires interpolation. The choice of interpolation method significantly
affects the quality of the output image. In this experiment, an image is
successively rotated by 5 degrees increments using several linear methods.
The initial image is rotated by 5 degrees, then the rotated image is rotated
by another 5 degrees, and so on.

Nearest Bilinear Bicubic β11

Rotation using nearest neighbor produces jagged artifacts along edges.
Rotation with bilinear is much better but blurs the image. Rotation with
bicubic is sharper, but blurring is still noticeable. Finally, the sharpest
rotation among these results is with the 11th order B-spline β11. By
interpolating with a high-order B-spline, it closely approximates rotation via
sinc interpolation.

This material is based upon work supported by the National Science Foundation under
Award No. DMS-1004694. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views
of the National Science Foundation. Work partially supported by the MISS project of Centre
National d'Etudes Spatiales, the Office of Naval Research under grant N00014-97-1-0839

and by the European Research Council, advanced grant “Twelve labours.”

image credits

 Pascal Getreuer

 Pascal Getreuer

 Einstein standard test image

IPOL and its contributors acknowledge support from September 2010 to August 2015 by the European Research Council (advanced grant Twelve Labours
n°246961).
IPOL is also supported by ONR grant N00014-14-1-0023, CNES (MISS project), FUI 18 Plein Phare project, and ANR-DGA project ANR-12-ASTR-0035.
IPOL is maintained by CMLA, ENS Cachan • DMI, Universitat de les Illes Balears • Fing, Universidad de la República
© 2009-2015, IPOL Image Processing On Line & the authors

