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Summary 

LSD is a linear-time Line Segment Detector giving subpixel accurate results. It is designed to work on any digital image without parameter tuning. It 
controls its own number of false detections: On average, one false alarms is allowed per image [1]. The method is based on Burns, Hanson, and 
Riseman's method [2], and uses an a contrario validation approach according to the Desolneux, Moisan, and Morel's theory [3,4]. The version 
described here includes some further improvement over the one described in [1]. 
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Source Code 

The ANSI C implementation of LSD, version 1.6 , is the one which has been peer reviewed and accepted by IPOL. The code documentation, 
including the source code, is accessible here. 

Supplementary material: 

Version 1.0  of LSD corresponds better to the algorithm described in [1] and does not include the further improvements described here and 
included in the current version. It can be compiled as a pure C language code or using the Megawave2 framework. 

Note that the interface changed from version 1.5  of LSD to the current version 1.6. 

Versions 1.0 and 1.5 are both non reviewed material. 

Overview 

LSD is aimed at detecting locally straight contours on images. This is what we call line segments. Contours are zones of the image where the gray 
level is changing fast enough from dark to light or the opposite. Thus, the gradient and level-lines of the image are key concepts and are 
illustrated on the following figure: 

 

The algorithm starts by computing the level-line angle at each pixel to produce a level-line field, i.e., a unit vector field such that all vectors are 
tangent to the level line going through their base point. Then, this field is segmented into connected regions of pixels that share the same level-
line angle up to a certain tolerance τ. These connected regions are called line support regions: 
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Each line support region (a set of pixels) is a candidate for a line segment. The corresponding geometrical object (a rectangle in this case) must 
be associated with it. The principal inertial axis of the line support region is used as main rectangle direction; the size of the rectangle is chosen to 
cover the full region: 

   

Each rectangle is subject to a validation procedure. The pixels in the rectangle whose level-line angle corresponds to the angle of the rectangle up 
to a tolerance τ are called aligned points. The total number of pixels in the rectangle, n, and its number of aligned points, k, are counted and used 
to validate or not the rectangle as a detected line segment. 

  

The validation step is based on the a contrario approach and the Helmholtz principle proposed by Desolneux, Moisan, and Morel [3,4]. The so-
called Helmholtz principle states that no perception (or detection) should be produced on an image of noise. Accordingly, the a contrario approach 

proposes to define a noise or a contrario model  where the desired structure is not present. Then, an event is validated if the expected number 
of events as good as the observed one is small on the a contrario model. In other words, structured events are defined as being rare in the a 
contrario model. 

In the case of line segments, we are interested in the number of aligned points. We consider the event that a line segment in the a contrario model 
has as many or more aligned points, as in the observed line segment. Given an image i and a rectangle r, we will note k(r,i) the number of aligned 
points and n(r) the total number of pixels in r. Then, the expected number of events which are as good as the observed one is 

 

where the number of tests  is the total number of possible rectangles being considered,  is the probability on the a contrario model  

(that is defined below), and I is a random image following . The  stochastic model fixes the distribution of the number of aligned points k(r,I), 

which only depends on the distribution of the level-line field associated with I. Thus  is a noise model for the image gradient orientation rather 
than a noise model for the image. 

Note that k(r,I) is an abuse of notation as I does not corresponds to an image but to a level-line field following . Nevertheless, there is no 
contradiction as k(r,I) only depends on the gradient orientations. 

The a contrario model  used for line segment detection is therefore defined as a stochastic model of the level-line field satisfying the following 
properties: 

 is composed of independent random variables  

 is uniformly distributed over [0,2π]  

where LLA(j) is the level-line angle at pixel j. Under hypothesis , the probability that a pixel on the a contrario model is an aligned point is 
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and, as a consequence of the independence of the random variables LLA(j),  k(r,I) follows a binomial distribution. Thus, the probability term 

 is given by 

 

where B(n,k,p) is the tail of the binomial distribution: 

 

The number of tests  corresponds to the total number of rectangles that could show an alignment at a fixed precision. Notice that the 
rectangles are oriented, meaning that the order of their starting and ending points is not arbitrary: it encodes which side of the line segment is 
darker. Thus, a rectangle from point A to point B is a different test from the rectangle from point B to point A. The exhaustive choice is to take all 

the rectangles starting and ending at image pixels. In a  image this gives  different rectangles. Also,  different 
width values are considered for each one. 

 

The number of rectangles considered is then 

 

The precision p is initially set to the value τ/π; but other values are also tested to cover the relevant range of values; this is explained below in the 
section "Rectangle Improvement". We will note  the number of different p values potentially tried. Each rectangle with each p value is a different 
test. Thus, the final number of tests is 

 

Finally, we define the Number of False Alarms (NFA) associated with a rectangle r on the image i as 

 

This corresponds to the expected number of rectangles which have a sufficient number of aligned points to be as rare as r under . When the 
NFA associated with an image rectangle is large, this means that such an event is expected on the a contrario model, i.e., common and thus not a 
relevant one. On the other hand, when the NFA value is small, the event is rare and probably a meaningful one. A threshold ε  is selected and 

rectangles with  are called ε-meaningful rectangles and are the detections of the algorithm. 

Theorem 

 

where  is the expectation operator,  is the indicator function,  is the set of rectangles considered, and I is a random image on . 

The theorem states that the average number of ε-meaningful rectangles under the a contrario model  is less than ε.  Thus, the number of 
detections on noise is controlled by ε and it can be made as small as desired. In other words, this shows that LSD satisfies the Helmholtz principle. 

Proof 

This proof is given here because it was not given in the original article [1]. 

We define  as 
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Then,  is equivalent to . Now, 

 

But, by definition of  we know that 

 

and using that  we get 

 

which concludes the proof. 

Following Desolneux, Moisan, and Morel [3,4], we set ε=1 once for all. This corresponds to accepting on average one false detection per image in 
the a contrario model, which is reasonable. Also, the detection result is not sensitive to the value of ε.  Indeed, the detection limit (that is the 

minimal number of aligned points that could lead to a ε-meaningful rectangle) varies like . Setting ε  to any reasonable value would 
produce very similar results. 

Algorithm 

The LSD algorithm takes a gray-level image as input and returns a list of detected line segments. The algorithm can be described by the following 
12 steps. The auxiliary image STATUS has the same size as the scaled image, and is used to keep track of the pixels already used. 

1. Scale the input image to scale S using Gaussian sub-sampling (σ=Σ/S).  
2. Compute the gradient magnitude and level-line orientation at each pixel.  
3. Build a list of pixels pseudo-ordered according to their image gradient magnitude.  
4. Set all pixels in the auxiliary image STATUS to the value NOT USED.  
5. Mark the STATUS of pixels whose gradient magnitude is less than  to the value USED.  
6. For each pixel P in the list, starting with the ones with the highest gradient magnitude, and with STATUS set to NOT USED, do: 

1. Starting from P as a seed pixel, grow a region R of connected and NOT USED pixels, that share the same level-line angle up to a 
tolerance τ. Mark the STATUS of the pixels in the region as USED.  

2. Compute the rectangular approximation for the connected region R of pixels found.  
3. If the density of aligned points in the rectangle is less than D, cut the region, until the density restriction is satisfied.  
4. Compute the NFA value for the rectangle found.  
5. Try to modify the rectangle to improve the NFA value.  

6. If , add the rectangle to the output list.  

LSD was designed as an automatic image analysis tool. As such it must work without requiring any parameter tuning. The algorithm actually 
depends on several numbers that determine its behavior; but their values were carefully devised to work on all images. (See their discussion 
below.) They are therefore part of LSD's design, internal parameters, and are not left to the user's choice. Changing their values would amount to 
define a new variant of the algorithm, in the same way as we could make variants by changing the gradient operator, or by switching from 8-
neighborhood to 4-neighborhood in the region growing process. 

Each step of the algorithm will be described in the following sections, as well as the design criteria for setting the six internal parameters: S, Σ, , τ, 
D, and ε. 

[The algorithm main function in LSD code is LineSegmentDetection.] 

Image scaling 

The result of LSD is different when the image is analyzed at different scales or if the algorithm is applied to a small part of the image. This is 
natural and corresponds to the different details that one can see if an image is observed from a distance or if attention is paid to a specific part. As 
a result of the a contrario validation step, the detections thresholds automatically adapt to the image size that is directly related to the number of 
tests. The scale of analysis is a choice left to the user, who can select it by cropping the image. Otherwise LSD processes automatically the entire 
image. 

The first step of LSD is, nevertheless, to scale the input image to 80% of its size. This scaling helps to cope with aliasing and quantization artifacts 
(especially the staircase effect) present in many images. Blurring the image would produce the same effect but affecting statistics of an image in 
the a contrario model: some structures would be detected on a blurred white noise. When correctly sub-sampled, the white noise statistics are 
preserved. Note that the a contrario validation is applied to the scaled image and the  image size used in the NFA computation 

corresponds to an input image of size . 

The following images show two discrete edges at different angles, both presenting the staircase effect. Next to each image is the result of LSD 
without using the initial scaling. In the first case the edge is detected as four horizontal line segments instead of one; in the second case, no line 
segment is detected: 
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In both cases the result is reasonable, but it does not correspond to what we would expect. The following figures show the result of LSD, using the 
80% scaling. Both edges are now detected and with the right orientation (even if the first one is still fragmented). 

  

The scale factor of 80% (S=0.8), is the smallest image reduction that reasonably solves the staircase problem while producing almost the same 
result as a full scale analysis on images without artifacts. (A 80% scaling means here that the x and y axis are each reduced to 80%; the number of 
pixels is thus reduced to 64%.) 

The scaling is performed by a Gaussian sub-sampling: the image is filtered with a Gaussian kernel to avoid aliasing and then sub-sampled. The 
standard deviation of the Gaussian kernel is determined by σ=Σ/S, where S is the scaling factor. The value of Σ is set to 0.6, which gives a good 
balance between avoiding aliasing and avoiding image blurring. 

[The scaling is performed in LSD code by the function gaussian_sampler.] 

Gradient computation 

The image gradient is computed at each pixel using a 2x2 mask. Given 

 

where i(x,y) is the image gray level value at pixel (x,y), the image gradient is computed as 

 

 

The level-line angle is computed as 

 

and the gradient magnitude as 

 

This simple scheme uses the smallest possible mask size in its computation, thus reducing as much as possible the dependence of the computed 
gradient values (thus, approaching the theoretical independence in the case of a noise image). 

The gradient and level-line angles encode the direction of the edge, that is, the angle of the dark to light transition. Note that a dark to light 
transition and a light to dark transition are different, having a 180 degree angle difference between the corresponding gradient or level-line 
angles. This means that the resulting line segments detected by LSD are oriented and that the order of their starting and ending points is not 
arbitrary, since it encodes which side of the line segment is darker. For example, if the contrast of an image is reverted (changing black for white 
and white for black) the result of LSD would be the same but the starting and ending points would be exchanged on every line segment. 

Note that the computed value corresponds to the image gradient at coordinates (x+0.5,y+0.5) and not (x,y). This half-pixel offset is then added to 
the output rectangles coordinates to produce coherent results. 

In the a contrario model, the level-line field is composed of independent random variables at each pixel. But the computed level-line field is actually 
never fully independent even if the image is a white noise. Indeed, adjacent pixel values are used to compute the gradient and therefore the 
gradients are (slightly) dependent. This does not prevent the use of an a contrario approach. Indeed, numerical simulations have shown that the 
same threshold deduced for the case of independent level-line field also controls the number of false detections when computed by the 2x2 mask, 
see [5]. 

[In the LSD code, the gradient computation, gradient threshold, and pseudo-ordering, are all performed by the function ll_angle.] 

Gradient Pseudo-ordering 

http://www.ipol.im/pub/art/2012/gjmr-lsd/ Page 5 / 14

http://www.ipol.im/pub/art/2012/gjmr-lsd/edge0.png
http://www.ipol.im/pub/art/2012/gjmr-lsd/edge0.lsd-s1.png
http://www.ipol.im/pub/art/2012/gjmr-lsd/edge1.png
http://www.ipol.im/pub/art/2012/gjmr-lsd/edge1.lsd-s1.png
http://www.ipol.im/pub/art/2012/gjmr-lsd/edge0.lsd.png
http://www.ipol.im/pub/art/2012/gjmr-lsd/edge1.lsd.png
http://www.ipol.im/pub/art/2012/gjmr-lsd/doc/lsd_8c.html#a32
http://www.ipol.im/pub/art/2012/gjmr-lsd/doc/lsd_8c.html#a33


LSD is a greedy algorithm and the order in which pixels are processed has an impact on the result. Pixels with high gradient magnitude correspond 
to the more contrasted edges. In an edge, the central pixels usually have the highest gradient magnitude. So it makes sense to start looking for 
line segments at pixels with the highest gradient magnitude. 

Sorting algorithms usually require  operations to sort n values. However, a simple pixel pseudo-ordering is possible in linear-time. To 
this aim, 1024 bins are created corresponding to equal gradient magnitude intervals between zero and the largest observed value on the image. 
Pixels are classified into the bins according to their gradient magnitude. LSD uses first seed pixels from the bin of the largest gradient magnitudes; 
then it takes seed pixels from the second bin, and so on until exhaustion of all bins. 1024 bins are enough to sort almost strictly the gradient values 
when the gray level values are quantized in the integer range [0,255]. 

[In the LSD code, the gradient computation, gradient threshold, and pseudo-ordering, are all performed by the function ll_angle.] 

Gradient threshold 

Pixels with small gradient magnitude correspond to flat zones or slow gradients. Also, they naturally present a higher error in the gradient 
computation due to the quantization of their values. In LSD the pixels with gradient magnitude smaller than  are therefore rejected and not used 
in the construction of line-support regions or rectangles. 

Assuming a quantization noise n and an ideal image i we observe: 

 

 

We have 

 

where q is a bound on . The criterion used is to reject pixels where the angle error is larger than the angle tolerance τ used in the region 

growing algorithm. That is, we impose  and we get 

 

The threshold  is set using the last expression where q is a bound on the possible error in the gradient value due to quantization effects [1], and τ 
is the angle tolerance to be used in the region growing algorithm. 

In the usual case, the pixel values are quantized to integer values in {0,1,...,255}. Thus, the maximal possible error in the gradient is 1 (when 
adjacent pixels have quantization errors of 0.5 that do not compensate). For empirical reasons, we preferred a more conservative bound and we 
set q=2. This value will not, however, give good results if the image intensity range differs significantly from the [0,255] interval. 

[In the LSD code, the gradient computation, gradient threshold, and pseudo-ordering, are all performed by the function ll_angle.] 

Region Growing 

Starting from a pixel in the ordered list of unused pixels, the seed, a region growing algorithm is applied to form a line-support region. Recursively, 

the unused neighbors of the pixels already in the region are tested, and the ones whose level-line angle is equal to the region angle  up to 

a tolerance τ are added to the region. The initial region angle  is the level-line angle of the seed point, and each time a pixel is added to 
the region the region angle value is updated to 

 

where the index j runs over the pixels in the region. If we associate to each pixel in the region a unitary vector with its level-line angle, the latter 
formula corresponds to the angle of the mean vector. The process is repeated until no other pixel can be added to the region. The following 
pseudo-code gives a precise definition: 

1. The initial point P is added to the Region  

2.  is set to the level-line angle of pixel P  

3.   

4.   
5. For each pixel P in the Region do: 
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1. For each pixel Q neighbor of P and  do: 

1. If  do: 
1. Add Q to the Region  

2.   

3.   

4.   

5.   

An 8-connected neighborhood is used, so the neighbors of pixel i(x,y) are i(x-1,y-1),  i(x,y-1),  i(x+1,y-1),  i(x-1,y), i(x+1,y),  i(x-1,y+1), i(x,y+1), and i
(x+1,y+1). 

The tolerance τ is set to 22.5 degree or π/8 radian, that corresponds to a 45 degree range or 1/8 of the full range of orientations. It was chosen 
because it is near the largest possible value that still makes sense to call a pixel "oriented like the rectangle". What is important is not the exact 
value but the order of magnitude, so it was set to obtain p=1/8. The next figure shows a typical example. On the left we see a detail of a noisy 
edge. Next to it is the result of the region growing algorithm for τ set to 11.25, 22.5, and 45 degree, respectively. The first case is too restrictive 
and the region is too small; with 45 degree regions often expand too far from the edge; 22.5 is a good compromise. 

    

Regions that could be obtained with a smaller value are also obtained in this way. In the validation process, smaller values of the precision p are 
also tested, so the value of τ only affects the region growing algorithm and not the validation. 

[The region growing step is done in the LSD code by the function region_grow.] 

Rectangular Approximation 

A line segment corresponds to a geometrical event, a rectangle. Before evaluating a line-support region, the rectangle associated with it must be 
found. The region of pixels is interpreted as a solid object and the gradient magnitude of each pixel is used as the "mass" of that point. Then, the 
center of mass of the region is selected as the center of the rectangle and the main direction of the rectangle is set to the first inertia axis of the 
region. Finally, the width and length of the rectangles are set to the smallest values that make the rectangle to cover the full line-support region. 

The center of the rectangle  is set to 

 

 

where G(j) is the gradient magnitude of pixel j, and the index j runs over the pixels in the region. The main rectangle's angle is set to the angle of 
the eigenvector associated with the smallest eigenvalue of the matrix 

 

with 

 

 

 

[In the LSD code, the rectangular approximation is computed by the function region2rect, using the function get_theta to compute the main 
rectangle's angle.] 

NFA Computation 
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A key concept in the validation of a rectangle is that of p-aligned points, namely the pixels in the rectangle whose level-line angle is equal to the 
rectangle's main orientation, up to a tolerance pπ. The precision p is initially set to the value τ/π, but other values are also tested as is explained in 
the section "Rectangle Improvement"; a total of  different values for p are tried. The total number of pixels in the rectangle is denoted by n and 
the number of p-aligned points is denoted by k (we drop r and i when they are implicit to simplify the notation). Then, the number of false alarms 
(NFA) associated with the rectangle r is 

 

where N and M are the number of columns and rows of the image (after scaling), and B(n,k,p) is the binomial tail 

 

All in all, for each rectangle being evaluated and given a precision p, the numbers k and n are counted, and then the NFA value is computed by 

 

The rectangles with  are validated as detections. 

As stated before, and following Desolneux, Moisan, and Morel [3,4], we set ε=1 once for all. Here we will only show an experiment illustrating the 

stability of the result relative to ε value. Below is the input image and the result of LSD with , , and , respectively. 
Only a few small line segments disappear: 

   

 

In our implementation, the computation of the binomial tail is performed using the the following relation to the Gamma function: 

 

T h e  G a m m a  f u n c t i o n  c a n  b e  e f f i c i e n t l y  c o m p u t e d .  W e  u s e  t h e  m e t h o d s  b y L a n c z o s  a n d  W i n d s c h i t l  a s  d e s c r i b e d  o n 
http://www.rskey.org/gamma.htm. To speed up the computations, the sum of the binomial tail is truncated when the error can be bounded to be 
less than 10%. 

[The function rect_nfa of the LSD code counts the number of aligned points and the total number of points, and then computes the NFA, calling 
the function nfa to compute the binomial tail.] 

Aligned Points Density 

In some cases, the τ-angle-tolerance method produces a wrong interpretation. This problem can arise when two straight edges are present in the 
image forming an angle between them smaller than the tolerance τ. The following image shows an example of a line-support region found (in gray) 
and the rectangle corresponding to it. 
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This line-support region could be better interpreted as two thinner rectangles, one longer than the other, forming an obtuse angle. 

In LSD this problem is handled by detecting problematic line-support regions and cutting them into two smaller regions, hoping to cut the region at 
the right place to solve the problem. Once a cut region is accepted, the rectangle associated is recomputed and the algorithm is resumed. 

The detection of this "angle problem" is based on the density of aligned points in the rectangle. When this problem is not present, the rectangle is 
well adapted to the line-support region and the density of aligned points is high. On the other hand, when the "angle problem" is present, as can 
be seen on the previous figure, the density of aligned points is low. Also, when a slightly curved edge is being locally approximated by a sequence 
of straight edges, the degree of the approximation (how many line segments are used to cover part of curve) is related to the density of aligned 
points; the aligned points density is thus also related to the precision at which curves are approximated by line segments. 

The density of aligned points of a rectangle is computed as the ratio of the number of aligned points (k in the previous notation) to the area of the 
rectangle: 

 

A threshold D is defined and rectangles should have a density d larger or equal to D to be accepted. We set D to the value 0.7 (70 %) which 
provides good balance between solving the "angle problem", providing smooth approximations to curves, without over-cutting the line segments. 

Two methods for cutting the region are actually tried: reduce angle tolerance and reduce region radius. In both methods, part of the pixels in the 
region are kept, while the others are re-marked again as NOT USED, so they can be used again in future line-support regions. We will describe 
now these two methods: 

Reduce angle tolerance 

The first method, reduce angle tolerance, tries to guess a new tolerance τ'  that adapts well to the region, and then the region growing algorithm is 
used again with the same seed but using the newly estimated tolerance value. When two straight regions that form an obtuse angle are present, 
this method is expected to get the tolerance that would get only one of these regions, the one containing the seed pixel. 

If all the pixels in the region were used in the estimation of the tolerance, the new value would be such that all the pixels would still be accepted. 
Instead, only the pixels near the seed are used. Actually, only the pixels whose distance to the seed point is less than the width of the rectangle 
initially computed are used. In that way, the size of the neighborhood used in the estimation of τ' adapts to the size of the region. 

All the pixels in that neighborhood of the seed point are evaluated, and the new tolerance τ'  is set to twice the standard deviation of the level-line 
angles of these pixels. With this new value, the same region growing algorithm is applied, starting from the same seed point. Before that, all the 
pixels on the original regions are set to NOT USED, so the algorithm can use them again, and the discarded ones are available for further regions. 

[The reduce angle tolerance method is implemented by the function refine in the LSD code.] 

Reduce region radius 

The previous method, reduce angle tolerance, is tried only once, and if the resulting line-support region fails to satisfy the density criterion a 
second method is repetitively tried. The idea of this second method is to gradually remove the pixels that are farther from the seed until the 
criterion is satisfied or the region is too small and rejected. This method works best when the line-support region corresponds to a curve and the 
region needs to be reduced until the density criterion is satisfied, usually meaning that a certain degree of approximation to the curve is obtained. 

The distance from the seed point to the farther pixel in the region is called the radius of the region. Each iteration of this method removes the 
farthest pixels of the region to reduce the region's radius to 75 % of its value. This process is repeated until the density criterion is satisfied or until 
there are not enough pixels in the region to form a meaningful rectangle. This is just a way of gradually reducing the region until the criterion is 
satisfied; it could be done one pixel at a time, but that would make the process slower. 

[The reduce region radius method is implemented in the reduce_region_radius function of the LSD code.] 

Rectangle Improvement 

Before rejecting a line-support region for being not meaningful (NFA>ε), LSD tries some variations of the rectangle's configuration initially found 
with the aim to get a valid one. 

The relevant factors tested are the precision p used and the width of the rectangle. 

The initial precision used, corresponding to the region growing tolerance τ is large enough so only testing smaller values makes sense. If the pixels 
are well aligned, using a finer precision will keep the same number of aligned points, but a smaller p yields a smaller (and therefore better) NFA. 

In a similar way, it only makes sense to try to reduce the rectangle's width because the initial width was chosen to cover the whole line-support 
region. Often, reducing by one pixel the width may reduce the number of aligned points by only a few units while reducing the total number of 
pixels by a number equal to the length of the rectangle, see the figure below. This may decrease significantly the binomial tail and therefore also 
the NFA. 

 

The rectangle improvement routine of LSD consists of the following steps: 
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1. try finer precisions  
2. try to reduce width  
3. try to reduce one side of the rectangle  
4. try to reduce the other side of the rectangle  
5. try even finer precisions  

If a meaningful rectangle is found ( ) the improvement routine will stop after the step that found it. 

Step 1 tries the following precision values: p/2, p/4, p/8, p/16, and p/32, where p is the initial precision value. The value that produces the best 
NFA (the smallest) value is kept. 

Step 2 tries up to five times to reduce the rectangle width by 0.5 pixels. This means that the tested width values are W, W-0.5, W-1, W-1.5, W-2, 
and W-2.5, where W is the initial width value. Again, the value that produces the best NFA value is kept. 

Step 3 tries five times to reduce only one side of the rectangle by 0.5 pixel. This implies reducing the width of the rectangle by 0.5 pixels but also 
moving the center of the rectangle by 0.25 pixels to maintain the position of the other side of the rectangle. So the tested side displacements are 
0.5, 1, 1.5, 2, and 2.5 pixels. As before, the value that produces the best NFA value is kept. 

Step 4 does the same thing as step 3 on the other side of the rectangle. 

Step 5 tries again to reduce the precision still more. This step tests the precision values , , ,  , and , where  is the 
precision at the beginning of this step. The value that produces the best NFA value is kept. 

In addition to the initial precision , five more values are potentially tested in step 1 and still five more in step 5. Then . The range 

of precisions covered is from  to  and is more than enough to consider any relevant case, the finer precision being about 
0.02 degree. Five such steps, attaining a 1 degree precision, would be enough; this refinement, however, works better sometimes before and 
sometimes after the width refinement, and there is no serious caveat in performing both. 

[The rectangle improvement routine is performed by the function rect_improve of LSD code.] 

Computational complexity 

Performing a Gaussian sub-sampling and computing the image gradient, both can be performed with a number of operations proportional to the 
number of pixels in the image. Then, pixels are pseudo-ordered by a classification into bins, operation that can be done in linear time. The 
computational time of the line-support region finding algorithm is proportional to the number of visited pixels, and this number is equal to the total 
number of pixels in the regions plus the border pixels of each one. Thus, the number of visited pixels remains proportional to the total number of 
pixels of the image. The rest of the processing can be divided into two kind of tasks. The first kind, for example summing the region mass or 
counting aligned points, are proportional to the total number of pixels involved in all regions. The second kind, like computing inertia moments or 
computing the NFA value from the number of aligned points, are proportional to the number of regions. Both the total number of pixels involved 
and the number of regions are at most equal to the number of pixels. All in all, LSD has an execution time proportional to the number of pixels in 
the image. 

Examples 

The following set of examples tries to give an idea of the kind of results obtained with LSD, both good and bad. 

chairs: A good result. The detected line segments correspond to empirically straight structures in the image. The detection corresponds roughly 
with the perceptually expected result. 
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molecule-lsd: Note that LSD detects locally straight edges, so each black stroke produces two detections, one for each white to black transition. 
Also note that there is a minimal length that a line segment must have, and smaller ones cannot be detected. (For example, the base of the 
number '2'.) This minimal size for detection depends on the image size because the NFA increases with the image size. 

  

circles: Note that when curves are present, LSD produces short line segments corresponding to curve sections that are locally straight. The result 
is a polygonal approximation for curves. When the curvature is too strong LSD of course fails. 

  

noise: LSD was designed to provide a good false detection control. Its false detection control is based on automatically providing detections 
thresholds that prevent detections that could happen by chance on images of noise. 
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shadow and noise: A significant part of the visible straight structure in the following image is not detected. The reasons are the slow gradient in 
the shadow and the presence of noise. However, the structure can be detected by LSD at a different scale as is shown on the next example. 

  

shadow and noise, subsampling: When a Gaussian sub-sampling is applied to the previous image, the noise is partially removed and the 
structure is analyzed at the right scale. The expected line segments are detected. 

  

small: Due to the a contrario framework used by LSD to control the number of false detection, the result depends on the image size: the number 
of tests depends on it. As a consequence, the result of LSD may be locally different if the algorithm is applied to the full image or to a crop of it. 
The following image contains a little square just under the detection limit. No detection is thus produced. The next example, however, shows a crop 
of this same image and the square is indeed detected. This is the natural behavior of LSD and means that the detail level depends on the size of 
the whole data being analyzed. Human perception is similar: small details often go unnoticed unless attention is drawn to them. 

  

small, crop: A crop of the previous example, centered on the square. The square is now detected. 

  

sky: Some regions are partially anisotropic and partially straight. Such regions can produce unexpected detections. 
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gibbs: Image compression, Gibbs effects are responsible for many unexpected detections. 

  

color: LSD is designed to work on gray-level images. Before applying LSD to a color image it must be converted to a gray-level image. However, 
some color edges could be lost in this conversion. For example, the following image presents a clear edge (left), but after the standard conversion 
to a gray-level image (middle) the edge is lost. The reason is that the red value and the green value are both converted to the same gray value. 
Thus, LSD will produce no detection (right) because none is present in the input image to LSD (middle). The edge is lost on the color to gray 
image conversion and not by LSD. An extension of LSD to deal with this (relatively rare) event is possible but was not done in the current 
implementation. 

   

real world scene: All in all, LSD usually produces a reasonable result on real images. 
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Video 

This is an example of applying LSD, frame by frame, to a video: original(43Mb) lsd version (62Mb). 
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