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Abstract

BM3D is a recent denoising method based on the fact that an image has a locally sparse
representation in transform domain. This sparsity is enhanced by grouping similar 2D image
patches into 3D groups. In this paper we propose an open-source implementation of the method.
We discuss the choice of all parameter methods and confirm their actual optimality. The
description of the method is rewritten with a new notation. We hope this new notation is
more transparent than in the original paper. A final index gives nonetheless the correspondence
between the new notation and the original notation.
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1 Introduction

Collaborative filtering is the name of the BM3D grouping and filtering procedure. It is realized in
four steps: 1) finding the image patches similar to a given image patch and grouping them in a 3D
block 2) 3D linear transform of the 3D block; 3) shrinkage of the transform spectrum coefficients; 4)
inverse 3D transformation. This 3D filter therefore filters out simultaneously all 2D image patches
in the 3D block.

By attenuating the noise, collaborative filtering reveals even the finest details shared by the
grouped patches. The filtered patches are then returned to their original positions. Since these
patches overlap, many estimates are obtained which need to be combined for each pixel. Aggregation
is a particular averaging procedure used to take advantage of this redundancy.

The first collaborative filtering step is much improved by a a second step using Wiener filtering.
This second step mimics the first step, with two differences. The first difference is that it compares
the filtered patches instead of the original patches. The second difference is that the new 3D group
(built with the unprocessed image samples, but using the patch distances of the filtered image) is
processed by Wiener filtering instead of a mere threshold. The final aggregation step is identical to
those of the first step.
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The proposed method improved on the NL-means [2] method which denoises jointly similar
patches, but only by performing a patch average, which amounts to a 1D filter in the 3D block.
The 3D filter in BM3D is performed on the three dimensions simultaneously.

The BM3D algorithm detailed here directly comes from the original article [4]. It is generally
considered to achieve the best performance bounds in color image denoising. Nevertheless, the au-
thors have pointed out to us more recent and sophisticated versions. Like for NL-means, there is a
variant with shape-adaptive patches [5]. In this algorithm denominated BM3D-SAPCA, the sparsity
of image representation is improved in two aspects. First, it employs image patches (neighborhoods)
which can have data-adaptive shape. Second, the PCA bases are obtained by eigenvalue decomposi-
tion of empirical second-moment matrices that are estimated from a group of similar adaptive-shape
neighborhoods. This method improves BM3D especially in preserving image details and introducing
very few artifacts. The anisotropic shape-adaptive patches are obtained using the 8-directional LPA-
ICI techniques [12]. In the very recent developments of BM3D [11, 6], it is generalized to become a
generic image restoration tool, including deblurring.

A previous analysis on BM3D [9] studies the sharp drop of the denoising performance when noise
standard deviation reaches 40. On the contrary of this present study, only few parameters have been
studied, and only for large value of noise. Moreover, this previous study [9] presents a less detailed
study of BM3D than the one of the present article. For large value of noise, we reach the same
conclusions: the threshold value during the first step needs to be increased, and the best results are
achieved by using a 2D bi-orthogonal spline wavelet (denoted by 2D-Bior1.5 in the following) during
the second step and by keeping a 8×8 size for patches in both steps.

It is furthermore interesting to notice that recent papers [3, 14] which try to evaluate the inherent
bounds of patch-based denoising methods claim that BM3D is really close to those optimality bounds.

2 The Algorithm Step by Step

2.1 Architecture of the Algorithm

We shall first describe how to process gray level images. The extension to color images will be
explained later on. In all the following we work in the case of white Gaussian noise where the
variance is denoted by σ2.

The algorithm is divided in two major steps:

1. The first step estimates the denoised image using hard thresholding during the collaborative
filtering. Parameters in this step are denoted by the exponent hard;

2. The second step is based both on the original noisy image, and on the basic estimate obtained
in the first step. It uses Wiener filtering. The second step is therefore denoted by the exponent
wiener.

The algorithm is summarized in the two next figures 1 and 2.
The figure 3 shows the patches, a search window centered on reference patch P , and illustrates

the patch overlapping leading to multiple estimates.

2.2 The First Denoising Step

We denote by P the reference current patch whose size is khard × khard of the image loop.

Grouping
The first sub-step is grouping. The original noisy image u is searched in a P -centered nhard ×
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nhard neighborhood for patches Q similar to the reference patch P . The set of similar patches
is simply defined by

P (P ) = {Q : d (P,Q) ≤ τhard} (1)

where:

• τhard is the distance threshold for d under which two patches are assumed similar;

• d(P,Q) =
‖γ′ (P )− γ′ (Q) ‖22

(khard)2
is the normalized quadratic distance between patches;

• γ′ is a hard thresholding operator with threshold λhard
2D σ. For σ ≤ 40 one has λhard

2D σ = 0.
It simply puts to zero the coefficients of the patch with an absolute value below the
threshold λhard

2D σ. The other coefficients are unchanged. For σ ≤ 40 all coefficients are
unchanged;

• σ2 is the variance of the zero-mean Gaussian noise.

The 3D group, denoted P (P ), is then built by stacking up the matched patches P (P ). In order
to speed up the process, only the Nhard patches in P (P ) that are closest to the reference patch
are kept in the 3D group1. Patches in P (P ) will be sorted according to their distance to P ,
in order to take the best Nhard similar patches easily. Thus naturally the first patch will be P
because its distance to itself is zero. The order of the patches in the 3D group is not important:
the results are similar no matter whether they are ordered according to their distance to the
reference patch, or just randomly.

Collaborative Filtering
Once the 3D-block P (P ) is built the collaborative filtering is applied. A 3D isometric linear
transform is applied to the group, followed by a shrinkage of the transform spectrum. Finally
the inverse linear transform is applied to estimate for each patch

P(P )hard = τhard
3D

−1
(γ(τhard

3D (P(P )))) (2)

where γ is a hard thresholding operator with threshold λhard
3D σ:

γ(x) =

{
0 if |x| ≤ λhard

3D σ
x otherwise

For practical purposes, the 3D transform τhard
3D of the 3D group P(P ) is made up of two

transforms: a 2D transform denoted by τhard
2D applied on each patch of P(P ), and a 1D transform

denoted by τhard
1D applied along the third dimension of the 3D group. The choice of these

transforms will be carefully discussed later.

Aggregation
When the collaborative filtering is done, we get an estimate for each used patch and then a
variable number of estimates for every pixel. These estimates are saved in a buffer:

∀Q ∈ P(P ), ∀x ∈ Q,
{

ν(x) = ν(x) + whard
P uhard

Q,P (x)
δ(x) = δ(x) + whard

P

(3)

where:

1Moreover, when the applied 1D transform τhard1D is a Walsh-Hadamard transform it is necessary to have a power
of 2 for the number of similar patches. Then Nhard is always chosen as a power of 2, and if there are less similar
patches than Nhard for a given reference patch, only a power of 2 inferior or equal to this number of similar patches
will be kept.
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• ν (resp. δ) designates the numerator (resp. denominator) part of the basic estimate of the
image obtained at the end of the grouping step;

• uhard
Q,P (x) is the estimate of the value of the pixel x belonging to the patch Q obtained

during collaborative filtering of the reference patch P ;

• whard
P =

{ (
Nhard

P

)−1
if Nhard

P ≥ 1
1 otherwise

• Nhard
P is the number of retained (non-zero) coefficients in the 3D block after hard-thresholding:

γ
(
τhard
3D (P(P ))

)
.

The interest of this weighting is that it gives a priority to homogeneous patches (where there
are many canceled coefficients). Patches containing an edge will be less taken into account than
homogeneous ones on the border of the edge. The next figure illustrates this fact: priority is
given to the green patches during the aggregation.

Green patches will have a weight superior to the red patch, because they are more sparse (have less nonzero

transform coefficients).

The result is an artifact reduction around the edges and it avoids the classic ringing effects
observable with transform threshold methods. In order to reduce more the border effects which
can appear, a khard × khard Kaiser window is used as part of the weights. It is simply done as
a element-by-element multiplication between the Kaiser window and the estimated patch after
the inverse 3D transformation. How the Kaiser window can be obtained will be discussed in
the section 4.4.

The basic estimate after this first step is given by

ubasic (x) =

∑
P

whard
P

∑
Q∈P(P )

χQ(x)uhard
Q,P (x)∑

P

whard
P

∑
Q∈P(P )

χQ(x)
(4)

which is simply obtained by dividing the two buffers (numerator and denominator) element-
by-element, with χQ(x) = 1 if and only if x ∈ Q, 0 otherwise.
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2.3 The Second Denoising Step

In this second part of the algorithm a basic estimate ubasic of the denoised image is available. The
second step performs a Wiener filter of the original image u, but uses as oracle the basic estimate
ubasic. It is observed in the experiments that this second step restores more details and improves the
denoising performance, as will be clear in the experiments and tables below.

Grouping
The patch-matching is only processed on the basic estimate. When a set of similar patches

Pbasic(P ) = {Q : d (P,Q) ≤ τwien} (5)

has been obtained two 3D groups are formed:

• Pbasic(P ) by stacking up patches together from the basic estimation ubasic and;

• P(P ) by stacking up patches in the same order together from the original noisy image u.

Once again, for optimization a maximum number of Nwien patches is kept in the two 3D groups.
They have been chosen exactly as described in the first denoising step.

Collaborative Filtering
When the two 3D groups are obtained the collaborative filtering can be launched. To do so
empirical Wiener coefficients are defined by

ωP (ξ) =

∣∣τwien
3D

(
Pbasic(P )

)
(ξ)
∣∣2∣∣τwien

3D (Pbasic(P )) (ξ)
∣∣2 + σ2

. (6)

The Wiener collaborative filtering of P(P ) is realized as the element-by-element multiplication
(denoted with a dot) of the 3D transform of the noisy image τwien

3D (P(P )) with the Wiener
coefficients ωP . Through this sub-step an estimate of the 3D group is obtained as

Pwien(P ) = τwien
3D

−1 (
ωP . τwien

3D (P(P ))
)
. (7)

Aggregation
When collaborative filtering is achieved, the estimates for every pixel are stored in a buffer:

∀Q ∈ P(P ),∀x ∈ Q,
{

ν(x) = ν(x) + wwien
P uwien

Q,P (x)
δ(x) = δ(x) + wwien

P

(8)

where:

• ν (resp. δ) designates the numerator (resp. denominator) part of the final estimation of
the image obtained at the end of the previous step;

• uwien
Q,P (x) is the estimation of the value of the pixel x belonging to the patch Q obtained

during the collaborative filtering of the reference patch P ;

• wwien
P = ‖ωP‖−22 .

As for the first step, a kwien × kwien Kaiser window is applied to reduce border effects.

The final estimate obtained after the second step is given by

ufinal (x) =

∑
P

wwien
P

∑
Q∈P(P )

χQ(x)uwien
Q,P (x)∑

P

wwien
P

∑
Q∈P(P )

χQ(x)
(9)
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which is simply obtained by dividing both buffers (numerator and denominator) element-by-
element. Here χQ(x) = 1 if and only if x ∈ Q, 0 otherwise.

In the original article, during the patch aggregation sub-step, a Kaiser window is applied to each
patch in order to slightly attenuate the patch borders. Nevertheless, experimental results show that
the Kaiser windows do not improve the PSNR, and are visually less efficient than the weighting. For
the sake of simplicity, these windows are not mentioned in this algorithmic description. By fidelity
to the original article, they are nevertheless implemented in the code published with this article.

3 A Study of the Optimal Parameters

3.1 Comparison Criteria and Parameters Under Study

The results shown hereafter are obtained from the previously described algorithm applied to noiseless
images with a simulated white noise added. Many images have been tested, but for the sake of
simplicity only one result by σ will be shown. All shown results has been obtained on the noise-free
image shown in figure 4.

To describe quantitatively denoising results, two classic measures will be used:

The Root Mean Square Error (RMSE) between the reference image (noiseless) uR and the de-
noised image uD is computed as:

RMSE =

√√√√√
∑
x∈X

(uR(x)− uD(x))2

|X|
. (10)

The smaller the RMSE, the better the denoising.

The Peak Signal to Noise Ratio (PSNR) is evaluated in decibels (dB):

PSNR = 20 log10

(
255

RMSE

)
. (11)

The larger the PSNR, the better the denoising.

Choosing the right values for the different parameters in the algorithm and their influence has to
be discussed. The set of the parameters is:

• khard and kwien: size of patches;

• Nhard and Nwien: maximum number of similar patches kept;

• phard and pwien: In order to speed up the processing, the loop over the pixels of the image
is done with a step p (integer) in row and column. For example if p = 3 the algorithm is
accelerated by a 9 factor;

• nhard and nwien: search window size;

• τhard and τwien: maximum thresholds for the distance between two similar patches;

• λhard
2D and λhard

3D .
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Figure 4: Valldemossa noiseless image.
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Several of these parameters have actually little influence on the final result, namely nhard and
nwien. Therefore the following values will be fixed and used throughout the study:

• nhard = 39;

• nwien = 39.

Moreover, when parameters values are not explicitly given, we use the default values shown in
section 3.7.

3.2 Influence of Nhard and Nwien

Parameters used for this study:

• τhard = 2500 if σ < 40, and 5000 otherwise. Moreover, if Nhard ≥ 32, this threshold is
multiplied by a factor 5;

• τhard
2D is a Bior1.5 transform whatever the value of σ;

• τwien
2D is a 2D DCT transform, whatever the value of σ.

Nhard = 8
Nwien = 8 Nwien = 16 Nwien = 32 Nwien = 64

σ PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE

2 45.54 1.35 45.56 1.34 45.56 1.34 45.55 1.35
5 39.41 2.73 39.44 2.72 39.45 2.72 39.44 2.72
10 35.03 4.52 35.07 4.50 35.08 4.49 35.07 4.50
20 30.90 7.27 30.94 7.24 30.96 7.22 30.95 7.23
30 28.70 9.37 28.76 9.30 28.78 9.28 28.78 9.28
40 27.18 11.16 27.22 11.11 27.25 11.07 27.26 11.05
60 25.28 13.88 25.35 13.77 25.39 13.71 25.42 13.66
80 24.05 16.00 24.14 15.83 24.22 15.69 24.24 15.65
100 22.90 18.26 23.04 17.97 23.14 17.76 23.20 17.64

Nhard = 16
Nwien = 8 Nwien = 16 Nwien = 32 Nwien = 64

σ PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE

2 45.53 1.35 45.55 1.35 45.55 1.35 45.54 1.35
5 39.41 2.73 39.44 2.72 39.44 2.72 39.42 2.73
10 35.04 4.51 35.07 4.50 35.07 4.50 35.06 4.50
20 30.92 7.25 30.96 7.22 30.96 7.22 30.95 7.23
30 28.72 9.34 28.76 9.30 28.78 9.28 28.77 9.29
40 27.20 11.13 27.23 11.09 27.24 11.08 27.24 11.08
60 23.30 17.44 25.35 13.77 25.39 13.71 25.41 13.68
80 24.06 15.98 24.15 15.81 24.21 15.71 24.23 15.67
100 22.93 18.20 23.07 17.91 23.17 17.70 23.22 17.60
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Nhard = 32
Nwien = 8 Nwien = 16 Nwien = 32 Nwien = 64

σ PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE

2 45.50 1.35 45.51 1.35 45.51 1.35 45.50 1.35
5 39.37 2.74 39.39 2.74 39.39 2.74 39.37 2.74
10 35.01 4.53 35.03 4.52 35.01 4.53 35.01 4.53
20 30.91 7.26 30.93 7.25 30.92 7.25 30.90 7.27
30 28.72 9.34 28.75 9.31 28.75 9.31 28.73 9.33
40 27.19 11.14 27.21 11.12 27.22 11.11 27.20 11.13
60 25.34 13.79 25.39 13.71 25.41 13.68 25.42 13.66
80 24.07 15.96 24.13 15.85 24.17 15.78 24.16 15.80
100 23.14 17.76 23.21 17.62 23.27 17.50 23.28 17.48

Nhard = 64
Nwien = 8 Nwien = 16 Nwien = 32 Nwien = 64

σ PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE

2 45.47 1.36 45.48 1.36 45.47 1.36 45.46 1.36
5 39.33 2.75 39.35 2.75 39.34 2.75 39.32 2.76
10 34.97 4.55 34.99 4.54 34.98 4.55 34.95 4.56
20 30.88 7.29 30.90 7.27 30.88 7.29 30.85 7.31
30 28.70 9.37 28.73 9.33 28.72 9.34 28.69 9.38
40 27.15 11.20 27.18 11.16 27.17 11.17 27.15 11.20
60 25.32 13.82 25.36 13.76 25.38 13.73 25.38 13.73
80 24.06 15.98 24.11 15.89 24.13 15.85 24.12 15.87
100 23.12 17.80 23.19 17.66 23.23 17.58 23.23 17.58

In bold: best result for a given σ.

One can see that those parameters have a very small influence on the result, and values given
in the original paper (Nhard = 16 and Nwien = 32) are very close to the best result, whatever the
value of the noise. Then, according to this study, the final algorithm will kept original parameters,
i.e. Nhard = 16 and Nwien = 32.

3.3 Influence of λhard3D

This parameter is important because it defines the coefficient thresholding level of the 3D group in
the transform domain during the first filtering sub-step. The chosen value in the original article is
2.7 and it turns out to be the best choice. Here is a table evaluating its influence, in the case where
τhard
2D = Bior1.5 and τwien

2D = DCT whatever the value of the noise. The error results are given after
application of the entire algorithm.
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λhard
3D 2.5 2.7 3.0 3.2
σ PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE

2 45.51 1.35 45.55 1.34 45.55 1.34 45.55 1.34
5 39.39 2.73 39.45 2.72 39.45 2.72 39.41 2.73
10 34.96 4.55 35.04 4.51 35.02 4.52 34.96 4.55
20 30.88 7.29 30.97 7.21 30.93 7.25 30.82 7.34
30 28.63 9.44 28.74 9.32 28.65 9.41 28.52 9.56
40 27.12 11.23 27.26 11.06 27.19 11.14 27.07 11.30
60 25.15 14.10 25.33 13.80 25.26 13.92 25.07 14.23
80 24.00 16.09 24.26 15.61 24.24 15.64 24.08 15.95
100 23.00 18.05 23.21 17.62 23.00 18.05 22.77 18.53

In bold the best result for a given σ.

One can see that small variations on this parameter have strong influence on the result. Then
this parameter needs to be carefully chosen, and according to the original article, the final algorithm
will kept original parameter, i.e. λhard

3D = 2.7.

3.4 Influence of the Thresholds τhard and τwien

The thresholds τhard and τwien are highly dependent on σ and very influential. One can lose many
dBs in PSNR by choosing wrong values for these thresholds. Their correct evaluation is crucial.

However, by picking them large enough, it is possible to keep a constant value for these thresholds
for a wide range of σ’s. In the original article a value of (2500, 400) is proposed for the thresholds
pair (τhard, τwien) for σ ∈ [0, 40]. These values give good results.

τwien = 20 τhard = 600
τhard PSNR RMSE τwien PSNR RMSE
100 37.02 3.59 5 37.31 3.47
200 37.43 3.43 10 37.50 3.40
300 37.59 3.36 15 37.58 3.37
400 37.61 3.35 20 37.63 3.35
600 37.63 3.35 30 37.68 3.33
1200 37.63 3.35 45 37.71 3.32
2500 37.63 3.35 60 37.73 3.31

Taking low values for the thresholds allows us to keep a limited number of similar patches during
the patch-matching. But if this number is too limited, not enough denoising is being done. As it
is preferable to work with few similar patches, for some values of the threshold this limit on the
number of similar patches is reached for many reference patches. This explains the PSNR stagnation
when the thresholds are increased. On the other hand, if these values increase too much, patches
significantly different from the reference patch will bring spurious details to the final result. Then,
there will be a fall in the PSNR. A good balance must be found. Yet, the breathing space is quite
substantial, and it is possible to get generic thresholds for a wide range of σ’s.

In the original article, a distinction is done for high value of noise, i.e. σ > 40. For high noise,
τhard is increased to a value of 5000. Here is a study of this parameter for high value of noise, with
τhard
2D = Bior1.5 and τwien

2D = 2D DCT:

185



Marc Lebrun

τhard 2500 5000 10000 25000
σ PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE

40 27.27 11.03 27.27 11.03 27.27 11.03 27.27 11.03
50 26.27 12.38 26.30 12.35 26.30 12.35 26.29 12.35
60 25.40 13.69 25.43 13.64 25.44 13.63 25.44 13.63
70 24.61 15.00 24.74 14.77 24.73 14.79 24.73 14.79
80 23.77 16.52 24.21 15.70 24.19 15.73 24.19 15.73
90 23.18 17.67 23.68 16.69 23.71 16.64 23.72 16.62
100 22.81 18.45 23.26 17.51 23.34 17.35 23.35 17.34

In bold: best results for a given σ.

One can see that an increasing of τhard is necessary for a very high noise. But increasing a lot
is useless because there is a stagnation of the result, due to the maximum number Nhard of similar
patches kept. Then once again the value of the original article will be kept for high noise.

3.5 Influence of the Size of the Patches: khard and kwien

The window size of the patches influences the result and must be adapted to σ. Indeed, for low
values of σ the window size must be relatively small to be well adapted to the details, whereas for
large values of σ larger window sizes are better, because most of the details of the image are anyway
lost in noise. Since much of the noise is canceled in the first step, we can work with smaller patches
in the second step.

In the original article, a patch size of khard = kwien = 8 (resp. khard = kwien = 12, but only if
the 2D DCT is chosen as τ2D) is proposed for σ ≤ 40 (resp. σ > 40).

As Bior1.5 can not be applied if the patch size is not a power of 2, τ2D is always chosen equal to
2D DCT for this study.

khard = 4
kwien = 4 kwien = 6 kwien = 8 kwien = 10 kwien = 12

σ PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE

2 45.58 1.34 45.59 1.34 45.59 1.34 45.54 1.35 45.51 1.35
5 39.42 2.73 39.46 2.71 39.45 2.72 39.40 2.73 39.36 2.74
10 34.97 4.55 35.05 4.51 35.05 4.51 35.00 4.53 34.96 4.56
20 30.65 7.48 30.83 7.33 30.86 7.30 30.82 7.34 30.80 7.35
30 28.25 9.86 28.52 9.56 28.58 9.50 28.55 9.53 28.54 9.54
40 26.67 11.83 27.05 11.33 27.13 11.22 27.12 11.23 27.10 11.26
60 24.32 15.51 24.81 14.66 24.96 14.41 24.97 14.39 24.97 14.39
80 22.79 18.49 23.47 17.10 23.60 16.85 23.61 16.83 23.59 16.87
100 21.51 21.43 22.31 19.55 22.51 19.10 22.52 19.08 22.53 19.06
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khard = 8
kwien = 4 kwien = 6 kwien = 8 kwien = 10 kwien = 12

σ PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE

2 45.54 1.35 45.56 1.34 45.55 1.35 45.51 1.35 45.48 1.36
5 39.47 2.71 39.45 2.72 39.43 2.72 39.39 2.74 39.35 2.75
10 35.10 4.48 35.09 4.49 35.06 4.50 35.01 4.53 34.98 4.55
20 31.01 7.18 31.00 7.19 30.96 7.22 30.93 7.25 30.89 7.28
30 28.78 9.28 28.79 9.27 28.77 9.29 28.74 9.32 28.72 9.34
40 27.32 10.98 27.36 10.93 27.34 10.95 27.34 10.95 27.31 10.99
60 25.19 14.03 25.31 13.84 25.36 13.76 25.38 13.73 25.37 13.74
80 24.11 15.89 24.27 15.60 24.27 15.60 24.27 15.60 24.24 15.65
100 22.67 18.75 23.06 17.93 23.17 17.71 23.21 17.62 23.23 17.58

khard = 12
kwien = 4 kwien = 6 kwien = 8 kwien = 10 kwien = 12

σ PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE

2 45.45 1.36 45.50 1.35 45.50 1.35 45.46 1.36 45.43 1.36
5 39.38 2.74 39.39 2.74 39.36 2.74 39.31 2.76 39.28 2.77
10 35.01 4.53 35.00 4.53 34.97 4.55 34.91 4.58 34.87 4.60
20 30.90 7.27 30.87 7.30 30.83 7.33 30.78 7.37 30.74 7.41
30 28.65 9.42 28.64 9.43 28.60 9.47 28.56 9.52 28.52 9.56
40 27.14 11.21 27.16 11.18 27.11 11.25 27.09 11.27 27.04 11.34
60 25.05 14.26 25.19 14.03 25.24 13.95 25.24 13.95 25.22 13.98
80 23.92 16.24 24.07 15.96 24.05 16.00 24.01 16.07 23.95 17.93
100 22.51 19.10 22.92 18.22 23.02 18.01 23.05 17.95 23.06 17.93

In bold: best results for a given σ.

An other influence of the size of the patch is on the processing time. Indeed smaller patches give
faster algorithm. Then, as results for σ > 40 for kwien = 8 or kwien = 12 are really close, we will
prefer to kept kwien = 8 because of the processing time.

3.6 Influence of phard and pwien

In order to speed up the algorithm, it is possible to use a step p in both rows and columns to go from
one reference patch to the next. For example, a step of 3 theoretically divides by 9 the processing
time. In the original article a step of 3 is proposed. The PSNR loss due to this step use is negligible
for large values of noise. Nevertheless, for low noise, it is better to keep a step of 1 or 2. Moreover,
since the second step works on a first basic estimate assumed to be noiseless, or at least with lower
noise, a bigger step for the first step than for the second can be used.
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phard = 1
pwien = 1 pwien = 3 pwien = 5

σ PSNR RMSE PSNR RMSE PSNR RMSE

2 45.59 1.34 45.56 1.34 45.50 1.35
5 39.53 2.69 39.49 2.70 39.41 2.73
10 35.10 4.48 35.07 4.50 34.89 4.59
20 31.01 7.18 30.97 7.21 30.88 7.29
30 28.79 9.27 28.76 9.30 28.66 9.41
40 27.32 10.98 27.31 10.99 27.26 11.05
60 25.37 13.74 25.35 13.77 25.31 13.84
80 24.23 15.67 24.23 15.67 24.21 15.71
100 22.87 18.32 22.87 18.32 22.86 18.35

phard = 3
pwien = 1 pwien = 3 pwien = 5

σ PSNR RMSE PSNR RMSE PSNR RMSE

2 45.58 1.34 45.55 1.35 45.49 1.36
5 39.51 2.70 39.47 2.71 39.39 2.74
10 35.09 4.49 35.05 4.51 34.96 4.56
20 30.99 7.20 30.92 7.25 30.85 7.31
30 28.76 9.30 28.73 9.33 28.64 9.43
40 27.31 10.99 28.29 9.82 27.24 11.08
60 25.44 13.63 25.42 13.66 25.36 13.76
80 24.19 15.74 24.19 15.74 24.17 15.78
100 23.20 17.64 23.19 17.66 23.19 17.66

phard = 5
pwien = 1 pwien = 3 pwien = 5

σ PSNR RMSE PSNR RMSE PSNR RMSE

2 45.54 1.35 45.51 1.35 45.44 1.36
5 39.47 2.71 39.43 2.72 39.34 2.75
10 35.04 4.51 35.00 4.53 34.90 4.59
20 30.93 7.25 30.89 7.28 30.78 7.37
30 28.70 9.37 28.67 9.40 28.55 9.53
40 27.22 11.11 27.20 11.13 27.15 11.20
60 25.31 13.84 25.29 13.87 25.22 13.98
80 24.09 15.92 24.08 15.94 24.07 15.96
100 23.03 17.99 23.02 18.01 23.01 18.03

In bold: best results for a given σ.

As the loss in PSNR is negligible compared to the gain in speed, and for the sake of fidelity to
the original article, we keep p = 3 for both steps in the provided code.

3.7 Summary Table

Here is the summary table with the final chosen values for all parameters, depending on the value of
the noise:
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σ ≤ 40 σ > 40
Nhard 16 16
Nwien 32 32
λhard
3D 2.7 2.7
τhard 2500 5000
τwien 400 3500
khard 8 8
kwien 8 8
phard 3 3
pwien 3 3

4 A Detailed Study of Possible Variants

This part examines some ambiguous choices of the original method and experimentally decides for
the best choice in terms of PSNR. Unless otherwise specified, in the following τhard

2D = τwien
2D refer

to transform thresholds with the 2D DCT, and τhard
1D = τwien

1D to the 1D DCT. Moreover shown
results have been obtained on the image shown on figure 4, and when it is not explicitly said, default
parameter values shown in section 3.7 have been used.

4.1 Variants of the First Denoising Step

Grouping
Distance: To calculate the distance, we can choose between doing it on the patches obtained
after τ3D or directly on the patches of the image. If the 3D transform is an isometry, the
distances are equal, so the distance will be calculated directly on the image.

Normalization: Several classic DCT definitions do not normalize the first coefficient. For
the 1D case, the first coefficient is for example not divided by

√
2. If we do not take into

account this fact during the hard-thresholding, the same threshold will be applied, whatever
the coefficient. The table below shows that this makes a significant difference. Thus, some care
must be taken to use a normalized DCT.

non-normalized DCT normalized DCT
σ PSNR RMSE PSNR RMSE
2 41.70 2.10 41.53 2.14
5 38.02 3.20 38.00 3.21
10 35.10 4.48 35.21 4.42
20 31.65 6.67 32.36 6.14
30 29.13 8.91 30.29 7.80
40 27.21 11.11 28.70 9.36

Fixed parameters:

distance: image, aggregation: with weighting, step: 3, patches: 8× 8, collaborative Filtering: DCT .

Thresholding τhard
2D : In the original article, this threshold only appears from σ > 40 since we

initialized λ2D = 0 for σ ≤ 40. Applying a threshold to the 2D transform coefficients for low
values of σ is useless since there is no improvement after the second step. Moreover for a noise
lower than 5 the results are degraded.
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Collaborative Filtering
For the 3D group, a choice must be done between:

• Simply averaging image patches along the third dimension, which would be a primitive
version of NL-means. In NL-means there also is a weighting of the patches according to
their distance. This simple average solution is denoted by basic NL-means ;

• Applying a hard-thresholding on a 1D transform along the third dimension, or in other
terms apply τ3D as described before, which is denoted Hard Thresholding.

The next table shows the considerable amelioration obtained by adding a thresholded 3D
transform along patches compared to a simple average of the patches in the case where τhard

3D =
τwien
3D = DCT :

Collaborative Filtering
basic NL-means Hard Thresholding

σ PSNR RMSE PSNR RMSE
2 40.96 2.28 41.36 2.18
5 36.40 3.86 37.80 3.28
10 33.54 5.36 34.72 4.68
20 29.54 8.50 31.41 6.86
30 27.01 11.36 28.96 9.09
40 25.04 14.26 27.14 11.21

Fixed parameters:

distance: image, aggregation: with weighting, step: 3, normalized DCT, patches: 8× 8.

Aggregation
During the aggregation the weighting is based on the number of coefficients canceled during
the hard thresholding. However, as shown by the next table, this weighting works, but does
not play such an important part in the PSNR improvement. Nevertheless, artifacts on edges
are visually attenuated by using a weighted aggregation (see figure 2.2).

Without weighting With weighting
σ PSNR RMSE PSNR RMSE
2 41.26 2.20 41.53 2.14
5 37.83 3.27 38.00 3.21
10 34.83 4.62 35.21 4.42
20 32.09 6.33 32.36 6.14
30 30.04 8.02 30.29 7.80
40 28.60 9.47 28.70 9.36

Fixed Parameters:

distance: image, normalized DCT, step: 3, collaborative filtering: DCT , patches: 8× 8.

Because they have many coefficients that are thresholded, the aggregation weighting enforces
the role of homogeneous patches compared to patches containing edges. The issue with this
weighting is: how to choose the right homogeneity indicator?

Another natural indicator would be the standard deviation of the patches. Indeed, for homo-
geneous patches, the standard deviation would be very small, whereas for patches containing
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edges, the standard deviation would be much bigger. Then the weighting would be the inverse
of the standard deviation, which would mean for a 3D group

whard,wien
P =

(
1

N − 1

N∑
k=1

M∑
i=1

(P(P )(xi,k))2
)− 1

2

(12)

where:

• N is the number of similar patches to P ;

• M = khard × khard or M = kwien × kwien.

Then homogeneous patches would have more weights than patches containing edges.
One can also wonder if it would not be better to calculate this standard deviation on the 3D
group rather than on its estimate. In the following we denote:

• H.T. the original weighting in step 1 (i.e., the inverse of the number of coefficients different
from zero during the hard thresholding);

• STD the weighting using the standard deviation processed on the original image;

• STD C.F. the weighting using the standard deviation processed on the estimate of the 3D
group.

The following table compares the new weighting results and shows that H.T. wins:

Without weighting H.T. STD STD C.F.
σ PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE
2 45.13 1.41 45.13 1.41 45.14 1.41 45.13 1.41
5 40.68 2.36 40.71 2.35 40.71 2.35 40.69 2.35
10 37.26 3.50 37.31 3.47 37.29 3.48 37.27 3.49
20 33.58 5.34 33.65 5.30 33.58 5.34 33.57 5.35
30 31.10 7.10 31.17 7.04 31.10 7.11 31.08 7.12
40 29.35 8.68 29.41 8.62 29.35 8.69 29.32 8.71

In bold: best result for a given σ.

Another question is: why is the weight computed for the whole 3D group when a priori every 2D
patch of the 3D group could be given a different weight? This would yield more differentiated
estimates for each pixel.

The answer is experimental. The next table shows that giving a single weight to the whole 3D
group is better than giving a weight to each patch:

2D weighting 3D weighting
σ PSNR RMSE PSNR RMSE
2 45.08 1.42 45.13 1.41
5 40.44 2.42 40.71 2.35
10 36.94 3.63 37.31 3.47
20 33.16 5.61 33.65 5.30
30 30.64 7.49 31.17 7.04
40 28.86 9.19 29.41 8.62
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4.2 Variants of the Second Denoising Step

Wiener Filtering
The second step adds details for large σ values, as illustrated in the experiments below. Using
a Wiener filter in this second step rather than a hard thresholding avoids losing details. Nev-
ertheless the weighting does not visually improve much the image near edges, and the gain in
PSNR is negligible.

Step 1 only Step 1 (fixed) + Step 2 (collaborative filtering)
H. T. + weight. Wiener Filtering W. F. + weighting

σ PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE
2 45.13 1.41 43.18 1.77 45.21 1.40 45.22 1.40
5 40.70 2.35 39.12 2.82 40.86 2.31 40.90 2.29
10 37.31 3.47 35.97 4.06 37.61 3.36 37.66 3.34
20 33.65 5.30 32.75 5.87 34.23 4.96 34.27 4.92
30 31.17 7.04 30.64 7.49 32.01 6.40 32.03 6.38
40 29.41 8.62 29.08 8.96 30.44 7.66 30.47 7.64

Fixed parameters for:
step 1 — distance: image, aggregation: with weighting, collaborative filtering: DCT , patches: 8× 8, step: 3,

step 2 — distance: image, patches: 8× 8, step: 3.

This table shows that the second step is worthwhile and important, especially for large noise
values. However, the weighting in the second step is much less useful than the weighting in
the first step. Using a Wiener filter during the second step and not having to repeat the hard
thresholding shows the importance of this improvement. The gain is important both in PSNR
and visually since it attenuates the noise again and improves/adds details at the same time.

Ideal Wiener Filtering
It is also possible to compare the ordinary Wiener filter with an ideal Wiener filter, which is
obtained when the original noise-free image is taken as oracle reference. This ideal Wiener filter
is the best possible estimate for the second step of this algorithm. It is therefore interesting to
see how far we stand from this ideal estimate with the current one.

Step 1 + Step 2 Ideal Wiener
σ PSNR RMSE PSNR RMSE
2 45.24 1.39 47.81 1.04
5 40.87 2.31 43.19 1.77
10 37.64 3.34 39.98 2.56
20 34.25 4.94 36.99 3.60
30 32.07 6.35 35.21 4.43
40 30.40 7.70 33.71 5.26

Fixed parameters:
step 1 — distance: image, aggregation: with weighting, collaborative filtering: DCT , patches: 8× 8, step: 3,

step 2 — distance: image, patches: 8× 8, step: 3.

As expected, the ideal Wiener filter gives a better result. A Wiener filter in the second step
seems to be some 3 dB away from the ideal result.
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Aggregation
Wien denotes the original weighting in the second step (i.e., the inverse of the empirical Wiener
coefficients norm). As for the first step, would it be possible to improve the weighting by using
the standard deviation instead of the norm of the empirical Wiener coefficients?

H.T. | Wien STD | STD STD C.F. | STD C.F.

σ PSNR RMSE PSNR RMSE PSNR RMSE

2 45.22 1.40 45.12 1.41 45.22 1.40
5 40.89 2.30 40.71 2.35 40.88 2.30
10 37.66 3.34 37.45 3.42 37.64 3.35
20 34.27 4.93 34.10 5.03 34.26 4.94
30 32.03 6.38 31.92 6.46 32.03 6.38
40 30.47 7.64 30.36 7.73 30.48 7.63

In bold: best result for a given σ.

Moreover, it is possible to switch the weightings?

H.T. | STD H.T. | STD C.F. STD | Wien STD C.F. | Wien

σ PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE

2 45.18 1.40 45.23 1.40 45.18 1.40 45.22 1.40
5 40.82 2.32 40.89 2.30 40.81 2.32 40.88 2.30
10 37.57 3.37 37.66 3.34 37.55 3.38 37.64 3.44
20 34.20 4.97 34.28 4.93 34.18 4.98 34.26 4.94
30 32.00 6.40 32.06 6.36 31.96 6.43 32.02 6.39
40 30.43 7.67 30.50 7.61 30.42 7.68 30.47 7.64

In bold: best result for a given σ.

Even though the improvement is minor, it is still possible to improve the result a little bit by
working on the aggregation weighting. The weighting in this second step seems useless. Yet,
better results are obtained by modifying the weighting in the second step. Thus, this study
underlines that it is still possible to gain a bit by working on the weighting in the aggregation
sub-step.

4.3 Influence of the 3D Transform

The choice of the 3D transform (τ2D and τ1D) is crucial. Here are some choices:

• τ2D: This 2D transform is applied on each patch of the 3D group. We have the choice between
a normalized 2D DCT and a bi-orthogonal spline wavelet, where the vanishing moments of the
decomposing and reconstructing wavelet functions are 1 and 5 respectively. We shall denote
by Bior1.5 this bi-orthogonal spline wavelet;

• τ1D: This 1D transform is applied along the third dimension of the 3D group, after the 2D
transform has been applied. We have the choice between a normalized 1D DCT and a Walsh-
Hadamard transform.

In order to clarify the use of those transforms, here is a brief explanation of the practical implemen-
tation of the Bior1.5 and the Walsh-Hadamard transforms, as they are used in this implementation
of BM3D.
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4.3.1 Walsh-Hadamard Transform

This 1D transform is very simple. Since it recursively processes the sums and differences between
pair of values of the vector it is applied to, the size of this vector must be a power of 2. This forces
the number of similar patches in a 3D group to be a power of 2 itself. Let us denote for instance the
first four coordinates of the processed vector by V0 = [a b c d]. The first step computes the sums and
the differences of the pairs of values and regroups them, which leads to

V1 = [(a+ b) (c+ d) (a− b) (c− d)]

The process is iterated on each pair: V h
1 = [(a + b) (c + d)] and V l

1 = [(a− b) (c− d)], which yields
the final vector

Vf = [(a+ b+ c+ d) (a+ b− c− d) (a− b+ c− d) (a− b− c+ d)].

Moreover, in order to keep the norm of the initial vector, it is necessary to normalize Vf by
√
N ,

where N is the vector dimension. In that case, the inverse Walsh-Hadamard transform is exactly the
same as the forward transform.

4.3.2 Bior1.5

To obtain this transform, it is necessary to have four filters, which values were taken from a previous
article by David Donoho [7]:

• low frequency filter for the forward transform:

lpd =

√
2

256
[3; −3; −22; 22; 128; 128; 22; −22; −3; 3]

• high frequency filter for the forward transform:

hpd =

√
2

2
[0; 0; 0; 0; −1; 1; 0; 0; 0; 0]

• low frequency filter for the backward transform:

lpr =

√
2

2
[0; 0; 0; 0; 1; 1; 0; 0; 0; 0]

• high frequency filter for the backward transform:

hpr =

√
2

256
[3; 3; −22; −22; 128; −128; 22; 22; −3; −3]

The 2D transform is separable, first done in column, then in row (or vice versa). Thus it is enough
to explain the 1D transform only. Let us denote by V0 a vector of size N = 2n. Then V l

1 and V h
1 —

which sizes are 2n−1 — are obtained by the following steps.

• First of all, V is periodically extended beyond its boundaries. Denote for instance V0 =
[a b c d e f g h], of size N = 8. Then the extension is

Ṽ0 = [d e f g h a b c d e f g h a b c d e]
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The periodization is done symmetrically in order to have at any position from M/2 to M/2+N
all values of V0 and only those values for the discrete convolution of V0 with lpd or hpd. Here
M is the size of the transform, lpd or hpd. For example, at the first position M/2, the vector
with which the discrete convolution is done has for values: [d e f g h a b c]. If the periodization
was done anti-symmetrically, this same vector would be [f e d c b a b c] and then the value g
would not be represented and the values b and c would be over-represented.

• The discrete convolution of Ṽ0 with lpd and hpd is computed:

∀i ∈ [0, 2n−1 − 1], V l
1 [i] =

9∑
k=0

Ṽ0[2i+ k]lpd[k]

∀i ∈ [0, 2n−1 − 1], V h
1 [i] =

9∑
k=0

Ṽ0[2i+ k]hpd[k]

Then we get V1 = [V h
1 V l

1 ]. The process is only iterated on high frequencies part of the sub-vector
V1: V

h
1 , which size is 2n−1. The backward transform is done in a similar way:

• Let it be started for instance from V2 = [V h
2 V l

2V
l
1 ]. For a sake of clarity, we remind that the

size of V h
2 and V l

2 is 2n−2 and the size of V l
1 is 2n−1 if the size of V2 = 2n.

• V h
2 and V l

2 are periodically extended;

• V h
1 is obtained by the following convolutions:

∀i ∈ [0, 2n−2 − 1], V h
1 [i] =

4∑
k=0

(
hpr[2k]V h

2 [k + i] + hpr[2k + 1]V l
2 [k + i]

)

∀i ∈ [0, 2n−2 − 1], V h
1 [i+ 2n−2] =

4∑
k=0

(
lpr[2k]V h

2 [k + i] + lpr[2k + 1]V l
2 [k + i]

)
• The iteration is done on V1 = [V h

1 V l
1 ].

In order to show the importance of the choice of the transforms τ2D and τ1D, the table 1 contains
the the result of a comparative study led on the different possible choices.

In all cases the size of patches is 8 × 8, except when we use a 2D DCT for σ ≥ 40: in this case
the size is 12 × 12. One reason which could explain the utility of not using the same 2D transform
for both steps is that the artifacts created by the chosen transform in the first step are not enhanced
during the second step, which is the case if the same transform is used twice.

According to those results, the best combination of transforms is τhard
2D = Bior1.5 and τhard

1D =
Hadamard for the step 1, and τwien

2D = 2D DCT and τwien
1D = Hadamard for the step 2.

4.4 Influence of the Kaiser Window

According to the original article, a Kaiser window (with parameter α = 2.0) is applied during the
weighting aggregation in order to reduce border effects which can appear when certain 2D transforms
(typically 2D DCT) are used. Then an element-by-element multiplication is done between the Kaiser
window and the estimated patch during the aggregation of block-wise estimates. Of course, the weight
of each coefficient of the Kaiser window is taken into account.
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The Kaiser window of length k is defined in 1-D by the formula:

Kn =


I0

(
πα
√

1−
(

2n
k−1 − 1

)2)
I0 (πα)

if 0 ≤ n ≤ k − 1

0 otherwise

where I0 is the zeroth order modified Bessel function of the first kind:

I0(x) =
∞∑

m=0

1

m!Γ(m+ 1)

(x
2

)2m
where Γ is the gamma function, a generalization of the factorial function to non-integer values.

Practically k × k Kaiser windows are hard-coded for k = 8 and k = 12. If the size of patches is
different from those values, Kaiser windows are not used (i.e. they are set to 1). Here an example of
a 2-D Kaiser window for k = 8 and α = 2.0 used in our algorithm:

0.1924 0.2989 0.3846 0.4325 0.4325 0.3846 0.2989 0.1924
0.2989 0.4642 0.5974 0.6717 0.6717 0.5974 0.4642 0.2989
0.3846 0.5974 0.7688 0.8644 0.8644 0.7688 0.5974 0.3846
0.4325 0.6717 0.8644 0.9718 0.9718 0.8644 0.6717 0.4325
0.4325 0.6717 0.8644 0.9718 0.9718 0.8644 0.6717 0.4325
0.3846 0.5974 0.7688 0.8644 0.8644 0.7688 0.5974 0.3846
0.2989 0.4642 0.5974 0.6717 0.6717 0.5974 0.4642 0.2989
0.1924 0.2989 0.3846 0.4325 0.4325 0.3846 0.2989 0.1924


One can see that borders of the patch are smoothly decreased and then allow to reduce border

effects during the aggregation part.
Here is a study of the influence of the use of a Kaiser window, by using 8 × 8 patches and

phard = pwien = 3:

With Without
σ PSNR RMSE PSNR RMSE

2 45.61 1.34 45.59 1.34
5 39.44 2.72 39.42 2.72
10 35.05 4.51 35.04 4.52
20 30.97 7.21 30.96 7.22
30 28.76 9.30 28.75 9.32
40 27.27 11.04 27.28 11.03
60 25.43 13.65 25.43 13.64
80 24.23 15.66 24.24 15.64
100 23.13 17.78 23.14 17.77

One can see that the use of the Kaiser window has no influence of the PSNR result. Visually,
there is no difference between using the Kaiser window or not for all values of noise, even near edges.
However, according to the authors of the original BM3D article [4], the use of the Kaiser window is
useful for large values of phard and pwien. But as we are working with patches of size 8× 8, this step
between two references patches can not be greater than 4. Then a step greater than 3 has not been
tested for studying the influence of the Kaiser window.

However, for the sake of fidelity with the original method, we keep the use of a Kaiser window in
the provided code.
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5 Extending BM3D to Color Images

Adapting the algorithm to color images is easy and can be done in the following steps:

1. First a transformation to a luminance-chrominance space from the RGB noisy image is applied.
Y denotes the luminance channel and by U and V the chrominance channels;

2. For each step:

• Grouping is only performed with the Y channel;

• The 3D block built on Y is used for all three channels;

• Collaborative filtering is applied to each channel separately as well as the weighted aggre-
gation.

3. Return to the RGB space by applying the inverse transformation.

Three classic transformations were tested: the YUV transform denoted by the matrix AY UV ,
the YCbCr space transform denoted by AY CbCr and, last but not least, a more intuitive transform
introduced in the original article, Aopp:

 0.30 0.59 0.11
−0.15 −0.29 0.44
0.61 −0.51 −0.10

  0.30 0.59 0.11
−0.17 −0.33 0.50
0.50 −0.42 −0.08

 1
3

1
3

1
3

1
2

0 −1
2

1
4
−1

2
1
4


As those matrix are not normalized, the value of σ in each channel must be carefully adapted

according to these transforms. The compared denoising performance with these different color trans-
forms is shown in the table below:

AY UV AY CbCr Aopp

σ PSNR RMSE PSNR RMSE PSNR RMSE
2 43.43 1.72 43.58 1.69 43.73 1.66
5 36.63 3.76 36.84 3.67 37.14 3.54
10 31.81 6.54 32.03 6.38 32.44 6.09

The choice of the color space transform is therefore important and causes important variations.
In conclusion, also verified on the experiments below, for JPEG images the Aopp transform is the
best choice.

6 Image Denoising Experiments

This experimental study was conducted on noiseless images on which a white Gaussian noise was
added. Overall, they show the excellent performance of the denoising algorithm, giving back definitely
a better image. The results shown below constitute a qualitative study of the influence of each
parameter and of each step on the final result. They demonstrate the very slight improvement
obtained by weighting, the definite visual gain obtained by the second step, and prove that for JPEG
images the Aopp transform is the best choice.

198



An Analysis and Implementation of the BM3D Image Denoising Method

6.1 Grey Level Images

The images hereafter show the result of the weighting for each step of the algorithm:

Step 1, without weighting Step 1 with weighting

Step 2, without weighting Step 2 with weighting

Difference between with and without weighting in both steps.

On the next set of images one can see the results for different values of σ for each step of the
algorithm:

Noisy image σ = 2 Basic estimate Final estimate
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Noisy image σ = 5 Basic estimate Final estimate

Noisy image σ = 10 Basic estimate Final estimate

Noisy image σ = 20 Basic estimate Final estimate

Noisy image σ = 30 Basic estimate Final estimate
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Noisy image σ = 40 Basic estimate Final estimate

6.2 Color Images

The next image has been used to show the importance of the choice of the color space transform:

The following set of sub-images shows the results for different choices of the color space transform
and different values of the noise:

σ = 5, Aopp σ = 5, AY UV σ = 5, AY CbCr
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σ = 15, Aopp σ = 15, AY UV σ = 15, AY CbCr

σ = 30, Aopp σ = 30, AY UV σ = 30, AY CbCr

This new set of sub-images shows the results for the same choice of color space transform and
values of the noise, but on a different detail of the image:

σ = 5, Aopp σ = 5, AY UV σ = 5, AY CbCr
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σ = 15, Aopp σ = 15, AY UV σ = 15, AY CbCr

σ = 30, Aopp σ = 30, AY UV σ = 30, AY CbCr

The images hereafter show for different values of σ the result for each step of the algorithm:

Noisy image σ = 2 Basic estimate Final estimate
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Noisy image σ = 5 Basic estimate Final estimate

Noisy image σ = 10 Basic estimate Final estimate

Noisy image σ = 20 Basic estimate Final estimate

Noisy image σ = 30 Basic estimate Final estimate
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Noisy image σ = 40 Basic estimate Final estimate

7 Comparison with Several Classic and Recent Methods

In order to evaluate the real capacity of this state-of-the-art denoising method, a fair and precise
comparison with other classic and recent methods needs to be done. The other considered methods
are: DCT denoising [15], NL-means [1], TV denoising [8], KSVD [13], and BLS-GSM.

More than a dozen of images have been processed for six values of noise between 2 and 40.
Moreover, an average on every image for each value of sigma is given to help readers make up their
own idea on the relative performance of all methods.

7.1 Images,

These images can be found on the demonstration part of this article on IPOL [10]. They can be
considered noise-free, since their real noise is significantly below 1. They have been obtained by
applying a drastic zoom out on already good quality outdoor images. Indeed, apply a zoom out by
a n factor reduces the noise by a

√
n factor.

Computer Dice Flowers

Girl Traffic Valldemossa
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7.2 Results

The results of the algorithm as described in this article applied on the six images shown in section 7.1
are summarized in the following tables 7.2, 7.2 and 7.2. One can see that the BM3D algorithm gives
the best results for all values of noise on all tested images.

8 Conclusion

This detailed study carried out on BM3D, has led us to the following conclusions:

• This method delivers excellent results.

• The main elements explaining this improvement with respect to former methods are:

– 3D group processing is not only done along the third dimension (this would simply average
similar patches) but also includes the spatial dimensions. This is the main difference with
NL-means.

– The second step retrieves details lost in the first step and improves edge contrast.

– Keeping only a relatively low maximum number of similar patches during the patch-
matching permits to be flexible concerning the choice of values for the parameters (τhard

in particular).

– Denoising all the 2D patches included in P(P ) during the collaborative filtering is a
considerable gain for the aggregation, since it gives to each pixel a large number of good
estimates.

• On the other hand the weighting of these estimates makes little contribution in the end. Visually
useful in the first step, it does not modify the results of the second step in PSNR or even visually
(except in rare cases with special pictorial details).

• As shown in the study, even though the algorithm is a set of very judicious choices, it is still
possible to improve it, particularly the following sub-steps:

– In spite of the fact that theoretically the weighting would be significant, practically it is
not, as shown in our study on the influence of parameters. However, it is still possible to
make it more efficient by using a weighting contingent on the standard deviation of the
3D group estimated in the second step.

– The ideal Wiener filter study proves that it would be possible to get even better results
by taking a more judicious first step, which is even good for the second step treatment.
Any other denoising result could be seen as a basic estimate.

• Despite excellent results this method has several drawbacks worth mentioning:

– There are still many artifacts with high noise (σ > 30).

– This method is more complex, less flexible, and slower than basic methods such the DCT
threshold denoising. It is nonetheless easy to parallelize it.
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– Visually the method often flattens out micro-textured zones and therefore may give poor
visual results, in particular for skin textures. A visual gain would be obtained in that case
by adding back a slight noise after the denoising to recover the grain. For such artifacts
see for example the staircase effects in the Barbara skin:

9 Glossary

Subscripts of variables in bold are semantic subscripts. For clarity the notation has been changed
from the original article. A correspondence table confronting the original notation with the one used
in the present article is provided below.

· hard: designates the first step where collaborative filtering is performed by hard thresholding;
· wien: designates the second step where collaborative filtering is performed by Wiener filtering;
· P(P ) (resp. Pbasic(P )): set of patches from the original image (resp. the basic estimate) similar

to patch P ;
· P(P ): 3D group associated to P(P );
· Phard(P ) (resp. Pwien(P )): estimate of P(P ) due to collaborative filtering in the step 1 (resp.

step 2);
· τ2D: 2D transform applied on each patch of the 3D group P(P ). τhard

2D (resp. τwien
2D ) denotes

this 2D transform for the first (resp. second) step of the algorithm;
· τ1D: 1D transform applied along the third dimension of the 3D group P(P ). τhard

1D (resp. τwien
1D )

denotes this 1D transform for the first (resp. second) step of the algorithm;
· ωhard

P (resp. ωwien
P ): weighting obtained during the aggregation of step 1 (resp. step 2). It only

depends on the reference patch P ;
· P : reference patch;
· Q: any other patch;
· uhard (resp. uwien): estimate of u(x) after collaborative filtering during step 1 (resp. step 2);
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· ubasic (resp. ufinal): estimate of the denoised image at the end of the first step (resp. second
step);
· γ′: hard thresholding operator with threshold σλhard

2D ;
· γ: hard thresholding operator with threshold σλhard

3D .
· khard (resp. kwien): size of the patches used during step 1 (resp. step 2);
· Nhard (resp. Nwien): maximum number of similar patches retained during the grouping part

of step 1 (resp. step 2);
· nhard (resp. nwien): size of the search window of step 1 (resp. step 2) centered on reference

patch P ;
· phard (resp. pwien): step in both rows and columns between two reference patches of step 1

(resp. step 2);
· τhard (resp. τwien): threshold of the maximum distance below which two patches are similar

during step 1 (resp. step 2).

Our notations Original notations
P(P ) ZSht

xR

Pbasic(P ) Y basic
Swie
xR

Phard(P ) Y ht
Sht
xR

Pwien(P ) Y wie
Swie
xR

whard
P wht

xR

wwien
P wwie

xR

P ZxR

Q Z
uhard y(x)
ubasic ybasic

ufinal yfinal

khard Nht
1

kwien Nwie
1

Nhard Nht
2

Nwien Nwie
2

nhard Nht
S

nwien Nwie
S

phard Nht
step

pwien Nwie
step

τhard τht
match

τwien τwie
match

Correspondence with the original BM3D article

Image Credits

R
R

noisy

image
grouping by

block-matching

block-wise estimates

inverse 3D transform

hard thresholding

3D transform

weight

R

R

aggregation

step 1

grouping by

block-matching

block-wise estimates

inverse 3D transform

wiener filtering

3D transform

R

aggregation

step 2

final

wiener

estimate

by M. Lebrun and N. Limare, CC-BY, adapted from the original BM3D article [4]

k

kn

n

overlapping

patches

reference patch P

any other

patch Q

search windows

by M. Lebrun and N. Limare, CC-BY

by H. Bry, Flickr, CC-BY-NC-SA

by A. Buades, CC-BY
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