
Published in Image Processing On Line on 2011–10–24.
Submitted on 2011–00–00, accepted on 2011–00–00.
ISSN 2105–1232 c© 2011 IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
https://doi.org/10.5201/ipol.2011.llmps-scb

2
0
1
5
/
0
6
/
1
6

v
0
.5
.1

IP
O
L

a
rt
ic
le

c
la
ss

Simplest Color Balance

Nicolas Limare1, Jose-Luis Lisani2, Jean-Michel Morel1, Ana Belén Petro2,
Catalina Sbert2

1 CMLA, ENS Cachan, France
(nicolas.limare@cmla.ens-cachan.fr, moreljeanmichel@gmail.com)

2 TAMI, Universitat Illes Balears, Spain
({joseluis.lisani, anabelen.petro, catalina.sbert}@uib.es)

Communicated by Yann Gousseau Demo edited by Jose-Luis Lisani

Abstract

In this paper we present the simplest possible color balance algorithm. The assumption under-
lying this algorithm is that the highest values of R, G, B observed in the image must correspond
to white, and the lowest values to obscurity. The algorithm simply stretches, as much as it can,
the values of the three channels Red, Green, Blue (R, G, B), so that they occupy the maximal
possible range [0, 255] by applying an affine transform ax+b to each channel. Since many images
contain a few aberrant pixels that already occupy the 0 and 255 values, the proposed method
saturates a small percentage of the pixels with the highest values to 255 and a small percentage
of the pixels with the lowest values to 0, before applying the affine transform.

Source Code

The source code (ANSI C), its documentation, and the online demo are accessible at the IPOL
web page of this article1.

Keywords: color balance; affine; saturation; image; improvement; algorithm

1 Introduction

Color balance2 algorithms attempt to correct underexposed images, or images taken in artificial lights
or special natural lights, such as sunset.

There are many sophisticated algorithms in the literature performing color balance or other
color contrast adjustments [1]. The performance of these many color correction algorithms can be
evaluated by comparing their result to the simplest possible color balance algorithm proposed here.
The assumption underlying this algorithm is that the highest values of R, G, B observed in the image

1https://doi.org/10.5201/ipol.2011.llmps-scb
2“Color balance”, Wikipedia, The Free Encyclopedia (accessed January 14, 2010). http://en.wikipedia.org/w/

index.php?title=Color_balance&oldid=336334367

Nicolas Limare, Jose-Luis Lisani, Jean-Michel Morel, Ana Belén Petro, Catalina Sbert, Simplest Color Balance, Image Processing
On Line, 1 (2011), pp. 297–315. https://doi.org/10.5201/ipol.2011.llmps-scb



Nicolas Limare, Jose-Luis Lisani, Jean-Michel Morel, Ana Belén Petro, Catalina Sbert

must correspond to white, and the lowest values to obscurity. If the photograph is taken in darkness,
the highest values can be significantly smaller than 255. By stretching the color scales, the image
becomes brighter. If there was a colored ambient light, for example electric light where R and G
dominate, the color balance will enhance the B channel. Thus the ambient light will lose its yellowish
hue. Although it does not necessarily improve the image, the simplest color balance always increases
its readability.

The algorithm simply stretches, as much as it can, the values of the three channels Red, Green,
Blue (R, G, B), so that they occupy the maximal possible range [0, 255]. The simplest way to do so
is to apply an affine transform ax+ b to each channel, computing a and b so that the maximal value
in the channel becomes 255 and the minimal value 0.

However, many images contain a few aberrant pixels that already occupy the 0 and 255 values.
Thus, an often spectacular image color improvement is obtained by “clipping” a small percentage of
the pixels with the highest values to 255 and a small percentage of the pixels with the lowest values
to 0, before applying the affine transform. Notice that this saturation can create flat white regions
or flat black regions that may look unnatural. Thus, the percentage of saturated pixels must be as
small as possible.

The proposed algorithm therefore provides both a white balance and a contrast enhancement.
However, note that this algorithm is not a real physical white balance: It won’t correct the color
distortions of the capture device or restore the colors or the real-world scene captured as a photog-
raphy. Such corrections would require a captured sample of known real-world colors or a model of
the lighting conditions.

2 Algorithm

The naive color balance is a simple pixel-wise affine transform mapping the input minimum and
maximum measured pixel values to the output space extrema. As we explained before, a potential
problem with this approach is that two aberrant pixel colors reaching the color interval extrema are
enough to inhibit any image transform by this naive color balance.

A more robust approach consists in mapping two values Vmin and Vmax to the output space
extrema, Vmin and Vmax being defined so that a small user-defined proportion of the pixels get values
out of the [Vmin, Vmax] interval.

3 Implementation

Our input image is an array of N numeric values in the [min, max] interval. The output is a corrected
array of the N updated numeric values. Multiple channel images are processed independently on
each channel with the same method.

We will perform a color balance on this data where we have saturated a percentage s1% of the
pixels on the left side of the histogram, and a percentage s2% of pixels on the right side; for example,
s1 = 0 and s2 = 3 means that this balance will saturate no pixels at the beginning and will saturate
at most N × 3/100 at the end of the histogram. We can’t ensure that exactly N × (s1 + s2)/100
pixels are saturated because the pixel value distribution is discrete.

3.1 Sorting Method

Vmin and Vmax, the saturation extrema, can be seen as quantiles of the pixel values distribution, e.g.
first and 99th centiles for a 2% saturation.

298



Simplest Color Balance

Thus, an easy way to compute Vmin and Vmax is to sort the pixel values, and pick the quantiles
from the sorted array. This algorithm would be described as follows:

1. Sort the pixel values. The original values must be kept for further transformation by the
bounded affine function, so the N pixels must first be copied before sorting.

2. Pick the quantiles from the sorted pixels. With a saturation level s = s1 + s2 in [0, 100[,
we want to saturate N × s/100 pixels, so Vmin and Vmax are taken from the sorted array at
positions N × s1/100 and N × (1− s2/100)− 1.

3. Saturate the pixels. According to the previous definitions of Vmin and Vmax, the number of
pixels with values lower than Vmin or higher than Vmax is at most N × s/100. The pixels (in
the original unsorted array) are updated to Vmin (resp. Vmax) if their value is lower than Vmin

(resp. higher than Vmax).

4. Affine transform. The image is scaled to [min, max] with a transformation of the pixel values
by the function f such that f(x) = (x− Vmin)× (max−min)/(Vmax − Vmin) + min.

3.2 Histogram Method

Sorting the N pixel values requires O(N log(N)) operations and a temporary copy of these N pixels.
A more efficient implementation is achieved by a histogram-based variant, faster (O(N) complexity)
and requiring less memory (O(max−min) vs. O(N)).

1. Build a cumulative histogram of the pixel values. The cumulative histogram bucket
labeled i contains the number of pixels with value lower or equal to i.

2. Pick the quantiles from the histogram. Vmin is the lowest histogram label with a value
higher than N × s1/100, and the number of pixels with values lower than Vmin is at most
N × s1/100. If s1 = 0 then Vmin is the lowest histogram label, i.e. the minimum pixel value
of the input image. Vmax is the label immediately following the highest histogram label with
a value lower than or equal to N × (1− s2/100), and the number of pixels with values higher
than Vmax is at most N × s2/100. If s2 = 0 then Vmax is the highest histogram label, i.e. the
maximum pixel value of the input image.

3. Saturate the pixels.

4. Affine transform. Same as for the sorting method.

3.3 Pseudo-code

The following algorithm (Algorithm 1) applies to images with pixel values in the 8 bit integer space
(min = 0, max = 255) with one color channel only. See the following remarks for higher-precision
images. Hereafter is the basic implementation, refinements are available in the provided source code.

In Algorithm 1 image[i] are the pixel values, N is the number of pixels, histo is an array of 256
unsigned integers, with a data type large enough to store N , initially filled with zeros. The arrays
indexes start at 0.

299



Nicolas Limare, Jose-Luis Lisani, Jean-Michel Morel, Ana Belén Petro, Catalina Sbert

Algorithm 1: Simplest Color Balance algorithm.

// build the cumulative histogram
for i = 0, · · · , N − 1 do

histo[image[i]] := histo[image[i]] + 1

for i = 1, · · · , 255 do

histo[i] := histo[i] + histo[i− 1]

// search vmin and vmax

vmin := 0
while histo[vmin + 1] ≤ N × s1/100 do

vmin := vmin + 1

vmax := 255− 1
while histo[vmax − 1] > N × (1− s2/100) do

vmax := vmax − 1

if vmax < 255− 1 then

vmax := vmax + 1

// saturate the pixels
for i = 0, · · · , N − 1 do

if image[i] < vmin then

image[i] := vmin

if image[i] > vmax then

image[i] := vmax

// rescale the pixels
for i = 0, · · · , N − 1 do

image[i] := (image[i]− vmin)× 255/(vmax − vmin)

3.4 Higher Precision

For 16 bit integer pixel values, the histogram array method can be used, and needs 65.536 buckets
(256 Kb on a 32 bit system, 512 Kb on a 64 bit system, to be compared with the 128 Kb used for a
256× 256 image). But the determination of vmin and vmax would benefit of a faster search method,
like bisection.

For 32 bit integer pixel values, the histogram size (4.294.967.296 buckets) becomes a problem and
can’t be properly handled in memory. We can switch to a multi-step process:

• build an histogram with buckets containing more than one single pixel value, such that the
histogram size is limited (256 buckets for example, each for a pixel value interval);

• search for the buckets containing vmin and vmax;

• restart the histogram construction and search on a subdivision of these buckets.

If an exact precision isn’t required, the latest refinements can be skipped.
For floating-point data, the pixel value can no longer be used as an array index, and we must use

either a sorting method, or a multi-step method with a histogram containing intervals (not values),
then a sorting method on the buckets containing vmin and vmax.

Note that the proposed pseudo-code can also be used for images with integer pixel values (as
produced by common image capture devices and found in common image formats) stored as floating-

300



Simplest Color Balance

point data (often desired for image processing), by converting the pixel value image[i] to its integer
equivalent while filling the histogram.

3.5 Special Cases

If the image is constant (all pixels have the same value v), then, according to the described imple-
mentation and pseudo-code, the histogram values are 0 for labels lower than v, and N for labels
higher or equal to v, and then for any value of s1 and s2 , vmin = v, vmax = v.

This (vmin = vmax) can also happen for non-constant images, the general case being images with
less than N × s1/100 pixels with values below or with more than N × s2/100 above a median value
v. This case can be handled by setting all the pixels to the value v.

4 Color Images

4.1 RGB Color Balance

For RGB color images we can apply the algorithm independently on each channel. We call this
algorithm RGB color balance. The color of the pixels is modified in the process because each RGB
channel is transformed by an affine function with different parameters and the saturation does not
occur on the three RGB channels together. This can be desirable to correct the color of a light source
or filter, but in some applications we may want to maintain the colors of the input image.

In that case, many solutions are possible, depending on how we define the ”color” to be maintained
(hue, chroma, R/G/B ratio) and what we want to correct with this algorithm (lightness, brightness,
intensity, luma, ...). A discussion about these color correction variants will be published in a later
article, and we present hereafter the simplest version.

4.2 IRGB Intensity Balance

The goal of IRGB intensity balance is to correct the intensity of a color image without modifying the
R/G/B ratio of the pixels. We first compute the gray level intensity (I = (R+G+B)/3), then this
intensity is balanced and transformed into I ′ by the affine transformation with saturation. Finally,
for each pixel, the three color channels are multiplied by I ′/I.

But the RGB color cube is not stable by this transformation. Multiplied by I ′/I, some RGB
components will be larger than the maximum value. This is corrected in a post-processing step by
a projection on the RGB cube while maintaining the R/G/B ratio, i.e. replacing pixels out of the
RGB cube by the intersection of the RGB cube surface and the segment connecting the (0,0,0) point
and the color of the pixels to be corrected. This projection has three consequences:

• commutativity : computing the intensity I of an image after correction by this algorithm doesn’t
give the same result as computing the intensity of an image and correcting this intensity by
the affine balance algorithm with saturation described at the beginning of this article;

• monotonicity : some pixels with intensities I1 < I2 can be transformed into pixels with intensi-
ties I ′

1
> I ′

2
if the second pixels has to be corrected by projection;

• precision: because the projection step is darkening the projected pixels, less than s2% of the
pixels will have their final intensity saturated to the maximum value.

Moreover, adjusting the saturation on the average I of the three RGB channels means that, unless the
three channels are equal (gray image), before the projection less than s2% of the pixels are saturated

301



Nicolas Limare, Jose-Luis Lisani, Jean-Michel Morel, Ana Belén Petro, Catalina Sbert

to the maximum value on the three RGB channels while more than s2% of the pixels are saturated
to the maximum value on at least one of the RGB channels.

Better solutions to achieve a balance of a color image without these problems require the use of
other color spaces and are beyond the scope of this article.

5 Online Demo

With the online demonstration3 it is possible to test this algorithm on any image and set the desired
percentage of saturated pixels. This demo presents the algorithm applied independently to the R,
G and B channels (RGB color balance), and to the intensity channel while maintaining the R/G/B
ratio (IRGB intensity balance).

For gray-scale images, these two versions are identical to applying the simple algorithm to the
gray level.

6 Source Code

An ANSI C implementation4 is provided and distributed under the GPL license.
This source code includes two implementations of the color balance: an 8-bit integer implemen-

tation based on the histogram algorithm with O(N) complexity and a lookup table for fast affine
transform is used for the RGB color balance; and a generic floating-point implementation based on
qsort(), with O(N log(N)) algorithmic complexity is used for the IRGB intensity balance.

The histogram code is used for the online demo. The source code history and future releases are
available on an external page5.

7 Examples

In figures 1 to 9 we show, from left to right, the original image, and its result by RGB color balance
with s = 0%, 1%, 2% and 3% of the pixels saturated, half at the beginning of the histogram and
half at the end of the histogram (that is, s1 = s2 = s/2). In these examples, the algorithm has been
applied independently on each color channel. It is quite apparent that some saturation is almost
always necessary, but that the needed percentage is variable.

3https://doi.org/10.5201/ipol.2011.llmps-scb
4https://doi.org/10.5201/ipol.2011.llmps-scb
5http://dev.ipol.im/git/?p=nil/simplest_color_balance.git

302



Simplest Color Balance

Figure 1: Top row, from left to rigth: original image, results of the algorithm with s = 0% and
s = 1%. Third row, results of the algorithm with s = 2% and s = 3%. Below each image its RGB
histogram is displayed. Here, the 0% saturation already gives a good result, and 1% is optimal.
Notice how the orange ambient light has been corrected to a more daylight image.

303



Nicolas Limare, Jose-Luis Lisani, Jean-Michel Morel, Ana Belén Petro, Catalina Sbert

Figure 2: Top row, from left to rigth: original image, results of the algorithm with s = 0% and
s = 1%. Third row, results of the algorithm with s = 2% and s = 3%. Below each image its intensity
histogram is displayed. In this case a white thin rim surrounds the image. This rim occupies more
than 2% of the image. Hence, the 3% threshold is the right one.

304



Simplest Color Balance

Figure 3: Top row, from left to rigth: original image, results of the algorithm with s = 0% and
s = 1%. Third row, results of the algorithm with s = 2% and s = 3%. Below each image its RGB
histogram is displayed. Like the preceding ones, this image in completely unnatural blue light is often
used to illustrate color balance, or color contrast adjustment algorithms. A trivial affine transform
corrects it adequately by removing the bluish effect. A still more contrasted result is obtained by
saturating only 1%.

305



Nicolas Limare, Jose-Luis Lisani, Jean-Michel Morel, Ana Belén Petro, Catalina Sbert

Figure 4: Top row, from left to rigth: original image, results of the algorithm with s = 0% and
s = 1%. Third row, results of the algorithm with s = 2% and s = 3%. Below each image its RGB
histogram is displayed. As in the previous example, this image in completely unnatural blue light
is often used to illustrate color balance, or color contrast adjustment algorithms. A trivial affine
transform corrects it adequately by removing the bluish effect. A still more contrasted result is
obtained by saturating only 1%.

306



Simplest Color Balance

Figure 5: Top row, from left to rigth: original image, results of the algorithm with s = 0% and
s = 1%. Third row, results of the algorithm with s = 2% and s = 3%. Below each image its RGB
histogram is displayed. Even a good quality image can benefit from a moderate 1% color balance.
A contrast improvement is noticeable when switching between the 0% and 1% versions.

307



Nicolas Limare, Jose-Luis Lisani, Jean-Michel Morel, Ana Belén Petro, Catalina Sbert

Figure 6: Top row, from left to rigth: original image, results of the algorithm with s = 0% and
s = 1%. Third row, results of the algorithm with s = 2% and s = 3%. Below each image its RGB
histogram is displayed. There is no real good solution for this sunset image. The colors are strongly
blue/orange and will stay so. By pushing too far the saturation (3%), the orange pixels diminish
and a completely unnatural blue color is created.

308



Simplest Color Balance

Figure 7: Top row, from left to rigth: original image, results of the algorithm with s = 0% and
s = 1%. Third row, results of the algorithm with s = 2% and s = 3%. Below each image its
RGB histogram is displayed. This image has been used in recent papers on color perception theory
(Retinex).

309



Nicolas Limare, Jose-Luis Lisani, Jean-Michel Morel, Ana Belén Petro, Catalina Sbert

Figure 8: Top row, from left to rigth: original image, results of the algorithm with s = 0% and
s = 1%. Third row, results of the algorithm with s = 2% and s = 3%. Below each image its RGB
histogram is displayed. This image, as the one in the previous figure, has been used in recent papers
on color perception theory (Retinex).

310



Simplest Color Balance

Figure 9: Top row, from left to rigth: original image, results of the algorithm with s = 0% and
s = 1%. Third row, results of the algorithm with s = 2% and s = 3%. Below each image its RGB
histogram is displayed. This image, as the ones in the previous figures, has been used in recent
papers on color perception theory (Retinex).

311



Nicolas Limare, Jose-Luis Lisani, Jean-Michel Morel, Ana Belén Petro, Catalina Sbert

7.1 Examples on Gray-scale Images

We present two examples on grayscale images. The algorithm is the same, since the three channels
are equal. In the first image (Figure 10) we observe a small improvement of the image. In the second
(Figure 11), the improvement is more significant, but we lose the little details in the image.

Figure 10: Top row: left, original image; right, result of the algorithm with s = 3%. Bottom,
intensity histograms of the above images.

Figure 11: Top row: left, original image; center, result of the algorithm with s = 1%; right, result of
the algorithm with s = 3%. Bottom, intensity histograms of the above images.

312



Simplest Color Balance

7.2 Examples with Little or no Improvement

Figures 12 to 14 show examples where little improvement is achieved by using the simplest color
balance algorithm.

Figure 12: Top row, from left to rigth: original image, results of the algorithm with s = 0% and
s = 1%. Third row, results of the algorithm with s = 2% and s = 3%. Below each image its RGB
histogram is displayed. Here, it is probably best not to apply any color balance: the colors become
quickly unearthly.

313



Nicolas Limare, Jose-Luis Lisani, Jean-Michel Morel, Ana Belén Petro, Catalina Sbert

Figure 13: Top row: left, original image; right, result of the algorithm with s = 3%. Bottom, RGB
histograms of the above images. The back-lighting problem has no simple solution.

Figure 14: Top row: left, original image; right, result of the algorithm with s = 3%. Bottom, RGB
histograms of the above images. As in the previous image, the back-lighting problem has no simple
solution.

314



Simplest Color Balance

Image Credits

Courtesy Philip Greenspun6

Kobus Barnard, SFU Computational Vision Laboratory7

Noclip, Wikimedia Commons8, public domain

CC-BY Ana Belén Petro

Frank Gualtieri, Wikimedia Commons9, public domain

Daniel Schwen, Wikimedia Commons10, GFDL/CC-BY-SA

Drew Streib, Flickr11, CC-BY-NC

standard test image

References

[1] Marc Ebner, “Color Constancy”, John Wiley & Sons, 2007, p. 104. http://dx.doi.org/10.1002/
9780470510490

6http://philip.greenspun.com/
7http://www.cs.sfu.ca/~colour/data/
8http://commons.wikimedia.org/wiki/File:National_Cathedral_Sanctuary_Panorama.jpg
9http://commons.wikimedia.org/wiki/File:Lily-M7292-As-shot-and-manual.jpg

10http://commons.wikimedia.org/wiki/File:Staten_Island_Ferry_terminal_crop.jpg
11http://www.flickr.com/photos/dtype/145118964/

315


	Introduction
	Algorithm
	Implementation
	Sorting Method
	Histogram Method
	Pseudo-code
	Higher Precision
	Special Cases

	Color Images
	RGB Color Balance
	IRGB Intensity Balance

	Online Demo
	Source Code
	Examples
	Examples on Gray-scale Images
	Examples with Little or no Improvement


