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The new state of the art:

It is by now possible to recognize a solid object in a digital
image, no matter what the angle and the distance, up to
limits that only depend on resolution.
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In this pair: A very large transition tilt (extreme angle).
The transition tilt will be defined later.
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90 correct matches, 4 outliers. The matches were obtained
by the Affine SIFT method (ASIFT), a variant of the SIFT
method.
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Camera Model

The projective camera model u = S1G1Au0.

- A is a planar projective transform (homography) .

- G1 is an anti-aliasing gaussian filter.

- S1 is the CCD sampling. Shannon condition satisfied: u = S1G1Au0 −→
u = G1Au0.
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Affine Simplification

If the object’s shape is locally smooth, local deformations in a
single view can be approximated by several different local affine
transforms.

Affine transforms map rectangles to parallelograms.
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Geometric Interpretation of the Six Affine Parameters

u = S1G1Au0.

A is an affine map:
(

x

y

)
→

[
a b

c d

](
x

y

)
+

(
e

f

)
A =

[
a b

c d

]
= HλR1(ψ)TtR2(φ) = λ

[
cosψ − sinψ

sinψ cosψ

] [
t 0

0 1

] [
cosφ − sinφ

sinφ cosφ

]

• φ: longitude angle between optical axis and a
fixed vertical plane.

• θ = arccos(1/t): latitude angle between optical
axis and the normal to the image plane.
Tilt t > 1 ↔ θ ∈ [0◦, 90◦].

• ψ: rotation angle of camera around optical axis.

• λ: zoom parameter.

• T = (e, f)T : translation, not presented here.
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Transition Tilts

Both compared images are usually slanted views. The transition tilt
quantifies the tilt between two such images.

Definition Consider two views of a planar image, u1(x, y) =
u(A(x, y)) and u2(x, y) = u(B(x, y)) where A and B are two linear
maps such that BA−1 is not a similarity. We call transition tilt
τ(u1, u2) and transition rotation φ(u1, u2) the unique parameters
such that

BA−1 = HλR1(ψ)TτR2(φ). (1)
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Properties of Transition Tilts

• The transition tilt is symmetric, i.e., τ(u1, u2) = τ(u2, u1);

• The transition tilt only depends on the absolute tilts and on the
longitude angle difference: τ(u1, u2) = τ(t, t′, φ− φ′);

• One has t′/t ≤ τ ≤ t′t, assuming t′ = max(t′, t);

• The transition tilt is equal to the absolute tilt: τ = t′, if the
other image is in frontal view (t = 1).
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High Transition Tilts

τ = 36 ⇒ θ = 88.41◦
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High Transition Tilts

τ < 2 (SIFT) τ < 10 (MSER) τ < 40 (ASIFT)

θ = 80◦
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Affine Invariance: Simulation v.s. Normalization

• Simulation.

– all 6 parameters impossible, e.g. 106.

• Normalization.

u = G1Au0, v = G1u0 ⇒ u = Av ?

Non-commutation: in general G1Au0 6= AG1u0

– Translation T and rotation R can be normalized.
Strong commutation with blur ⇒ normalization possible.

– Zoom Hλ and tilt T cannot be normalized stricto sensu.
Weak commutation with blur ⇒ simulation necessary.
HλG1 = G1/λHλ ⇒ Hλv 6= u
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Affine Invariance: Simulation v.s. Normalization
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State-of-the-art

• SIFT (Scale-Invariant Feature Transform) [Lowe 99, 04]:

– Rotation and translation are normalized.

– Zoom is simulated in the scale space.

– No treatment on latitude and longitude: modest robustness
τmax < 2.

• MSER (Maximally Stable Extremal Region) [Matas et al. 02]
and LLD (Level Line Descriptor) [Musé et al. 06]

– Attempt to normalize all the parameters.

– Weakness: limited affine invariance τmax < 10, not scale
invariant, small number of features.

• Other methods: Harris-Affine, Hessian-Affine [Mikolajczyk and
Schmid 04]
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State-of-the-art

• Other methods: [Baumberg, 00; Tuytelaars and Van Gool, 00, 04;

Mikolajczyk and Schmid, 02, 04, 05; Schaffalitzky and Zisserman,

02; Brown and Lowe, 02, S. Belongie, J. Malik, and J. Puzicha, 02,

Kadir, Zisserman, Brady, 04, Ke and Sukthankar, 04]

• Evaluations: [Mikolajczyk and Schmid 03, 05, K. Mikolajczyk, T.

Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T.

Kadir, and L. Van Gool, 05]

– SIFT-based descriptors perform best.

– MSER outperforms other affine invariant detectors such as
Hessian Affine and Harris Affine.
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SIFT: Scale Invariant Features Transform

• the initial digital image is S1G1Au0, A is any similarity, u0 is
the underlying infinite resolution planar image;

• at all scales σ > 0, the SIFT method computes u(σ, ·) =
GσG1Au0 and “key points” (σ,x), namely scale and space
extrema of ∆u(σ, ·);

• the blurred u(σ, ·) image is sampled around each key point at a
pace proportional to

√
1 + σ2;

• directions of the sampling axes are fixed by a dominant direction
of ∇u(σ, ·) in a σ-neighborhood of the key point;

• this yields rotation, translation and scale invariant samples: the
4 parameters of A have been eliminated!;

• the final SIFT descriptor keeps only orientations of the gradient
to gain invariance w.r. light conditions.
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SIFT Feature Points
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SIFT: Scale Invariant Features Transform

Each key-point is associated a square image patch whose size is pro-

portional to the scale and whose side direction is given by the assigned

direction. Example of a 2 × 2 descriptor array of orientation histograms

(right) computed from an 8 × 8 set of samples (left). The orientation

histograms are quantized into 8 directions and the length of each arrow

corresponds to the magnitude of the histogram entry.
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Affine-SIFT (ASIFT) Overview

• Simulate latitude, longitude to achieve full affine invariance.

• Simulated images are compared by a rotation-, translation-
and zoom-invariant algorithm, e.g., SIFT. (SIFT normalizes
translation and rotation and simulates zoom.)
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Inverting Tilts

Definition Given t > 1, the tilt factor, define

• the geometric tilt : T xt u0(x, y) := u0(tx, y).
In the y direction, T yt u0(x, y) := u0(x, ty).

• the simulated tilt (taking into account camera blur): Txt v :=
T xt Gx√

t2−1
∗x v.

In the y direction, Tyt v := T yt Gy√
t2−1

∗y v.

• Main Formula
For t ≥ 1, TytG1T

x
t = G1Ht.

Geometric tilts in x are reversed by simulated tilts in y

up to a zoom-out scale change.
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ASIFT Algorithm

1. Apply a dense set of rotations to both images u and v.

2. Apply in continuation a dense set of simulated tilts Txt to all
rotated images.

3. Perform a SIFT comparison of all pairs of resulting images.

Notice that by the relation

TxtR
(π

2

)
= R

(π
2

)
Tyt , (1)

ASIFT simulates tilts in the y direction, up to a rotation.
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Consistency of ASIFT: reduction from ASIFT to SIFT

Theorem 1 Let u = G1AT1u0 and v = G1BT2u0 be two images
obtained from an infinite resolution image u0 by cameras at infinity
with arbitrary position and focal lengths. Then ASIFT, applied with
a dense set of tilts and longitudes, simulates two views of u and v
that are obtained from each other by a translation, a rotation, and
a camera zoom. As a consequence, these images match by the SIFT
algorithm.
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Proof that ASIFT works

BA−1 = HλR1T
x
t R2.

Compare: u = G1u0, v = G1R1T
x
t R2Hλu0.

Applying R−1
1 to v yields v → v′ = G1T

x
t R2Hλu0.

Then revert T xt by applying the simulated tilt in the y direction to
v′:
Ty := T yt Gy√

t2−1
∗y. Indeed (main formula):

TytG1T
x
t = G1Ht.

Thus by application of Ty to v′ we get

v′ → G1HtR2Hλu0 = G1HtλR2u0,

which is SIFT equivalent to u.
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Parameter Sampling Range

• Longitude angle φ ∈ [0, π).

– R1(ψ)TtR2(φ+ π) = R1(ψ + π)TtR2(φ).

• Tilt t = 1/ cos θ ∈ [1, tmax].

– Physical limitation: planar and Lambertian.

– tmax = 4
√

2 obtained experimentally.

– The resulting τmax = 32.
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Parameter Sampling Range

t = 3 (θ = 70.5◦), 151 correct ASIFT matches.
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Parameter Sampling Range

t = 5.2 (θ = 78.9◦), 12 correct ASIFT matches.
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Parameter Sampling Range

t = 8 (θ = 82.8◦), 0 correct match.
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Parameter Sampling Range

t = 3.8 (θ = 74.7◦), 116 correct ASIFT matches.
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Parameter Sampling Range

t = 5.6 (θ = 79.7◦), 26 correct ASIFT matches.
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Parameter Sampling Range

t = 8 (θ = 82.8◦), 0 ASIFT match.
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Parameter Sampling Step: 4t

• t = 1/ cos θ, θ is the latitude angle.

• θ sampled with higher precision when θ → 90◦.

• Geometric sampling of t: 4t = tk+1/tk.

• 4t =
√

2 is obtained experimentally:
compare u = Tt1u0 and v = Tt2u0 with SIFT.

t 1
√

2 2 2
√

2 4 4
√

2

θ 0◦ 45◦ 60◦ 69.3◦ 75.5◦ 79.8◦
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Parameter Sampling Step: 4φ
• φ: longitude angle.

• φ sampled with higher precision when θ → 90◦:
t ↑⇒ 4φ ↓.

• Arithmetical sampling of φ: 4φ = φk+1 − φk.

• 4φ = 2× 36◦

t = 72◦

t is obtained experimentally:
compare u = TtR1(φ)u0 and v = Ttu0 with
SIFT.
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Parameter Sampling

Perspective view View from the zenith
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Acceleration: Multi-resolution ASIFT

1. ASIFT on low-resolution images (r × r sub-sampled) .

2. ASIFT on high-resolution images obtained with the M best
affine transforms (only in case of success in 1.).
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ASIFT Complexity

• Complexity proportional to (area of query) × (searched area).

• Image area proportional to number of simulated tilts.

– t = 2k/2, k = 0, . . . ,K.

– φ ∈ [0◦, 180◦), 4φ = 72◦

t : |{φ(t)}| ∼ t.

– At tilt t, image area ∼ 1/t.

• Example: tmax = 4
√

2 (i.e. K = 5), r × r = 3× 3 subsampling.

– Image area on one side:

1 +K 180◦

72◦

r2
= 1.5× original image

– One sided ASIFT (tilts simulated on query only): total
complexity = 1.5×SIFT, τmax = 4

√
2 ' 5.6.

– Two sided ASIFT (tilts simulated on query and searched
images): total complexity = (1.5)2× SIFT = 2.25 SIFT,
τmax = 32.
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Experiments: Image Matching

Zoom change. Number of correct matches: ASIFT (left)—222; SIFT (middle)—87;

MSER (right)—4.
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Experiments: Image Matching

Frontal v.s. −45◦ angle, zoom ×1: absolute tilt t = 2 (middle), t < 2 (left part), t > 2

(right part). Number of correct matches: ASIFT (left)—624; SIFT (middle)—236;

MSER (right)—11.
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Experiments: Image Matching

Frontal v.s. 75◦ angle, zoom ×1: absolute tilt t = 4 (middle), t < 4 (left part), t > 4

(right part). Number of correct matches: ASIFT (left)—202; SIFT (middle)—15;

MSER (right)—5.
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Experiments: Image Matching

Frontal v.s. −80◦ angle, zoom ×10: absolute tilt t = 5.8. Number of correct matches:

ASIFT (left)—75; SIFT (middle)—1; MSER (right)—2.



67

Experiments: Image Matching

Correspondences between the magazine images taken with absolute tilts t1 = t2 = 2

with longitude angles φ1 = 0◦ and φ2 = 50◦, transition tilt τ = 3. Number of correct

matches: ASIFT (left)—881; SIFT (middle)—2; MSER (right)—87.
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Experiments: Image Matching

Correspondences between the magazine images taken with absolute tilts t1 = t2 = 4

with longitude angles φ1 = 0◦ and φ2 = 90◦, transition tilt τ = 16. Number of

correct matches: ASIFT (left)—88; SIFT (middle)—1; MSER (right)—9.
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Experiments: Image Matching

Graffiti 1 vs 6.

Transition tilt: τ ≈ 3.2.

Number of correct matches:

ASIFT (top)—721;

SIFT (middle)—0;

MSER (bottom)—70.
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Experiments: Image Matching

Images proposed by Matas et al.

Number of correct matches:

ASIFT (top)—254;

SIFT (middle)—10;

MSER (bottom)—22.
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Experiments: Image Matching

Road signs.

Transition tilt: τ ≈ 2.6.

Number of correct matches:

ASIFT (top)—50;

SIFT (middle)—0;

MSER (bottom)—1.
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Experiments: Image Matching

Parkings.

Transition tilt: τ ≈ 15.

Number of correct matches:

ASIFT (top)—78;

SIFT (middle)—0;

MSER (bottom)—0.
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Experiments: Image Matching

Ecole Polytechnique.

Transition tilt τ = 2.4. Number of correct matches: ASIFT (left)—103; SIFT

(middle)—13; MSER (right)—4.
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Experiments: Image Matching

Stump. Transition tilt τ = 2.6. Number of correct matches: ASIFT (left)—168;

SIFT (middle)—1; MSER (right)—6.



75

Experiments: Image Matching

Pentagon. Transition tilt τ ≈ 2.5.

Number of correct matches: ASIFT (left)—378, SIFT (middle)—6, MSER(right)—17.
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Experiments: Image Matching

Statue of Liberty. Transition tilt τ ∈ [1.3,∞).

Number of correct matches: ASIFT (left)—22, SIFT (right)—1.
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Experiments: Image Matching

Left: flag. ASIFT (shown)—141, SIFT—31, MSER—2.

Right: SpongeBob. ASIFT (shown)—370, SIFT—75, MSER—4.
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Experiments: Object Tracking
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Symmetry Detection in Perspective

Symmetry detection = image comparison with its flipped version.

ASIFT SIFT MSER
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Summary: fully affine-invariant image comparison

• Camera interpretation of affine space: 6 parameters.

• High transition tilts.

• Simulation v.s. normalization.

• Simulate scale, longitude and latitude.

• Normalize translation and rotation.

• Mathematical proof: fully affine-invariant.

• Sample the camera hemisphere (longitude and latitude).

• Multi-resolution acceleration.

• Reasonably small complexity.

• State-of-the-art results.
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Website and Online Demo: try ASIFT with your images!

• http://www.cmap.polytechnique.fr/∼yu/research/ASIFT/demo.html

For more information,

Google ASIFT

http://www.cmap.polytechnique.fr/~yu/research/ASIFT/demo.html

