ASIFT:

A New Framework for Fully Affine Invariant Image Comparison

Guoshen Yu, Ecole Polytechnique, France

> **Jean-Michel Morel** ENS Cachan, France

For more information, Google ASIFT

Do they contain the same objects?

Challenge: a very large transition tilt.

The transition tilt measures the amount of the viewpoint change and will be defined later.

The new state of the art:

It is by now possible to recognize a solid object in a digital image, no matter what the angle and the distance, up to limits that only depend on resolution.

90 correct matches, 4 outliers. The matches were obtained by the Affine-SIFT method (ASIFT), a variant of the SIFT method.

Camera Model

The projective camera model $u = \mathbf{S}_1 \mathbf{G}_1 \mathbf{A} \mathbf{u}_0$.

- \mathbf{A} is a planar projective transform (homography) .
- \mathbf{G}_1 is an optical (Gaussian) kernel.
- \mathbf{S}_1 is the CCD sampling. Shannon condition satisfied: $u = \mathbf{S}_1 \mathbf{G}_1 \mathbf{A} \mathbf{u}_0 \longrightarrow$ $\mathbf{u} = \mathbf{G}_1 \mathbf{A} \mathbf{u}_0.$

Affine Simplification

If the object's shape is locally smooth, local deformations in a single view can be approximated by several different local affine transforms.

Affine transforms map rectangles to parallelograms.

$$u = \mathbf{S}_{1}\mathbf{G}_{1}\mathbf{A}\mathbf{u}_{0}.$$

$$\mathbf{A} \text{ is an affine map:} \begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} e \\ f \end{pmatrix}$$

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \mathbf{H}_{\lambda}\mathbf{R}_{1}(\psi)\mathbf{T}_{t}\mathbf{R}_{2}(\phi) = \lambda \begin{bmatrix} \cos\psi & -\sin\psi \\ \sin\psi & \cos\psi \end{bmatrix} \begin{bmatrix} t & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{bmatrix}$$

- ϕ : *longitude* angle between optical axis and a fixed vertical plane.
- θ = arccos(1/t): *latitude* angle between optical axis and the normal to the image plane.
 Tilt t > 1 ↔ θ ∈ [0°, 90°].
- ψ : rotation angle of camera around optical axis.
- λ : *zoom* parameter.
- $\mathcal{T} = (e, f)^T$: translation, not presented here.

$$u = \mathbf{S}_{1} \mathbf{G}_{1} \mathbf{A} \mathbf{u}_{0}.$$

$$\mathbf{A} \text{ is an affine map:} \begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} e \\ f \end{pmatrix}$$

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \mathbf{H}_{\lambda} \mathbf{R}_{1}(\psi) \mathbf{T}_{t} \mathbf{R}_{2}(\phi) = \lambda \begin{bmatrix} \cos \psi & -\sin \psi \\ \sin \psi & \cos \psi \end{bmatrix} \begin{bmatrix} t & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix}$$

• ϕ : *longitude* angle between optical axis and a fixed vertical plane.

$$u = \mathbf{S}_{1}\mathbf{G}_{1}\mathbf{A}\mathbf{u}_{0}.$$

$$\mathbf{A} \text{ is an affine map:} \begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} e \\ f \end{pmatrix}$$

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \mathbf{H}_{\lambda}\mathbf{R}_{1}(\psi)\mathbf{T}_{t}\mathbf{R}_{2}(\phi) = \lambda \begin{bmatrix} \cos\psi & -\sin\psi \\ \sin\psi & \cos\psi \end{bmatrix} \begin{bmatrix} t & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{bmatrix}$$

• ϕ : *longitude* angle between optical axis and a fixed vertical plane.

$$u = \mathbf{S}_{1}\mathbf{G}_{1}\mathbf{A}\mathbf{u}_{0}.$$

$$\mathbf{A} \text{ is an affine map:} \begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} e \\ f \end{pmatrix}$$

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \mathbf{H}_{\lambda}\mathbf{R}_{1}(\psi)\mathbf{T}_{t}\mathbf{R}_{2}(\phi) = \lambda \begin{bmatrix} \cos\psi & -\sin\psi \\ \sin\psi & \cos\psi \end{bmatrix} \begin{bmatrix} t & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{bmatrix}$$

• $\theta = \arccos(1/t)$: *latitude* angle between optical axis and the normal to the image plane. Tilt $t > 1 \leftrightarrow \theta \in [0^{\circ}, 90^{\circ}]$.

$$u = \mathbf{S}_{1}\mathbf{G}_{1}\mathbf{A}\mathbf{u}_{0}.$$

$$\mathbf{A} \text{ is an affine map:} \begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} e \\ f \end{pmatrix}$$

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \mathbf{H}_{\lambda}\mathbf{R}_{1}(\psi)\mathbf{T}_{t}\mathbf{R}_{2}(\phi) = \lambda \begin{bmatrix} \cos\psi & -\sin\psi \\ \sin\psi & \cos\psi \end{bmatrix} \begin{bmatrix} t & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{bmatrix}$$

• $\theta = \arccos(1/t)$: *latitude* angle between optical axis and the normal to the image plane. Tilt $t > 1 \leftrightarrow \theta \in [0^{\circ}, 90^{\circ}]$.

$$u = \mathbf{S}_{1}\mathbf{G}_{1}\mathbf{A}\mathbf{u}_{0}.$$

$$\mathbf{A} \text{ is an affine map:} \begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} e \\ f \end{pmatrix}$$

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \mathbf{H}_{\lambda}\mathbf{R}_{1}(\psi)\mathbf{T}_{t}\mathbf{R}_{2}(\phi) = \lambda \begin{bmatrix} \cos\psi & -\sin\psi \\ \sin\psi & \cos\psi \end{bmatrix} \begin{bmatrix} t & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{bmatrix}$$

• ψ : rotation angle of camera around optical axis.

$$u = \mathbf{S}_{1}\mathbf{G}_{1}\mathbf{A}\mathbf{u}_{0}.$$

$$\mathbf{A} \text{ is an affine map:} \begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} e \\ f \end{pmatrix}$$

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \mathbf{H}_{\lambda}\mathbf{R}_{1}(\psi)\mathbf{T}_{t}\mathbf{R}_{2}(\phi) = \lambda \begin{bmatrix} \cos\psi & -\sin\psi \\ \sin\psi & \cos\psi \end{bmatrix} \begin{bmatrix} t & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{bmatrix}$$

• ψ : rotation angle of camera around optical axis.

$$u = \mathbf{S}_{1}\mathbf{G}_{1}\mathbf{A}\mathbf{u}_{0}.$$

$$\mathbf{A} \text{ is an affine map:} \begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} e \\ f \end{pmatrix}$$

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \mathbf{H}_{\lambda}\mathbf{R}_{1}(\psi)\mathbf{T}_{t}\mathbf{R}_{2}(\phi) = \lambda \begin{bmatrix} \cos\psi & -\sin\psi \\ \sin\psi & \cos\psi \end{bmatrix} \begin{bmatrix} t & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{bmatrix}$$

• λ : *zoom* parameter.

$$u = \mathbf{S}_{1}\mathbf{G}_{1}\mathbf{A}\mathbf{u}_{0}.$$

$$\mathbf{A} \text{ is an affine map:} \begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} e \\ f \end{pmatrix}$$

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \mathbf{H}_{\lambda}\mathbf{R}_{1}(\psi)\mathbf{T}_{t}\mathbf{R}_{2}(\phi) = \lambda \begin{bmatrix} \cos\psi & -\sin\psi \\ \sin\psi & \cos\psi \end{bmatrix} \begin{bmatrix} t & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{bmatrix}$$

• λ : *zoom* parameter.

High Transition Tilts

Both compared images are usually slanted views. The *transition tilt* quantifies the tilt between two such images.

Affine Invariance: Simulation v.s. Normalization

- Simulation.
 - all 6 parameters impossible, e.g. $10^6.$
- Normalization.
 Translation normalization
 Rotation normalization

$$\mathbf{u} = \mathbf{G}_1 \mathbf{A} \mathbf{u}_0, \ \mathbf{v} = \mathbf{G}_1 \mathbf{u}_0 \Rightarrow \mathbf{u} = \mathbf{A} \mathbf{v} ?$$

Non-commutation: in general $\mathbf{G}_1 \mathbf{A} u_0 \neq \mathbf{A} \mathbf{G}_1 u_0$

- Translation \mathcal{T} and rotation **R** can be normalized. Strong commutation with blur \Rightarrow normalization possible.
- Zoom \mathbf{H}_{λ} and tilt \mathbf{T} cannot be normalized *stricto sensu*. **Weak commutation** with blur \Rightarrow simulation necessary. $\mathbf{H}_{\lambda}\mathbf{G}_{1} = \mathbf{G}_{1/\lambda}\mathbf{H}_{\lambda} \Rightarrow \mathbf{H}_{\lambda}\mathbf{v} \neq \mathbf{u}$

Affine Invariance: Simulation v.s. Normalization

State-of-the-art

- SIFT (Scale-Invariant Feature Transform) [Lowe 99, 04]:
 - Rotation and translation are **normalized**.
 - Zoom is **simulated** in the scale space.
 - No treatment on latitude and longitude: modest robustness $\tau_{\rm max} < 2.$
- MSER (Maximally Stable Extremal Region) [Matas et al. 02] and LLD (Level Line Descriptor) [Musé et al. 06]
 - Attempt to **normalize** all the parameters.
 - Weakness: limited affine invariance $\tau_{\text{max}} < 10$, not scale invariant, small number of features.
- Other methods: Harris-Affine, Hessian-Affine [Mikolajczyk and Schmid 04]

Affine-SIFT (ASIFT) Overview

- Simulate latitude, longitude to achieve full affine invariance.
- Simulated images are compared by a rotation-, translationand zoom-invariant algorithm, e.g., SIFT. (SIFT normalizes translation and rotation and simulates zoom.)

Road signs.

Transition tilt: $\tau \approx 2.6$.

Number of correct matches:

ASIFT (top)-50;

SIFT (middle)—0;

MSER (bottom)—1.

Statue of Liberty. Transition tilt $\tau \in [1.3, \infty)$. Number of correct matches: ASIFT (left)—22, SIFT (right)—1, MSER (not shown)—0.

Consistency of ASIFT: reduction from ASIFT to SIFT

Theorem 1 Let $u = G_1AT_1u_0$ and $v = G_1BT_2u_0$ be two images obtained from an infinite resolution image u_0 . Then ASIFT, applied with a dense set of tilts and longitudes, simulates two views of u and v that are obtained from each other by a translation, a rotation, and a camera zoom. As a consequence, these images match by the SIFT algorithm.

Proof:

ASIFT works because *geometric* tilts can be reverted by *simulated* tilts in the orthogonal direction. The price to pay is a zoom-out.

Parameter Sampling Range

- Longitude angle $\phi \in [0, \pi)$.
- Tilt $t_{\text{max}} = 4\sqrt{2} \ (\theta \approx 80^{\circ}).$

t = 3.8 (θ = 74.7°), 116 correct ASIFT matches.

Parameter Sampling Range

- Longitude angle $\phi \in [0, \pi)$.
- Tilt $t_{\text{max}} = 4\sqrt{2} \ (\theta \approx 80^{\circ}).$

t = 5.6 (θ = 79.7°), 26 correct ASIFT matches.

Parameter Sampling Range

- Longitude angle $\phi \in [0, \pi)$.
- Tilt $t_{\text{max}} = 4\sqrt{2} \ (\theta \approx 80^{\circ}).$

t = 8 (θ = 82.8°), 0 ASIFT match.

Parameter Sampling

•	Geometric sampling of $t: \Delta t = t_{k+1}/t_k = \sqrt{2}$							
	t	1	$\sqrt{2}$	2	$2\sqrt{2}$	4	$4\sqrt{2}$	
	θ	0°	45°	60°	69.3°	75.5°	79.8°	

• Arithmetical sampling of ϕ : $\Delta \phi = \phi_{k+1} - \phi_k = \Delta \phi = \frac{72^{\circ}}{t}$.

Perspective view

View from the zenith

Acceleration: Multi-resolution ASIFT

- 1. ASIFT on low-resolution images $(r \times r \text{ sub-sampled})$.
- 2. ASIFT on high-resolution images obtained with the M best affine transforms (only in case of success in (1)).

ASIFT Complexity

- Complexity proportional to (area of query) \times (searched area).
- Image area proportional to number of simulated tilts.

$$-t = 1, \sqrt{2}, 2, 2\sqrt{2}, 4, 4\sqrt{2}.$$

- Number of rotations for tilt t is about 2.5t.
- At tilt t, image area $\sim 1/t$.
- Simulated area on one side: $\frac{1+5\times2.5}{9} \approx 1.5$ times original image.
- ASIFT complexity: $(1.5)^2 \times \text{SIFT} = 2.25 \times \text{SIFT}, \tau_{max} = 32.$

Zoom change. Number of correct matches: ASIFT (left)—222; SIFT (middle)—87; MSER (right)—4.

Frontal v.s. -80° angle, zoom ×10: absolute tilt t = 5.8. Number of correct matches: ASIFT (left)—75; SIFT (middle)—1; MSER (right)—2.

Correspondences between the magazine images taken with absolute tilts $t_1 = t_2 = 2$ with longitude angles $\phi_1 = 0^\circ$ and $\phi_2 = 50^\circ$, transition tilt $\tau = 3$. Number of correct matches: ASIFT (left)—881; SIFT (middle)—2; MSER (right)—87.

Correspondences between the magazine images taken with absolute tilts $t_1 = t_2 = 4$ with longitude angles $\phi_1 = 0^{\circ}$ and $\phi_2 = 90^{\circ}$, transition tilt $\tau = 16$. Number of correct matches: ASIFT (left)—88; SIFT (middle)—1; MSER (right)—9.

Images proposed by Matas et al. Number of correct matches: ASIFT (top)—254; SIFT (middle)—10; MSER (bottom)—22.

BARKING

Parkings.

Transition tilt: $\tau \approx 15$.

Number of correct matches: ASIFT (top)—78; SIFT (middle)—0; MSER (bottom)—0.

Ecole Polytechnique.

Transition tilt $\tau = 2.4$. Number of correct matches: ASIFT (left)—103; SIFT (middle)—13; MSER (right)—4.

Pentagon. Transition tilt $\tau \approx 2.5$.

Number of correct matches: ASIFT (left)—378, SIFT (middle)—6, MSER(right)—17.

Left: flag. ASIFT (shown)—141, SIFT—31, MSER—2. Right: SpongeBob. ASIFT (shown)—370, SIFT—75, MSER—4.

Experiments: Object Tracking

References:

- J.M. Morel and G.Yu, ASIFT: A New Framework for Fully Affine Invariant Image Comparison, SIAM Journal on Imaging Sciences, vol.2, issue 2, 2009.
- G. Yu and J.M. Morel, A Fully Affine Invariant Image Comparison Method, IEEE ICASSP, Taipei, 2009.
- J.M. Morel and G.Yu, On the consistency of the SIFT Method, Preprint, CMLA 2008-26, Sept 2008.

Website and Online Demo: try ASIFT with your images!

• http://www.cmap.polytechnique.fr/~yu/research/ASIFT/demo.html

For more information,

Google ASIFT