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Abstract

This note is devoted to the mathematical arguments proving that Lowe’s Scale-Invariant
Feature Transform (SIFT [23]), a very successful image matching method, is indeed similarity
invariant. The mathematical proof is given under the assumption that the gaussian smoothing
performed by SIFT gives aliasing free sampling. The validity of this main assumption is
confirmed by a rigorous experimental procedure. These results explain why SIFT outperforms
all other image feature extraction methods when it comes to scale invariance.

1 Introduction

Image comparison is a fundamental step in many computer vision and image processing appli-
cations. A typical image matching method first detects points of interest, then selects a region
around each point, and finally associates with each region a descriptor. Correspondences between
two images may then be established by matching the descriptors of both images. Many vari-
ations exist on the computation of interest points, following the pioneering work of Harris and
Stephens [14]. The Harris-Laplace and Hessian-Laplace region detectors [25, 28] are invariant to
rotation and scale changes. Some moment-based region detectors [22, 2] including Harris-Affine
and Hessian-Affine region detectors [26, 28], an edge-based region detector [41], an intensity- based
region detector [41], an entropy-based region detector [16], and two independently developed level
line-based region detectors MSER (“maximally stable extremal region”) [24] and LLD (“level line
descriptor”) [33, 34, 5] are designed to be invariant to affine transformations. These two methods
stem from the Monasse image registration method [31] that used well contrasted extremal regions
to register images. MSER is the most efficient one and has shown better performance than other
affine invariant detectors [30]. However, as pointed out in [23], no known detector is actually fully
affine invariant: All of them start with initial feature scales and locations selected in a non-affine
invariant manner. The difficulty comes from the scale change from an image to another: This
change of scale is actually an under-sampling, which means that the images differ by a blur.

In his milestone paper [23], Lowe has addressed this central problem and has proposed the so
called scale-invariant feature transform (SIFT) descriptor, that is invariant to image translations
and rotations, to scale changes (blur), and robust to illumination changes. It is also surprisingly
robust to large enough orientation changes of the viewpoint (up to 60 degrees). Based on the scale-
space theory [21], the SIFT procedure simulates all gaussian blurs and normalizes local patches
around scale covariant image key points that are Laplacian extrema. A number of SIFT variants
and extensions, including PCA-SIFT [17] and gradient location-orientation histogram (GLOH) [29],
that claim to have better robustness and distinctiveness with scaled-down complexity have been
developed ever since [9, 20]. Demonstrated to be superior to other descriptors [27, 29], SIFT has
been popularly applied for scene recognition [7, 32, 39, 43, 12, 40] and detection [10, 35], robot
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localization [3, 36, 15], image registration [46], image retrieval [13], motion tracking [42, 18], 3D
modeling and reconstruction [38, 44], building panoramas [1, 4], or photo management [45, 19, 6].

The initial goal of the SIFT method is to compare two images (or two image parts) that can be
deduced from each other (or from a common one) by a rotation, a translation, and a zoom. The
method turned out to be also robust to large enough changes in view point angle, which explains its
success. In this method, following a classical paradigm, stable points of interest are supposed to lie
at extrema of the Laplacian of the image in the image scale-space representation. The scale-space
representation introduces a smoothing parameter σ. Images u0 are smoothed at several scales to
obtain w(σ, x, y) =: (Gσ ∗ u0)(x, y), where

Gσ(x, y) = G(σ, x, y) =
1

2πσ2
e−(x2+y2)/2σ2

is the 2D-Gaussian function with integral 1 and standard deviation σ. The notation ∗ stands for
the space 2-D convolution in (x, y). The description of the SIFT method involves sampling issues,
which we shall discuss later.

Taking apart all sampling issues and several thresholds whose aim it is to eliminate unreliable
features, the whole method can be summarized in one single sentence:

One sentence description The SIFT method computes scale-space extrema (σi, xi, yi) of the
space Laplacian of w(σ, x, y), and then samples for each one of these extrema a square image patch
whose origin is (xi, yi), whose x-direction is one of the dominant gradients around (xi, yi), and
whose sampling rate is

√
σ2

i + c2.
The constant c ' 0.8 is the tentative standard deviation of the image blur. The resulting

samples of the digital patch at scale σi are encoded by their gradient direction, which is invariant
under nondecreasing contrast changes. This accounts for the robustness of the method to illumi-
nation changes. In addition, only local histograms of the direction of the gradient are kept, which
accounts for the robustness of the final descriptor to changes of view angle (see Fig. 2).

The goal of this short paper is to give the mathematical arguments proving that the method
indeed is scale invariant, and that its main assumption, that images are well-sampled under gaussian
blur, is right. Thus, this note is not intended to propose a new variant or extension of the SIFT
method; on the contratry it is intended to demonstrate that no other method will ever improve
more than marginally the SIFT scale invariance (see Figs 1 and 6 for striking examples). To the
best of our knowledge, and in spite of the more than thousand papers quoting and using SIFT,
the analysis presented here does not seem to have been done previously.

Plan. A simple formalism (Sect. 2) is introduced to obtain a condensed description of the SIFT
shape encoding method. Using this formalism Sect. 4 proves mathematically that the SIFT method
indeed computes translation, rotation and scale invariants. This proof is correct under the main
assumption that image blur can be assumed to be gaussian, and that images with a gaussian blur
larger than 0.6 (SIFT takes 0.8) are approximately (but accurately) well-sampled and can therefore
be interpolated. Sect. 3 gives a procedure and checks the validity of this crucial gaussian blur
assumption.
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Figure 1: A result of the SIFT method, using an outliers elimination method [37]. Pairs of matching
points are connected by segments.

2 Image operators formalizing SIFT

All continuous image operators including the sampling will be written in bold capital letters A,
B and their composition as a mere juxtaposition AB. For any affine map A of the plane consider
the affine transform of u defined by Au(x) =: u(Ax). For instance Hλu(x) =: u(λx) denotes an
expansion of u by a factor λ−1. In the same way if R is a rotation, Ru =: u ◦ R is the image
rotation by R−1.

Sampling and interpolation

Let us denote by u(x) a continuous and bounded image defined for every x = (x, y) ∈ R2, and by
u a digital image, only defined for (n1, n2) ∈ Z2. The δ-sampled image u = Sδu is defined on Z2

by
Sδu(n1, n2) = u(n1δ, n2δ); (1)

Conversely, the Shannon interpolate of a digital image is defined as follows [11]. Let u be a digital
image, defined on Z2 and such that

∑
n∈Z2 |u(n)|2 < ∞ and

∑
n∈Z2 |u(n)| < ∞. (Of course, these

conditions are automatically satisfied if the digital has a finite number of non-zero samples, which
is the case here.) We call Shannon interpolate Iu of u the only L2(R2) function having u as samples
and with spectrum support contained in (−π, π)2. Iu is defined by the Shannon-Whittaker formula

Iu(x, y) =:
∑

(n1,n2)∈Z2

u(n1, n2)sinc(x− n1)sinc(y − n2),

where sinc x =: sin πx
πx . The Shannon interpolation has the fundamental property S1Iu = u. Con-

versely, if u is L2 and band-limited in (−π, π)2, then

IS1u = u. (2)
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In that case we simply say that u is band-limited. We shall also say that a digital image u = S1u
is well-sampled if it was obtained from a band-limited image u.

The Gaussian semigroup

G denotes the convolution operator on R2 with the gauss kernel Gσ(x1, x2) = 1
2π(cσ)2 e

−
x2
1+x2

2
2(cσ)2 ,

namely Gu(x, y) =: (G ∗ u)(x, y). Gσ satisfies the semigroup property

GσGβ = G√
σ2+β2 . (3)

The proof of the next formula is a mere change of variables in the integral defining the convolution.

GσHγu = HγGσγu. (4)

Using the above notation, the next paragraph formalizes the SIFT method.

Formalized SIFT scale invariant features transform

The SIFT method is easily formalized in the continuous setting, while in practice images are always
digital. The main assumption of the SIFT method being that all blurs can be assumed gaussian,
it will be crucial to prove that gaussian blur gives in practice well-sampled images.

1. Geometry: there is an underlying infinite resolution bounded planar image u0(x) that
has undergone a similarity Au0 (modeling a rotation, translation, and homothety) before
sampling.

2. Sampling and blur: the camera blur is assimilated to a Gaussian with standard deviation
c. The typical value of c will be fixed thereafter. In Lowe’s paper, c belongs to [0.5, 0.8].
The initial digital image is therefore u = S1GcAu0;

3. Sampled scale space: at all scales σ > 0, the SIFT method computes a good sampling of
u(σ, ·) = GσGcAu0 and “key points” (σ,x), namely scale and space extrema of ∆u(σ, ·);

4. Covariant resampling: the blurred u(σ, ·) image is sampled around each key point at a
rate proportional to

√
c2 + σ2. The directions of the sampling axes are fixed by a dominant

direction of ∇u(σ, ·) in a σ-neighborhood of the key point. This yields rotation, translation
and scale invariant samples in which the 4 parameters of A have been eliminated (see Fig.
3);

5. Illumination invariance: the final SIFT descriptors keep only the orientation of the sam-
ples gradient to gain invariance with respect to light conditions.

Steps 1 to 5 are the main steps of the method. We have omitted all details that are not relevant
in the discussion to follow. Let them be mentioned briefly. The Laplacian extrema are kept only
if they are larger than a fixed threshold that eliminates small features mainly due to noise. This
threshold is not scale invariant. The ratio of the eigenvalues of the Hessian of the Laplacian must
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Figure 2: Each key-point is associated a square image patch whose size is proportional to the scale and
whose side direction is given by the assigned direction. Example of a 2× 2 descriptor array of orientation
histograms (right) computed from an 8× 8 set of samples (left). The orientation histograms are quantized
into 8 directions and the length of each arrow corresponds to the magnitude of the histogram entry.

Figure 3: SIFT key points. The arrow starting point, length and the orientation signify respectively
the key point position, scale, and dominant orientation. These features are covariant to any image
similarity.
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be close enough to 1 to ensure a good key point localization. (Typically, straight edge points have
only one large Hessian eigenvalue, are poorly localized, and are therefore ruled out by this second
threshold, which is scale invariant.)

Two more features, however, must be commented upon. Lowe assumes that the initial image
has a c = 0.5 gaussian blur. (We call c gaussian blur a convolution with a gaussian with standard
deviation c). This implies a slight under-sampling that is compensated by a complementary gaus-
sian blur applied to the image, that puts the actual initial blur to 0.8. In accordance with this
choice, a 2-sub-sampling in the SIFT scale-space computations is always preceded by a 2×0.8 = 1.6
gaussian blur.

Of course, the gaussian convolution cannot be applied to the continuous image but only to the
samples. This is valid if and only if a discrete convolution can give an account of the underlying
continuous one, that is, if the image is well-sampled.

The discrete gaussian convolution applied to a digital image is defined as a digital operator
by

Gδu =: S1GδIu. (5)

This definition maintains the gaussian semi-group used repeatedly in SIFT,

GδGβ = G√
δ2+β2 . (6)

Indeed, using twice (5) and once (3) and (2),

GδGβu = S1GδIS1GβIu = S1GδGβIu = S1G√δ2+β2Iu = G√
δ2+β2u.

The SIFT method uses repeatedly this formula and a 2-sub-sampling of images with gaussian blur
larger than 1.6. To summarize, the SIFT sampling manoeuvres are valid if and only if:

Proposition 1. For every σ larger than 0.8 and every continuous and bounded image u0, the
gaussian blurred image Gσu0 is well sampled, namely IS1Gσu0 = Gσu0.

This proposition is not a mathematical statement, but it will be checked experimentally in the
next section, where we shall see that in fact a 0.6 blur is enough.

3 The right gaussian blur to achieve well-sampling

Images need to be blurred before they are sampled. In principle gaussian blur cannot lead to a good
sampling because it is not stricto sensu band limited. Therefore the Shannon-Whittaker formula
does not apply. However, in practice it does. The aim here is to define a procedure that checks
that a gaussian blur works and to fix the minimal variance of the blur ensuring well-sampling (up
to a minor mean square and visual error).

One must distinguish two types of blur: The absolute blur with standard deviation ca is the one
that must be applied to an ideal infinite resolution (blur free) image to create an approximately
band-limited image before 1-sampling. The relative blur σ = cr(t) is the one that must be applied
to a well-sampled image before a sub-sampling by a factor of t. In the case of gaussian blur,
because of the semi-group formula (3), the relation between the absolute and relative blur is

t2c2
a = c2

r(t) + c2
a,
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Figure 4: Top left: u. Top right: MSE(u1, u2) vs cr(4). Middle (from left to right): u1 and u2

with cr(4) = 1.2. MSE(u1,u2)=17.5. Bottom (from left to right): u1 and u2 with cr(4) = 2.4.
MSE(u1, u2)=0.33.
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which yields
cr(t) = ca

√
t2 − 1. (7)

In consequence, if t � 1, then cr(t) ≈ cat.
Two experiments have been designed to calculate the anti-aliasing absolute gaussian blur ca

ensuring that an image is approximately well-sampled. The first experiment compares for several
values of cr(t) the digital images

u1 =: Gcr(t)u = S1Gcr(t)Iu and u2 =: (S1/tI)StGcr(t)u = (S1/tI)StGcr(t)Iu,

where u is an initial digital image that is well-sampled, St is a t sub-sampling operator, S 1
t

a t over-
sampling operator, and I a Shannon-Whitakker interpolation operator. The discrete convolution
by a gaussian is defined in (5). Since t is an integer, the t sub-sampling is trivial. The Shannon
over-sampling S1/tI with an integer zoom factor t is obtained by the classic zero-padding method.
This method is exactly Shannon interpolation if the initial image is both band-limited and periodic
[11].

If the anti-aliasing filter size cr(t) is too small, u1 and u2 can be very different. The right value
of cr(t) should be the smallest value permitting u1 ≈ u2. Fig. 4 shows u1 and u2 with t = 4 and
plots their mean square error MSE(u1, u2). An anti-aliasing filter with cr(4) = 1.2 is clearly not
broad enough: u2 presents strong ringing artifacts. The ringing artifact is instead hardly noticeable
with cr(4) = 2.4. The value cr(4) ' 2.4 is a good visual candidate, and this choice is confirmed
by the curve showing that MSE(u1, u2) decays rapidly until cr(4) gets close to 2.4, and is stable
and small thereafter. By (7), this value of cr yields ca = 0.62. This value has been confirmed by
experiments on ten digital images. A doubt can be cast on this experiment, however: Its result
slightly depends on the assumption that the initial blur on u is equal to ca.

In a second experiment, ca has been evaluated directly by using a binary image u0 that does not
contain any blur. As illustrated in Fig. 5, u0 is obtained by binarizing Lena (Fig. 4) the threshold
being the median value. Since u0 is now blur-free, we can compare for several values of ca and for
t = 4, which is large enough, the digital images

u1 =: Gtca
u = S1Gtca

Iu and u2 =: (S1/tI)StGtca
u = (S1/tI)StGtca

Iu,

As shown in Fig. 5, ca = 0.6 is the smallest value ensuring no visual ringing in u2. Under this value,
for example for ca = 0.3, clear ringing artifacts are present in u2. That ca = 0.6 is the correct value
is confirmed by the MSE(u1, u2) curve showing that the mean square error decays rapidly until
ca goes down to 0.6, and is stable and small thereafter. The result, confirmed in ten experiments
with different initial images, is consistent with the value obtained in the first experimental setting.

4 Scale and SIFT: consistency of the method

We denote by T an arbitrary image translation, by R an arbitrary image rotation, by H an
arbitrary image homothety, and by G an arbitrary gaussian convolution, all applied to continuous
images. We say that there is strong commutation if we can exchange the order of application of
two of these operators. We say that there is weak commutation between two of these operators if
we have (e.g.) RT = T ′R, meaning that given R and T there is T ′ such that the former relation
occurs. The next lemma is straightforward.
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Figure 5: Top left: u. Top right: MSE(u1, u2) vs ca. Middle (from left to right): u1 and
u2 with ca = 0.3. MSE(u1, u2)=7.46. Bottom (from left to right): u1 and u2 with ca = 0.6.
MSE(u1, u2)=0.09.
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Lemma 1. All of the aforementioned operators weakly commute. In addition, R and G commute
strongly.

In this section, in conformity with the SIFT model of Sect. 2, the digital image is a frontal view
of an infinite resolution ideal image u0. In that case, A = HTR is the composition of a homthety
H, a translation T and a rotation R. Thus the digital image is u = S1GδHTRu0, for some H,
T , R as above. Assuming that the image is not aliased boils down, by the experimental results of
Sect. 3, to assuming δ ≥ 0.6. (Notice that Lowe always takes δ = 0.8, which is more conservative.)

Lemma 2. For any rotation R and any translation T , the SIFT descriptors of S1GδHTRu0 are
identical to those of S1GδHu0.

Proof. Using the weak commutation of translations and rotations with all other operators (Lemma
1), it is easily checked that the SIFT method is rotation and translation invariant: The SIFT
descriptors of a rotated or translated image are identical to those of the original. Indeed, the set of
scale space Laplacian extrema is covariant to translations and rotations. Then the normalization
process for each SIFT descriptor situates the origin at each extremum in turn, thus canceling the
translation, and the local sampling grid defining the SIFT patch has axes given by peaks in its
gradient direction histogram. Such peaks are translation invariant and rotation covariant. Thus,
the normalization of the direction also cancels the rotation.

Lemma 3. Let u and v be two digital images that are frontal snapshots of the same continuous
flat image u0, u = S1GβHλu0 and v =: S1GδHµu0, taken at different distances, with different
gaussian blurs and possibly different sampling rates. Let w(σ,x) = (Gσu)(x) denote the scale
space of u. Then the scale spaces of u and v are

u(σ,x) = w(λ
√

σ2 + β2, λx) and v(σ,x) = w(µ
√

σ2 + δ2, µx).

If (s0,x0) is a key point of w satisfying s0 ≥ max(λβ, µδ), then it corresponds to a key point of u
at the scale σ1 such that λ

√
σ2

1 + β2 = s0, whose SIFT descriptor is sampled with mesh
√

σ1 + c2.
In the same way (s0,x0) corresponds to a key point of v at scale σ2 such that s0 = µ

√
σ2

2 + δ2,
whose SIFT descriptor is sampled with mesh

√
σ2

2 + c2.

Proof. The interpolated initial images are by (2)

u =: IS1GβHλu0 = GβHλu0 and v =: IS1GδHµu0 = GδHµu0.

Computing the scale-space of these images amounts to convolve these images for every σ > 0 with
Gσ, which yields, using the commutation relation (4) and the semigroup property (3):

u(σ, ·) = GσGβHλu0 = G√
σ2+β2Hλu0 = HλGλ

√
σ2+β2u0.

By the same calculation, this function is compared by SIFT with

v(σ, ·) = HµGµ
√

σ2+δ2u0.

Let us set w(s,x) =: Gsu0. Then the scale spaces compared by SIFT are

u(σ,x) = w(λ
√

σ2 + β2, λx) and v(σ,x) = w(µ
√

σ2 + δ2, µx).
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Let us consider an extremal point (s0,x0) of the Laplacian of the scale space function w. If
s0 ≥ max(λβ, µδ), an extremal point occurs at scales σ1 for (the Laplacian of) u(σ,x) and σ2 for
(the Laplacian of) v(σ,x) satisfying

s0 = λ
√

σ2
1 + β2 = µ

√
σ2

2 + δ2. (8)

We recall that each SIFT descriptor at a key point (σ1,x1) is computed from space samples of
x → u(σ,x). The origin of the local grid is x1, the intrinsic axes are fixed by one of the dominant
directions of the gradient of u(σ1, ·) around x1, in a circular neighborhood whose size is proportional
to σ1. The SIFT descriptor sampling rate around the key point is also proportional to

√
σ2

1 + c2

in u(σ1,x), and to
√

σ2
2 + c2 in u(σ2,x).

Theorem 1. Let u and v be two digital images that are frontal snapshots of the same continuous
flat image u0, u = S1GβHλTRu0 and v =: S1GδHµu0, taken at different distances, with different
gaussian blurs and possibly different sampling rates, and up to a camera translation and rotation
around its optical axe. Without loss of generality, assume λ ≤ µ. Then if the blurs are identical
(β = δ = c), all SIFT descriptors of u are identical to SIFT descriptors of v. If β 6= δ (or
β = δ 6= c), the SIFT descriptors of u and v become (quickly) similar when their scales grow,
namely as soon as σ1

max(c,β) � 1 and σ2
max(c,δ) � 1.

Proof. By the result of Lemma 2, we can neglect the effect of translations and rotations. Therefore
assume w.l.o.g. that the images under comparison are as in Lemma 3. Assume a key point (s0,x0)
of w has scale s0 ≥ max(λβ, µδ). This key point has a sampling rate proportional to s0. There is a
corresponding key point (σ1,

x0
λ ) for u with sampling rate

√
σ2

2 + c2 and a corresponding key point
(σ2,

x0
µ ) with sampling rate

√
σ2

2 + c2 for v. To have a common reference for these sampling rates,

it is convenient to refer to the corresponding sampling rates for w(s0,x), which are λ
√

σ2
1 + c2 for

the SIFT descriptors of u at scale σ1, and µ
√

σ2
2 + c2 for the descriptors of v at scale σ2. Thus

the SIFT descriptors of u and v for x0 will be identical if and only if λ
√

σ2
1 + c2 = µ

√
σ2

2 + c2.
Now, we have λ

√
σ2

1 + β2 = µ
√

σ2
2 + δ2, which implies λ

√
σ2

1 + c2 = µ
√

σ2
2 + c2 if and only if

λ2β2 − µ2δ2 = (λ2 − µ2)c2. (9)

Since λ and µ correspond to camera distances to the observed object u0, they are pretty arbitrary.
Thus in general the only way to get (9) is to have β = δ = c, which means that the blurs of both
images have been guessed correctly. In any case, β = δ does imply that the SIFT descriptors of
both images are identical.

The second statement is straighforward: if σ1 and σ2 are large enough with respect to β, δ and
c, the relation λ

√
σ2

1 + β2 = µ
√

σ2
2 + δ2, implies λ

√
σ2

1 + c2 ' µ
√

σ2
2 + c2.

The almost perfect scale invariance of SIFT stated in Theorem 1 is illustrated by the striking
example of Fig. 6. The 28 SIFT key points of a very small image u are compared to the 86 key
points obtained by zooming in u by a 32 factor: The resulting digital image is v = S 1

32
Iu, again

obtained by zero-padding. For better observability, both images are displayed with the same size
by enlarging the pixels of u. Almost each key point (22 out of 28) of u finds its counterpart in v.
22 matches are detected between the descriptors as shown on the right. If we trust Theorem 1, all
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descriptors of u should have been retrieved in v. This does not fully happen for two reasons. First,
the SIFT method thresholds (not taken into account in the theorem) eliminate many potential key
points. Second, the zero-padding interpolation giving v is imperfect near the image boundaries.

Figure 6: Scale invariance of SIFT, an illustration of Theorem 1. Left: a very small digital image u
with its 28 key points. For the conventions to represent key points and matches, see the comments
in Fig. 3. Middle: this image is over sampled by a 32 factor to S 1

32
Iu. It has 86 key points. Right:

22 matches found between u and H 1
32

u.

By the second part of Theorem 1 the reliability of the SIFT matching increases with scale.
This fact is illustrated in Fig. 7. Starting from a high resolution image u0, two images u and v
are obtained by simulated zoom out, u = S1GβHλu0 = SλGλβu0 and v = SµGµδu0, with λ = 2,
µ = 4, β = δ = 0.6. Pairs of SIFT descriptors of u and v in correspondence, established by a
SIFT matching, are compared using an Euclidean distance d. The scale rate σ1/σ2 as well as the
distance d between the matched key points are plotted against σ2 in Fig. 7. That σ1/σ2 ≈ 2 for
all key points confirms that the SIFT matching process is reliable. As stated by the theorem, the
rate σ1/σ2 goes to µ/λ = 2 when σ2 increases, and the distance d goes down. However, when the
scale is small (σ2 < 1), σ1/σ2 is very different from 2 and d is large.

5 Conclusion

Our overall conclusion is that no substantial improvement of the SIFT method can be ever hoped,
as far as translation, rotation and scale invariance are concerned. As pointed out by several
benchmarks, the robustness and repeatability of the SIFT descriptors outperforms other methods.
However, such benchmarks mix three very different criteria that, in our opinion, should have been
discussed separately. The first one is the formal real invariance of each method when all thresholds
have been eliminated. This real invariance has been proved here for SIFT. The second criterion
is the practical validity of the sampling method used in SIFT, that has been again checked in
the present note. The last criterion is the clever fixing of several thresholds in the SIFT method



5 CONCLUSION 13

Figure 7: Top (from left to right): u0, u, v. Middle: Rate of scales σ1/σ2 of matched keypoints in
u and v against σ2. Bottom: Distance between matched descriptors of u and v against σ2.
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ensuring robustness, repeatability, and a low false alarm rate. This one has been extensively tested
and confirmed in previous benchmark papers (see also the very recent and complete report [8]).
We think, however, that the success of SIFT in these benchmarks is primarily due to its full scale
invariance.
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