
Overview
References
Pixelwise	Implementation
Patchwise	Implementation
Source	Code
On	Line	Demo:	Try	It!
Examples

	IPOL	Journal	·	Image	Processing	On	Line
HOME	·	ABOUT	·	ARTICLES	·	PREPRINTS	·	WORKSHOPS	·	NEWS	·	SEARCH	

Non-Local	Means	Denoising
Antoni	Buades,	Bartomeu	Coll,	Jean-Michel	Morel

article 	 demo 	 archive

Communicated	by	Guoshen	Yu
Demo	edited	by	Miguel	Colom

Antoni	Buades	toni.buades@uib.es,	CNRS-Paris	Descartes
Bartomeu	Coll	tomeu.coll@uib.es,	Universitat	Illes	Balears
Jean-Michel	Morel	morel@cmla.ens-cachan.fr,	CMLA,	ENS-
Cachan

Overview
In	 any	 digital	 image,	 the	 measurement	 of	 the	 three	 observed	 color
values	 at	 each	 pixel	 is	 subject	 to	 some	 perturbations.	 These
perturbations	 are	 due	 to	 the	 random	 nature	 of	 the	 photon	 counting
process	in	each	sensor.	The	noise	can	be	amplified	by	digital	corrections	of	the	camera	or	by	any	image
processing	software.	For	example,	tools	removing	blur	from	images	or	increasing	the	contrast	enhance
the	noise.

The	 principle	 of	 the	 first	 denoising	 methods	 was	 quite	 simple:	 Replacing	 the	 color	 of	 a	 pixel	 with	 an
average	of	the	colors	of	nearby	pixels.	The	variance	law	in	probability	theory	ensures	that	if	nine	pixels
are	averaged,	the	noise	standard	deviation	of	the	average	is	divided	by	three.	Thus,	 if	we	can	find	for
each	pixel	nine	other	pixels	in	the	image	with	the	same	color	(up	to	the	fluctuations	due	to	noise)	one
can	divide	the	noise	by	three	(and	by	four	with	16	similar	pixels,	and	so	on).	This	looks	promising,	but
where	can	these	similar	pixels	be	found?

The	most	similar	pixels	to	a	given	pixel	have	no	reason	to	be	close	at	all.	Think	of	the	periodic	patterns,
or	 the	elongated	edges	which	appear	 in	most	 images.	 It	 is	 therefore	 licit	 to	scan	a	vast	portion	of	 the
image	in	search	of	all	the	pixels	that	really	resemble	the	pixel	one	wants	to	denoise.	Denoising	is	then
done	by	computing	the	average	color	of	these	most	resembling	pixels.	The	resemblance	is	evaluated	by
comparing	a	whole	window	around	each	pixel,	and	not	just	the	color.	This	new	filter	is	called	non-local
means	and	it	writes

where	d(B(p),	B(q))	is	an	Euclidean	distance	between	image	patches	centered	respectively	at	p	and	q,	 f
is	a	decreasing	function	and	C(p)	is	the	normalizing	factor.

Since	the	search	for	similar	pixels	will	be	made	in	a	larger	neighborhood,	but	still	locally,	the	name	"non-
local"	is	somewhat	misleading.	In	fact	Fourier	methods	for	example	are	by	far	more	nonlocal	than	NL-
means.	Nevertheless,	the	term	is	by	now	sanctified	by	usage	and	for	that	reason	we	shall	keep	it.	The
term	"semi-local"	would	have	been	more	appropriate,	though.	The	implementation	of	the	current	online
demo	 is	 based	 on	 a	 patch	 version	 of	 the	 original	 NL-means.	 This	 version	 is	 based	 in	 a	 simple
observation.	When	computing	the	Euclidean	distance	d(B(p),B(q)),	all	pixels	in	the	patch	B(p)	have	the
same	importance,	and	therefore	the	weight	f(d(B(p),B(q))	can	be	used	to	denoise	all	pixels	in	the	patch
B(p)	and	not	only	p.

For	 completeness,	 we	 shall	 give	both	 the	 original	 (pixelwise)	 presentation,	 and	 the	 patchwise
presentation	of	the	same	algorithm,	which	is	somewhat	more	elegant.

published
reference

2011-09-13
Antoni	Buades,	Bartomeu	Coll,	and	Jean-Michel	Morel,	Non-Local	Means	Denoising,
Image	Processing	On	Line,	1	(2011).	http://dx.doi.org/10.5201/ipol.2011.bcm_nlm

→ BibTeX

Content

http://www.ipol.im/
http://www.ipol.im/
http://www.ipol.im/meta/
http://www.ipol.im/pub/art/
http://www.ipol.im/pub/pre/
http://dev.ipol.im/ws/
http://www.ipol.im/news/
http://demo.ipol.im/demo/bcm_non_local_means_denoising/
http://demo.ipol.im/demo/bcm_non_local_means_denoising/archive
http://dx.doi.org/10.5201/ipol
http://dx.doi.org/10.5201/ipol.2011
http://dx.doi.org/10.5201/ipol.2011.bcm_nlm
mailto:toni.buades@uib.es
mailto:tomeu.coll@uib.es
http://www.cmla.ens-cachan.fr/~morel
mailto:morel@cmla.ens-cachan.fr


References
1.	 a.	 Buades,	B.	Coll,	J.M.	Morel	"A	review	of	image	denoising	methods,	with	a	new	one"

Multiscale	Modeling	and	Simulation,	Vol.	4	(2),	pp:	490-530,	2006.	DOI:
10.1137/040616024

2.	 a.	 Buades,	B.	Coll,	J.M.	Morel	"A	non	local	algorithm	for	image	denoising"
IEEE	Computer	Vision	and	Pattern	Recognition	2005,	Vol	2,	pp:	60-65,	2005.	DOI:
10.1109/CVPR.2005.38

3.	 a.	 Buades,	B.	Coll,	J.M.	Morel	"Image	data	processing	method	by	reducing	image	noise,	and
camera	integrating	means	for	implementing	said	method",	EP	Patent	1,749,278	(Feb.	7),
2007.

Pixelwise	Implementation
The	denoising	of	a	color	image	u=(u1,	u2,	u3)	and	a	certain	pixel	p	writes

where	i=1,	2,	3	 and	B(p,	r)	 indicates	a	neighborhood	centered	at	p	 and	 size	2r+1	×	2r+1	 pixels.	This
research	 zone	 is	 limited	 to	 a	 square	 neighborhood	 of	 fixed	 size	 because	 of	 computation	 restrictions.
This	 is	 a	 21x21	 window	 for	 small	 and	 moderate	 values	 of	σ.	 The	 size	 of	 the	 research	 window	 is
increased	 to	35x35	 for	 large	values	of	σ	due	 to	 the	necessity	of	 finding	more	similar	pixels	 to	 reduce
further	the	noise.

The	weight	w(p,	q)	depends	on	the	squared	Euclidean	distance	d²	=	d²(B(p,f),	B(q,f))	of	the	2f+1	×	2f+1
color	patches	centered	respectively	at	p	and	q.

That	 is,	 each	 pixel	 value	 is	 restored	 as	 an	 average	 of	 the	 most	 resembling	 pixels,	 where	 this
resemblance	is	computed	in	the	color	image.	So	for	each	pixel,	each	channel	value	is	the	result	of	the
average	of	the	same	pixels.

We	use	an	exponential	kernel	in	order	to	compute	the	weights	w(p,	q)

where	σ	denotes	the	standard	deviation	of	 the	noise	and	h	 is	the	filtering	parameter	set	depending	on
the	 value	 of	σ.	 The	 weight	 function	 is	 set	 in	 order	 to	 average	 similar	 patches	 up	 to	 noise.	 That	 is,
patches	 with	 square	 distances	 smaller	 than	2σ²	 are	 set	 to	 1,	 while	 larger	 distances	 decrease	 rapidly
accordingly	to	the	exponential	kernel.

The	 weight	 of	 the	 reference	 pixel	p	 in	 the	 average	 is	 set	 to	 the	 maximum	 of	 the	 weights	 in	 the
neighborhood	B(p,r).	This	setting	avoids	the	excessive	weighting	of	the	reference	point	in	the	average.
Otherwise,	w(p,p)	should	be	equal	to	1	and	a	larger	value	of	h	would	be	necessary	to	ensure	the	noise
reduction.	By	applying	the	above	averaging	procedure	we	recover	a	denoised	value	at	each	pixel	p.

Patchwise	Implementation
The	denoising	of	a	 color	 image	u=(u1,	u2,	u3)	 and	a	certain	patch	B	=	B(p,f)	 (centered	at	p	and	size
2f+1	x	2f+1)	writes

where	i=1,	 2,	 3,	 B(p,	 r)	 indicates	 a	 neighborhood	 centered	 at	p	 and	 size	2r+1	 ×	 2r+1	 pixels	 and

http://dx.doi.org/10.1137/040616024
http://dx.doi.org/10.1109/CVPR.2005.38


where	i=1,	 2,	 3,	 B(p,	 r)	 indicates	 a	 neighborhood	 centered	 at	p	 and	 size	2r+1	 ×	 2r+1	 pixels	 and
w(B(p,f),B(q,f))	has	the	same	formulation	than	in	the	pixelwise	implementation.

In	 this	 way,	 by	applying	 the	 procedure	 for	 all	 patches	 in	 the	 image,	 we	 shall	 dispose	 of	N²	=	 (2f+1)²
possible	 estimates	 for	 each	 pixel.	 These	 estimates	 can	 be	 finally	 averaged	 at	 each	 pixel	 location	 in
order	to	build	the	final	denoised	image.

The	main	difference	of	both	versions	is	the	gain	on	PSNR	by	the	patchwise	implementation,	due	to	the
larger	noise	reduction	of	the	final	aggregation	process.	Spurious	noise	oscillations	near	edges	are	also
reduced	by	the	final	aggregation	process.	However,	the	overall	quality	in	terms	of	preservation	of	details
is	not	improved	by	the	patchwise	version.

Parameters

The	size	of	 the	patch	and	 research	window	depend	on	 the	value	of	σ.	When	σ	 increases	 we	 need	 a
larger	 patch	 to	 make	 patch	 comparison	 robust	 enough.	At	 the	 same	 time,	 we	 need	 to	 increase	 the
research	window	size	 to	 increase	 the	noise	 removal	capacity	of	 the	algorithm	by	 finding	more	similar
pixels.

The	value	of	 the	 filtering	parameter	writes	h=	k	σ.	The	 value	 of	k	decreases	as	 the	size	of	 the	patch
increases.	For	larger	sizes,	the	distance	of	two	pure	noise	patches	concentrates	more	around	2σ²	and
therefore	a	smaller	value	of	k	can	be	used	for	filtering.

Gray
σ Comp.	Patch Res.	Block h

0	<	σ	≤	15 3	x	3 21	x	21 0.40	σ
15	<	σ	≤	30 5	x	5 21	x	21 0.40	σ
30	<	σ	≤	45 7	x	7 35	x	35 0.35	σ
45	<	σ	≤	75 9	x	9 35	x	35 0.35	σ
75	<	σ	≤	100 11	x	11 35	x	35 0.30	σ

Color
σ Comp.	Patch Res.	Block h

0	<	σ	≤	25 3	x	3 21	x	21 0.55	σ
25	<	σ	≤	55 5	x	5 35	x	35 0.40	σ
55	<	σ	≤	100 7	x	7 35	x	35 0.35	σ

Source	Code
Some	of	the	files	use	algorithms	possibly	linked	to	the	cited	patent	[3].	These	files	are	made	available
for	 the	 exclusive	 aim	 of	 serving	 as	 scientific	 tool	 to	 verify	 the	 soundness	 and	 completeness	 of	 the
algorithm	 description.	 Compilation,	 execution	 and	 redistribution	 of	 these	 files	 may	 violate	 exclusive
patents	 rights	 in	 certain	 countries.	 The	 situation	 being	 different	 for	 every	 country	 and	 changing	 over
time,	 it	 is	 your	 responsibility	 to	 determine	 which	 patent	 rights	 restrictions	 apply	 to	 you	 before	 you
compile,	use,	modify,	or	redistribute	these	files.

The	rest	of	files	are	distributed	under	GPL	license.	A	C/C++	implementation	is	provided.

source	code	:	 tar.gz
source	code	documentation	:	 tar.gz	online

It	 should	 compile	 on	 any	 system	 since	 it's	 only	 strict	ANSI	 C/C++	 and	 is	 distributed	 under	 the	 GPL
licence.

Basic	compilation	and	usage	instructions	are	included	in	the	README.txt	file.	This	code	requires	libpng
and	is	limited	to	8bit	RGB	or	grayscale	PNG	image	files.

The	same	code	is	used	for	the	online	demo.

On	Line	Demo:	Try	It!
An	on-line	demo	of	this	algorithm	is	available.

The	demo	permits	to	upload	any	color	image,	add	Gaussian	noise	and	denoise	it.	The	images	proposed

http://www.ipol.im/pub/art/2011/bcm_nlm/nlmeansC.tar.gz
http://www.ipol.im/pub/art/2011/bcm_nlm/srcdoc.tar.gz
http://www.ipol.im/pub/art/2011/bcm_nlm/srcdoc/
http://www.gnu.org/licenses/gpl.html
http://www.ipol.im/pub/demo/bcm_non_local_means_denoising/
http://www.ipol.im/pub/demo/bcm_non_local_means_denoising/


The	demo	permits	to	upload	any	color	image,	add	Gaussian	noise	and	denoise	it.	The	images	proposed
on	the	demo	page	have	almost	no	noise,	having	been	obtained	by	first	taking	a	good	quality	snapshot	in
full	daylight,	and	then	zooming	them	down	by	a	factor	8.

Examples
The	example	below	 illustrates	how	the	NLmeans	algorithm	 is	able	 to	 remove	 the	noise	while	keeping
the	fine	structures	and	details.

original noisy,	standard	deviation	15 denoised

image	credits

feeds	&	twitter	•	sitemap	•	contact	•	privacy	policy	•	ISSN:	2105-1232	•	DOI:	10.5201/ipol	
IPOL	and	its	contributors	acknowledge	support	from	September	2010	to	August	2015	by	the	European	Research	Council
(advanced	grant	Twelve	Labours	n°246961).	
IPOL	is	also	supported	by	ONR	grant	N00014-14-1-0023,	CNES	(MISS	project),	FUI	18	Plein	Phare	project,	and	ANR-
DGA	project	ANR-12-ASTR-0035.	
IPOL	is	maintained	by	CMLA,	ENS	Cachan	•	DMI,	Universitat	de	les	Illes	Balears	•	Fing,	Universidad	de	la	República	
©	2009-2016,	IPOL	Image	Processing	On	Line	&	the	authors	 	 	 	

http://www.ipol.im/pub/art/2011/bcm_nlm/cinput.jpg
http://www.ipol.im/pub/art/2011/bcm_nlm/cnoisy.jpg
http://www.ipol.im/pub/art/2011/bcm_nlm/coutput.jpg
http://www.ipol.im/meta/feeds/
http://www.ipol.im/meta/sitemap/
http://www.ipol.im/meta/contact/
http://www.ipol.im/meta/privacy/
http://www.worldcat.org/issn/2105-1232
http://dx.doi.org/10.5201/ipol
http://www.cmla.ens-cachan.fr/
http://www.ens-cachan.fr/
http://dmi.uib.es/
http://www.uib.es/
http://www.fing.edu.uy/
http://www.universidad.edu.uy/
http://www.ipol.im/meta/copyright/

	Overview
	References
	Pixelwise Implementation
	Patchwise Implementation
	Parameters

	Source Code
	On Line Demo: Try It!
	Examples

