
Published in Image Processing On Line on 2011–09–13.
Submitted on 2011–00–00, accepted on 2011–00–00.
ISSN 2105–1232 c© 2011 IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
https://doi.org/10.5201/ipol.2011.blmv_ct

2
0
1
5
/
0
6
/
1
6

v
0
.5
.1

IP
O
L

a
rt
ic
le

c
la
ss

Cartoon+Texture Image Decomposition

Antoni Buades1, Triet Le2, Jean-Michel Morel3, Luminita Vese4

1 TAMI, Universitat de les Illes Balears, SPAIN (toni.buades@uib.es)
2 Mathematics Department, Yale University, USA ({triet.le@yale.edu)

3 CMLA, ENS Cachan, France (moreljeanmichel@gmail.com)
4 Mathematics Department, University of California at Los Angeles, USA (lvese@math.ucla.edu)

Communicated by Jean-François Aujol Demo edited by Jose-Luis Lisani

Abstract

In this article we give a thorough description of the algorithm proposed in [A. Buades, T. Le,
J.M. Morel and L. Vese, Fast cartoon + texture image filters, IEEE Transactions on Image
Processing, 2010] for cartoon+texture decomposition using of a nonlinear low pass-high pass
filter pair.

Source Code

The source code (ANSI C), its documentation, and the online demo are accessible at the IPOL
web page of this article1.

Keywords: cartoon; texture; nonlinear filters

1 Introduction

The algorithm first proposed in [3] stems from a theory proposed by Yves Meyer in [1]. The car-
toon+texture algorithm decomposes any image f into the sum of a cartoon part, u , where only
the image contrasted shapes appear, and a textural v part with the oscillating patterns. Such a
decomposition f = u + v is analogous to the classical signal processing low pass-high pass filter de-
composition. However, the cartoon part of an image actually contains strong edges, and therefore all
frequencies, up to the high ones, while a texture can also contain middle and high frequencies. Thus,
linear decomposition algorithms cannot make a clear cut separation between cartoon and textures.
They blur out edges and take their high frequencies into the texture part. Conversely, they leave
behind some texture in the low pass filtered cartoon part. Yves Meyer proposed to solve the problem
by a variational problem containing two norms: the right decomposition f = u+ v is the one where
the cartoon part u has minimal total variation while the oscillatory component has a minimal norm
in a dual space of BV. This second norm does not penalize oscillation: the higher the frequency

1https://doi.org/10.5201/ipol.2011.blmv_ct

Antoni Buades, Triet Le, Jean-Michel Morel, Luminita Vese, Cartoon+Texture Image Decomposition, Image Processing On Line, 1
(2011), pp. 200–207. https://doi.org/10.5201/ipol.2011.blmv ct

Cartoon+Texture Image Decomposition

of the oscillation of v, the smaller its norm. In [3] one can find a detailed history and analysis of
variational algorithms and variants for the original Meyer formulation, which seems to start with [2].
The many variants proposed in the literature consider various functional spaces for the textural part
(dual of BV, Besov spaces, etc.).

In this article we give a thorough description of the algorithm proposed in [3]. It is a fast
approximate solution to the original variational problem obtained by applying a nonlinear low pass-
high pass filter pair. The algorithm proceeds as follows. For each image point, a decision is made of
whether it belongs to the cartoon part or to the textural part. This decision is made by computing
a local total variation of the image around the point, and comparing it to the local total variation
after a low pass filter has been applied.

Edge points in an image tend to have a slowly varying local total variation when the image
is convolved by a low pass filter. Textural points instead show a strong decay of their local total
variation by convolution with a low pass filter. The cartoon+texture filter pair is based on this
simple observation.

The cartoon part keeps the original image values at points termed as non-textural points. At
points identified as texture points, the cartoon part takes the filtered value. At points where the
cartoon/texture decision is ambiguous, a weighted average of them is given. The texture part simply
is the difference between the original image and its cartoon part. As pointed out in [3], although the
algorithm does not claim to exactly solve the original variational problem, it retains its inspiration,
and brings in a transparent user parameter, the scale of the texture, to specify the decomposition.

2 The Scale Parameter

There is no unique decomposition of an image into texture and cartoon. A texture seen at close
range is just a set of well-distinguished objects, such as leaves, bubbles, stripes, or straws. Thus, it
can be kept in the cartoon part for low values of the scale parameter, and passes over to the textural
part for larger scales.

The scale parameter in the algorithm is therefore crucial, and must be chosen by the user. How-
ever, a default value is proposed in the first trial. The scale parameter is measured in pixel size. Thus
σ = 2 means roughly that the texture half-period is 2 pixels. With σ = 2, only the finest textures
are distinguished.

In general, humans perceive image regions as textures for values ranging from σ = 3 to 6. Over
this last value, the textures are made of well distinguished and contrasted objects, and the decision
to view them as a texture is definitely subjective.

3 Algorithm

The main characteristics of a textured region is its high total variation. The formalization of this
remark leads to define the local total variation (LTV) for every pixel x

LTV σ(x)(f) := Gσ ∗ |∇f |(x),

where Gσ is a Gaussian kernel with standard deviation σ.

The relative reduction rate of LTV is defined by

λ(x) :=
LTVσ(x)(f)− LTVσ(x)(Lσ ∗ f)

LTVσ(x)(f)
,

201

Antoni Buades, Triet Le, Jean-Michel Morel, Luminita Vese

being Lσ a low pass filter. As LTV decreases very fast under low pass filtering, λ(x) gives us the
local oscillatory behavior of the function.

LTVσ(x)(f)− LTVσ(x)(Lσ ∗ f)

LTVσ(x)(f)
= λ ⇐⇒ LTVσ(x)(Lσ ∗ f) = (1− λ)LTVσ(x)(f).

If λ is close to 0, there is little relative reduction of the local total variation by the low pass filter.
If instead λ is close to 1 the reduction is strong, which means that the considered point belongs to a
textured region. Thus, a fast nonlinear low pass and high pass filter pair can be computed by doing
weighted averages of f and Lσ ∗ f depending on the relative reduction of LTV

u(x) = ω(λ(x))Lσ ∗ f + (1− ω(λ(x)))f, v(x) = f(x)− u(x),

where w(x) : [0, 1]→ [0, 1] is a nondecreasing piecewise affine function that is constant and equal to
zero near zero and constant and equal to 1 near 1 (Figure 1).

In all experiments the soft threshold parameters defining w have been fixed to a1 = 0.25 and
a2 = 0.5. If λ(x) is small the function f is non-oscillatory around x and therefore the function is
BV around x. Thus u(x) = f(x) is the right choice. If instead λ is large, the function f is locally
oscillatory and locally replaced by Lσ ∗ f .

0 a1 a2 1

Figure 1: The soft threshold function w(s).

The choice of λ = 1/2 as underlying hard threshold is conservative: it ensures that all step edges
stay on the cartoon side, but puts all fine structures on the texture side, as soon as they oscillate
more than once. Since it is desirable to have a one-parameter method, λ is fixed once and for all. In
that way the method keeps the scale of the texture as the only method parameter.

4 Implementation

As indicated in the algorithm, the cartoon+texture decomposition only requires the application on
the gradient image of two low-pass filters, which are performed directly by a discrete convolution.
The gradient is computed by the simplest centered difference scheme. The main steps are:

1. Apply a low pass filter to the initial image f .

The low pass filtered image Lσ ∗ f is obtained by convolving f with the low pass filter Lσ =
(Id − (Id − Gσ)n), indicating n that the convolution is iterated n times and being n fixed to
5. Convolutions are computed in space with mirror boundary conditions, that is, the image is
symmetrized out of its domain. In the current implementation this low pass filtered image is
obtained iterativelly (see Algorithm 1).

We preferred this low pass filter to a Fourier based filter as proposed in [3], for simplicity in
the coding. Figure 2 illustrates the low pass-high pass behavior of the proposed filter Lσ and
the corresponding Hσ = Id− Lσ for several values of n.

202

Cartoon+Texture Image Decomposition

Algorithm 1: Iterative low-pass filtering.

low ← Gσ ∗ f
high ← f - low
for i = 1 . . . n do

high ← high - Gσ ∗ high
low ← f - high

Figure 2: Lσ and the corresponding Hσ = Id− Lσ for several values of n.

2. Compute the Euclidian norm of the image gradients of f and Lσ ∗ f .

The vertical and horizontal derivatives are computed by a centered two point scheme and the
modulus of the gradient with an Euclidean norm.

ux(i, j) = u(i+ 1, j)− u(i− 1, j)

uy(i, j) = u(i, j + 1)− u(i, j − 1)

|∇u| =
√

ux(i, j)2 + uy(i, j)2

3. Convolve these moduli with the Gaussian Gσ to get the local total variation of f and Lσ ∗ f .

Convolutions are computed in space with mirror boundary conditions.

4. Deduce the value of λ(x) at each point in the image.

5. Deduce the value of the cartoon image as a weighted average of f and Lσ ∗ f .

6. Compute the texture as the difference u− f .

The color implementation for a color image f = (r, g, b) is as follows:

1. Apply a low pass filter independently to each channel of the image f .

2. Compute the local total variation of each channel of the original and low pass filtered images.
Compute the color local total variation as the average of the red, green and blue local total
variations.

3. Deduce the value of λ(x) at each point in the image by using the color local total variation.
That is, the same function λ(x) is used for the three channels.

4. Deduce the value of the cartoon image as a weighted average of each channel of f and Lσ ∗ f .

5. Compute the texture as the difference u− f .

203

Antoni Buades, Triet Le, Jean-Michel Morel, Luminita Vese

5 Examples

5.1 Cactus

Examples in Figure 3 illustrate several aspects of the decomposition. On the cactus image, which is
large, a scale 5 is just enough to remove some detail. The borders of the cactus leaves are in no way
step edges. In fact for many of them the color oscillates strongly near the edges, and is considered
as texture.

Figure 3: From left to right: original, cartoon, texture. Computed with scale parameter 5.

5.2 Noisy Square

The second image (Figure 4), a noisy square on noisy background, is correctly divided into a smooth
cartoon with sharp boundary and a noise texture. Notice an undesirable adhesion effect: points
near the edges are considered edge points, and therefore their texture is kept in the cartoon part.
This adhesion effect is observable in all images and would only disappear if the isotropic filters were
replaced by anisotropic filters.

Figure 4: From left to right: original, cartoon, texture. Computed with scale parameter 3. Observe
the adhesion problem near the edge.

5.3 Dolphin

This photograph of a logo on a boat (Figure 5) is an almost perfect cartoon! The algorithm does
well in keeping it almost entirely in the cartoon part.

204

Cartoon+Texture Image Decomposition

Figure 5: From left to right: original, cartoon, texture. Computed with scale parameter 4. The
cartoon image is almost identical to the original.

5.4 Fingerprint

In this fingerprint image (Figure 6) the cartoon part only contains, as expected, a step function
indicating the location of the fingerprint.

Figure 6: From left to right: original, cartoon, texture. Computed with scale parameter 2.5. The
texture image contains almost all the image details.

5.5 Textured Square

In this image, everything is texture. So the cartoon only contains a smoothed version of the original,
and all details move to the textured part (Figure 7).

5.6 Other examples

Figure 8 displays other examples of cartoon+texture decomposition with the proposed algorithm.

Image Credits

Fazen, Djfrank, CC-BY-NC-SA, Flickr2.

2https://www.flickr.com/

205

Antoni Buades, Triet Le, Jean-Michel Morel, Luminita Vese

Figure 7: From left to right: original, cartoon, texture. Computed with scale parameter 3. The
cartoon image is blurred, while the texture image contains almost everything.

Figure 8: For each row, from left to right: original, cartoon, texture. The scale parameter is 5 in the
first two rows and 4 in the last row.

References

[1] Y. Meyer, Oscillating patterns in image processing and nonlinear evolution equations: the
fifteenth Dean Jacqueline B. Lewis memorial lectures, American Mathematical Society, 2001.

206

Cartoon+Texture Image Decomposition

http://www.worldcat.org/isbn/0821829203.

[2] L.A. Vese and S.J. Osher. Modeling Textures with Total Variation Minimization and Oscillating
Patterns, Image Processing. Journal of Scientific Computing,19(1):553-572, 2003. http://dx.
doi.org/10.1023/A:1025384832106.

[3] A. Buades, T. Le, J.M. Morel and L. Vese, Fast cartoon + texture image filters, IEEE Transactions
on Image Processing, Vol. 19 (18), pp: 1978-1986, 2010. http://dx.doi.org/10.1109/TIP.
2010.2046605.

207

	Introduction
	The Scale Parameter
	Algorithm
	Implementation
	Examples
	Cactus
	Noisy Square
	Dolphin
	Fingerprint
	Textured Square
	Other examples

