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Overview

Roussos and Maragos proposed a method for image interpolation
in “Reversible interpolation of vectorial images by an anisotropic
diffusion-projection PDE” [9]. An earlier version was also published
in conference paper [8].

Given a discretely sampled image v, the method finds an image u
such that

where h is the (assumed known) point spread function and * denotes convolution.

The method is inspired by tensor-driven diffusion works of Tschumperlé [6], [7] and Weickert [3].
Roussos and Maragos propose interpolation by evolving a diffusion equation to steady state,

where T is a tensor determined from image structure tensor and the diffusion is orthogonally
projected to agree with the observed data. This is diffusion is based on the general anisotropic
diffusion model proposed by Weickert [3]. The method can be applied to grayscale, color, or general
vector-valued images.
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Online Demo

An online demo of this algorithm is available.

Initial Interpolation

First, an initial interpolation u0 is computed by Fourier zero-padding with deconvolution,

where  is the two-dimensional Fourier transform of the point spread function h,

For the division, it is assumed that  in [−½,+½]×[−½,+½].

This interpolation is used as an initialization for the tensor-driven diffusion because it satisfies vn =
(h * u0)(n) for all n. It is well-known that Fourier interpolation produces significant ringing artifacts, so
the goal of the diffusion is to remove the ringing.

Structure Tensor

As introduced by Bigün and Granlund [1] and Förstner and Gülch [2], the image structure tensor is

At each point in the image, J(Ñu) is a 2×2 symmetric matrix. Roussos and Maragos use the smoothed
structure tensor,

where Gs and Gr are Gaussians with standard deviations s and r, which control the amount of pre-
a n d post-smoothing. The post-smoothing convolution with Gr is applied separately to each
component of the tensor. The image gradient Ñu can be discretized using centered differences.
Alternatively, the gradient may be incorporated into the pre-smoothing convolution as
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and then approximated with discrete convolutions.

For a color image, the smoothed structure tensor is computed as the sum of the smoothed structure
tensors for each channel.

Next, at every point in the image, the eigenvectors and eigenvalues of the the 2×2 matrix Jr(Ñus) are
computed. Since the matrices are guaranteed to be symmetric and real, the eigenvalues are real and
the eigenvectors are real and orthogonal. Following Tschumperlé [6], [7], Roussos and Maragos
construct the tensor T according to this eigensystem,

where K is a parameter, l1 ≤ l2 are the eigenvalues and w1 and w2 are the corresponding
eigenvectors. The tensor is recomputed every n timesteps of the diffusion.

To compute the eigensystem of a matrix  the eigenvalues are

and provided b ≠ 0, the eigenvector corresponding to l1 is

The other eigenvector w2 is found as the orthogonal complement.

Tensor-Driven Diffusion

The interpolation is diffused according to the tensor as

where  denotes the components of the tensor field T from the previous section. To implement
the diffusion, one approach is proposed in Weickert's book [3]. More recently, Weickert and Scharr [4]
proposed a method that is faster yet also simpler: define the derivative approximations

then the diffusion is implemented explicitly using this approximation as

The filters Fx and Fy have optimal approximate rotation invariance among all 3×3 linear filters.
Weickert and Scharr claim that rotation invariance is crucial for avoiding blur artifacts in the diffusion.
Since Fx and Fy are 3×3 linear filters, the composition used in the formula above is effectively a 5×5



scheme.

Note that Fx and Fy are separable filters and have only two different filter coefficient values, so they
can be implemented efficiently:

and similarly for Fy.

For a color image, the diffusion scheme is computed independently to each channel. The channels
are nevertheless coupled since they are all guided by the same tensor field, which is computed jointly
over the channels.

Projection onto the Solution Set

The input is modeled as sampling the underlying continuous-domain image by v = sample(h * u), so
the solution is required to belong to the affine set

To impose this requirement, the diffusion is orthogonally projected onto Wv,

where P0 denotes orthogonal projection onto W0 and the initial interpolation u0 computed with Fourier
zero-padding is in Wv. Then u is in Wv for all t > 0.

For numerical implementation, the solution is projected onto Wv after every n time steps and after the
final time step. The projection is expensive to compute compared to the other steps of the algorithm,
so it is helpful to reduce the number of projections that need to be computed.

We use the following normalization of the Fourier transform,

Before the main iteration, a function f is precomputed,

The projection onto Wv can then be implemented as

See derivation of Pv

Algorithm

Here we summarize the algorithm. First, the initial interpolation u0 is computed by Fourier zero-

padding with deconvolution and the projection function  is precomputed. The algorithm then iterates
the main projection-diffusion loop:



1. Compute the tensor T.
2. Perform n explicit timesteps of ∂tu = div(TÑu) using the approximation

3. Orthogonally project the solution onto Wv with 

The loop stops when either ||ucur − uprev||2 ≤ tol or when a maximum number of iterations N is
reached.

For operations involving Fourier transforms, boundary artifacts are avoided by half-sample symmetric
extension of the image. In the implementation, the image is extended by (5×scalefactor) pixels on
each of the four borders of the image.

Implementation

This software is distributed under the terms of the simplified BSD license.

source code zip  tar.gz
online documentation

Fourier transforms are implemented using the FFTW library. Please see the readme.html file or the
online documentation for details.

Examples

The following examples demonstrate the method for factor-4 interpolation. The parameters used are

point spread function h is a Gaussian with standard deviation 0.5 in units of input pixels
K = 1
dt = 2
tol = 0.1
n = 5 iterations
N = 50 maximum iterations

In practice, the standard deviation of the Gaussian point spread function h must be tuned to
approximate how the input image was sampled. The examples are shown using standard deviation
0.5, which provides moderate antialiasing. In the online demo, the default value is 0.35, which is a
reasonable model of the blurriness of typical images.

Input Image (86×79) Tensor-Driven Diffusion, CPU time 5.216s
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Input Image (86×79) Tensor-Driven Diffusion, CPU time 2.149s

The next example demonstrates the method's good performance on oriented textures. The top row
shows the input images and the bottom row shows the corresponding interpolations created using the
method.

Sweater Towel Grass
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Here we compare the interpolation with several existing methods. A high resolution image is
coarsened by convolving with h and the downsampling by factor 4 to create the input image. This
image is then interpolated with each of the methods and compared with the original using the PSNR
and MSSIM metrics. The time to compute the interpolation is also shown.

Original Image (332×300) Input Image (83×75)

Bicubic
PSNR 24.36, MSSIM 0.6311, CPU time 0.012s

Fractal Zooming [11]
PSNR 24.50, MSSIM 0.6317

Fourier Zero-Padding with Deconvolution
PSNR 25.70, MSSIM 0.7104, CPU time 0.049s

TV Minimization [5]
PSNR 25.87, MSSIM 0.7181, CPU Time 2.72s
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Contour Stencils [10]
PSNR 25.99, MSSIM 0.7256, CPU Time 0.077s

Tensor-Driven Diffusion
PSNR 26.01, MSSIM 0.7303, CPU Time 2.23s
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