ASIFT:
A New Framework for Fully Affine Invariant Image Comparison

Guoshen Yu,
Ecole Polytechnique, France

Jean-Michel Morel
ENS Cachan, France
Proposed method: ASIFT.
State of the art: SIFT.
State of the art: MSER.
State of the art: Hessian Affine.
State of the art: Harris Affine.
Proposed method: ASIFT.
State of the art: SIFT.
State of the art: MSER.
State of the art: Hessian Affine.
State of the art: Harris Affine.
Proposed method: ASIFT.
State of the art: SIFT.
State of the art: MSER.
State of the art: Hessian Affine.
State of the art: Harris Affine.
Proposed method: ASIFT.
State of the art: SIFT.
State of the art: MSER.
State of the art: Hessian Affine.
State of the art: Harris Affine.
The new state of the art:

It is by now possible to recognize a solid object in a digital image, no matter what the angle and the distance, up to limits that only depend on resolution.
In this pair: A very large transition tilt (extreme angle). The transition tilt will be defined later.
90 correct matches, 4 outliers. The matches were obtained by the \textit{Affine SIFT} method (ASIFT), a variant of the SIFT method.
The projective camera model $u = S_1 G_1 A u_0$.
- A is a planar projective transform (homography).
- G_1 is an anti-aliasing gaussian filter.
- S_1 is the CCD sampling. Shannon condition satisfied: $u = S_1 G_1 A u_0 \rightarrow u = G_1 A u_0$.

\[
\begin{align*}
u &= S_1 G_1 A u_0 \\
y &\text{digital image} & S_1 & \text{sampling (grid)} & G_1 & \text{Gaussian kernel (blur)} & A & \text{planar projective map} & u_0 & \text{original infinite resolution surface}
\end{align*}
\]
Affine Simplification

If the object’s shape is locally smooth, local deformations in a single view can be approximated by several different local affine transforms.

Affine transforms map rectangles to parallelograms.
Geometric Interpretation of the Six Affine Parameters

\[u = S_1 G_1 A u_0. \]

\(A \) is an affine map:

\[
\begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} e \\ f \end{pmatrix}
\]

\[
A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = H_\lambda R_1(\psi) T_\theta R_2(\phi) = \lambda \begin{bmatrix} \cos \psi & -\sin \psi \\
\sin \psi & \cos \psi \end{bmatrix} \begin{bmatrix} t & 0 \\
0 & 1 \end{bmatrix} \begin{bmatrix} \cos \phi & -\sin \phi \\
\sin \phi & \cos \phi \end{bmatrix}
\]

- \(\phi \): longitude angle between optical axis and a fixed vertical plane.
- \(\theta = \arccos(1/t) \): latitude angle between optical axis and the normal to the image plane.
 \(\text{Tilt } t > 1 \iff \theta \in [0^\circ, 90^\circ] \).
- \(\psi \): rotation angle of camera around optical axis.
- \(\lambda \): zoom parameter.
- \(T = (e, f)^T \): translation, not presented here.
Geometric Interpretation of the Six Affine Parameters

\[u = S_1 G_1 A u_0. \]

\(A \) is an affine map:

\[
\begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} e \\ f \end{pmatrix}
\]

\[
A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = H \lambda R_1(\psi) T_t R_2(\phi) = \lambda \begin{bmatrix} \cos \psi & -\sin \psi \\ \sin \psi & \cos \psi \end{bmatrix} \begin{bmatrix} t & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix}
\]

- \(\phi \): \textit{longitude} angle between optical axis and a fixed vertical plane.
Geometric Interpretation of the Six Affine Parameters

\[u = S_1 G_1 A u_0. \]

\(A \) is an affine map:

\[
\begin{pmatrix}
 x \\
 y
\end{pmatrix}
\rightarrow
\begin{bmatrix}
 a & b \\
 c & d
\end{bmatrix}
\begin{pmatrix}
 x \\
 y
\end{pmatrix}
+ \begin{pmatrix}
 e \\
 f
\end{pmatrix}
\]

\[
A = \begin{bmatrix}
 a & b \\
 c & d
\end{bmatrix} = H_\lambda R_1(\psi) T_t R_2(\phi) = \lambda \begin{bmatrix}
 \cos \psi & -\sin \psi \\
 \sin \psi & \cos \psi
\end{bmatrix} \begin{bmatrix}
 t & 0
\end{bmatrix} \begin{bmatrix}
 \cos \phi & -\sin \phi \\
 \sin \phi & \cos \phi
\end{bmatrix}
\]

- \(\phi \): \textit{longitude} angle between optical axis and a fixed vertical plane.
Geometric Interpretation of the Six Affine Parameters

\[u = S_1 G_1 A u_0. \]

\(A \) is an affine map:

\[
\begin{pmatrix}
 x \\
 y
\end{pmatrix} \rightarrow \begin{bmatrix}
 a & b \\
 c & d
\end{bmatrix} \begin{pmatrix}
 x \\
 y
\end{pmatrix} + \begin{pmatrix}
 e \\
 f
\end{pmatrix}
\]

\[
A = \begin{bmatrix}
 a & b \\
 c & d
\end{bmatrix} = H_\lambda R_1(\psi) T_t R_2(\phi) = \lambda \begin{bmatrix}
 \cos \psi & -\sin \psi \\
 \sin \psi & \cos \psi
\end{bmatrix} \begin{bmatrix}
 t & 0 \\
 0 & 1
\end{bmatrix} \begin{bmatrix}
 \cos \phi & -\sin \phi \\
 \sin \phi & \cos \phi
\end{bmatrix}
\]

- \(\theta = \arccos(1/t) \): latitude angle between optical axis and the normal to the image plane.

 Tilt \(t > 1 \leftrightarrow \theta \in [0^\circ, 90^\circ] \).
Geometric Interpretation of the Six Affine Parameters

\[u = S_1 G_1 A u_0. \]

\(A \) is an affine map:

\[
\begin{pmatrix}
 x \\
 y
\end{pmatrix}
\rightarrow
\begin{bmatrix}
 a & b \\
 c & d
\end{bmatrix}
\begin{pmatrix}
 x \\
 y
\end{pmatrix}
+
\begin{pmatrix}
 e \\
 f
\end{pmatrix}
\]

\[
A = \begin{bmatrix}
 a & b \\
 c & d
\end{bmatrix} = H_\lambda R_1(\psi) T_t R_2(\phi) = \lambda
\begin{bmatrix}
 \cos \psi & -\sin \psi \\
 \sin \psi & \cos \psi
\end{bmatrix}
\begin{bmatrix}
 t & 0 \\
 0 & 1
\end{bmatrix}
\begin{bmatrix}
 \cos \phi & -\sin \phi \\
 \sin \phi & \cos \phi
\end{bmatrix}
\]

- \(\theta = \arccos(1/t) \): latitude angle between optical axis and the normal to the image plane.
- Tilt \(t > 1 \leftrightarrow \theta \in [0^\circ, 90^\circ] \).
Geometric Interpretation of the Six Affine Parameters

\[u = S_1 G_1 A u_0. \]

\[A \text{ is an affine map: } \begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} e \\ f \end{pmatrix} \]

\[A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = H_\lambda R_1(\psi) T_t R_2(\phi) = \lambda \begin{bmatrix} \cos \psi & -\sin \psi \\ \sin \psi & \cos \psi \end{bmatrix} \begin{bmatrix} t \\ 0 \end{bmatrix} \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} \]

- \(\psi \): rotation angle of camera around optical axis.
Geometric Interpretation of the Six Affine Parameters

\[u = S_1 G_1 A u_0. \]

\[A \] is an affine map:

\[
\begin{pmatrix}
 x \\
 y
\end{pmatrix}
\rightarrow
\begin{bmatrix}
 a & b \\
 c & d
\end{bmatrix}
\begin{pmatrix}
 x \\
 y
\end{pmatrix}
+ \begin{pmatrix}
 e \\
 f
\end{pmatrix}
\]

\[A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = H_\lambda R_1(\psi) T_t R_2(\phi) = \lambda \begin{bmatrix} \cos \psi & -\sin \psi \\ \sin \psi & \cos \psi \end{bmatrix} \begin{bmatrix} t & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} \]

- \(\psi \): rotation angle of camera around optical axis.
Geometric Interpretation of the Six Affine Parameters

\[u = S_1 G_1 A u_0. \]

\(A \) is an affine map:
\[
\begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} e \\ f \end{pmatrix}
\]

\[A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = H_\lambda R_1(\psi) T_t R_2(\phi) = \lambda \begin{bmatrix} \cos \psi & -\sin \psi \\ \sin \psi & \cos \psi \end{bmatrix} \begin{bmatrix} t & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} \]

\[\text{\(\lambda \)}: \ text{\textit{zoom}} \text{ parameter.} \]
Geometric Interpretation of the Six Affine Parameters

\[
\begin{align*}
 u &= S_1 G_1 A u_0. \\
 A &\text{ is an affine map: } \begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} e \\ f \end{pmatrix} \\
 A &= \begin{pmatrix} a & b \\ c & d \end{pmatrix} = H_\lambda R_1(\psi) T_t R_2(\phi) = \lambda \begin{pmatrix} \cos \psi & -\sin \psi \\ \sin \psi & \cos \psi \end{pmatrix} \begin{pmatrix} t & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}
\end{align*}
\]

- \(\lambda \): zoom parameter.
Transition Tilts

Both compared images are usually slanted views. The transition tilt quantifies the tilt between two such images.

Definition Consider two views of a planar image, \(u_1(x, y) = u(A(x, y)) \) and \(u_2(x, y) = u(B(x, y)) \) where \(A \) and \(B \) are two linear maps such that \(BA^{-1} \) is not a similarity. We call transition tilt \(\tau(u_1, u_2) \) and transition rotation \(\phi(u_1, u_2) \) the unique parameters such that

\[
BA^{-1} = H_\lambda R_1(\psi)T_\tau R_2(\phi). \tag{1}
\]
Properties of Transition Tilts

- The transition tilt is symmetric, i.e., \(\tau(u_1, u_2) = \tau(u_2, u_1) \);

- The transition tilt only depends on the absolute tilts and on the longitude angle difference: \(\tau(u_1, u_2) = \tau(t, t', \phi - \phi') \);

- One has \(t' / t \leq \tau \leq t' t \), assuming \(t' = \max(t', t) \);

- The transition tilt is equal to the absolute tilt: \(\tau = t' \), if the other image is in frontal view (\(t = 1 \)).
High Transition Tilts

\[\tau = 36 \Rightarrow \theta = 88.41^\circ \]
High Transition Tilts

\[\tau < 2 \text{ (SIFT)} \quad \tau < 10 \text{ (MSER)} \quad \tau < 40 \text{ (ASIFT)} \]

\[\theta = 80^\circ \]
Affine Invariance: Simulation v.s. Normalization

- **Simulation.**
 - all 6 parameters impossible, e.g. 10^6.

- **Normalization.**

 \[u = G_1 A u_0, \quad v = G_1 u_0 \Rightarrow u = A v \]

Non-commutation: in general, $G_1 A u_0 \neq AG_1 u_0$

- Translation T and rotation R can be normalized.
 Strong commutation with blur \Rightarrow normalization possible.

- Zoom H_λ and tilt T cannot be normalized *stricto sensu.*
 Weak commutation with blur \Rightarrow simulation necessary.

\[H_\lambda G_1 = G_{1/\lambda} H_\lambda \Rightarrow H_\lambda v \neq u \]
Affine Invariance: Simulation v.s. Normalization
State-of-the-art

- SIFT (Scale-Invariant Feature Transform) [Lowe 99, 04]:
 - Rotation and translation are normalized.
 - Zoom is simulated in the scale space.
 - No treatment on latitude and longitude: modest robustness $\tau_{\text{max}} < 2$.

- MSER (Maximally Stable Extremal Region) [Matas et al. 02] and LLD (Level Line Descriptor) [Musé et al. 06]
 - Attempt to normalize all the parameters.
 - Weakness: limited affine invariance $\tau_{\text{max}} < 10$, not scale invariant, small number of features.

- Other methods: Harris-Affine, Hessian-Affine [Mikolajczyk and Schmid 04]
State-of-the-art

- Other methods: [Baumberg, 00; Tuytelaars and Van Gool, 00, 04; Mikolajczyk and Schmid, 02, 04, 05; Schaffalitzky and Zisserman, 02; Brown and Lowe, 02, S. Belongie, J. Malik, and J. Puzicha, 02, Kadir, Zisserman, Brady, 04, Ke and Sukthankar, 04]

 - SIFT-based descriptors perform best.
 - MSER outperforms other affine invariant detectors such as Hessian Affine and Harris Affine.
SIFT: Scale Invariant Features Transform

- the initial digital image is $S_1G_1Au_0$, A is any similarity, u_0 is the underlying infinite resolution planar image;
- at all scales $\sigma > 0$, the SIFT method computes $u(\sigma, \cdot) = G_\sigma G_1 Au_0$ and “key points” (σ, x), namely scale and space extrema of $\Delta u(\sigma, \cdot)$;
- the blurred $u(\sigma, \cdot)$ image is sampled around each key point at a pace proportional to $\sqrt{1 + \sigma^2}$;
- directions of the sampling axes are fixed by a dominant direction of $\nabla u(\sigma, \cdot)$ in a σ-neighborhood of the key point;
- this yields rotation, translation and scale invariant samples: the 4 parameters of A have been eliminated!;
- the final SIFT descriptor keeps only orientations of the gradient to gain invariance w.r. light conditions.
SIFT Feature Points
SIFT: Scale Invariant Features Transform

Each key-point is associated a square image patch whose size is proportional to the scale and whose side direction is given by the assigned direction. Example of a 2×2 descriptor array of orientation histograms (right) computed from an 8×8 set of samples (left). The orientation histograms are quantized into 8 directions and the length of each arrow corresponds to the magnitude of the histogram entry.
Affine-SIFT (ASIFT) Overview

- Simulate latitude, longitude to achieve full affine invariance.
- Simulated images are compared by a rotation-, translation- and zoom-invariant algorithm, e.g., SIFT. (SIFT normalizes translation and rotation and simulates zoom.)
Inverting Tilts

Definition Given $t > 1$, the tilt factor, define

- the **geometric** tilt: $T^x_t u_0(x, y) := u_0(tx, y)$.
 In the y direction, $T^y_t u_0(x, y) := u_0(x, ty)$.

- the **simulated** tilt (taking into account camera blur): $\mathbb{T}^x_t v := T^x_t G^x_t \sqrt{t^2 - 1} \ast_x v$.
 In the y direction, $\mathbb{T}^y_t v := T^y_t G^y_t \sqrt{t^2 - 1} \ast_y v$.

- **Main Formula**
 For $t \geq 1$, $\mathbb{T}^y_t G_1 T^x_t = G_1 H_t$.
 Geometric tilts in x are reversed by simulated tilts in y up to a zoom-out scale change.
ASIFT Algorithm

1. Apply a dense set of rotations to both images u and v.

2. Apply in continuation a dense set of simulated tilts T^x_t to all rotated images.

3. Perform a SIFT comparison of all pairs of resulting images.

Notice that by the relation

$$T^x_t R \left(\frac{\pi}{2} \right) = R \left(\frac{\pi}{2} \right) T^y_t,$$

ASIFT simulates tilts in the y direction, up to a rotation.
Consistency of ASIFT: reduction from ASIFT to SIFT

Theorem 1 Let \(u = G_1 A T_1 u_0 \) and \(v = G_1 B T_2 u_0 \) be two images obtained from an infinite resolution image \(u_0 \) by cameras at infinity with arbitrary position and focal lengths. Then ASIFT, applied with a dense set of tilts and longitudes, simulates two views of \(u \) and \(v \) that are obtained from each other by a translation, a rotation, and a camera zoom. As a consequence, these images match by the SIFT algorithm.
Proof that ASIFT works

\[BA^{-1} = H_\lambda R_1 T_t^x R_2. \]

Compare: \(u = G_1 u_0, \quad v = G_1 R_1 T_t^x R_2 H_\lambda u_0. \)

Applying \(R_1^{-1} \) to \(v \) yields \(v \to v' = G_1 T_t^x R_2 H_\lambda u_0. \)

Then revert \(T_t^x \) by applying the simulated tilt in the \(y \) direction to \(v' \):

\(T^y := T_t^y G_1^y \sqrt{t^2-1} y. \) Indeed (main formula):

\[T_t^y G_1 T_t^x = G_1 H_t. \]

Thus by application of \(T^y \) to \(v' \) we get

\[v' \to G_1 H_t R_2 H_\lambda u_0 = G_1 H_{t\lambda} R_2 u_0, \]

which is SIFT equivalent to \(u \).
Parameter Sampling Range

- Longitude angle $\phi \in [0, \pi)$.

 $\mathbf{R}_1(\psi)\mathbf{T}_t\mathbf{R}_2(\phi + \pi) = \mathbf{R}_1(\psi + \pi)\mathbf{T}_t\mathbf{R}_2(\phi)$.

- Tilt $t = 1/\cos \theta \in [1, t_{\text{max}}]$.
 - Physical limitation: planar and Lambertian.
 - $t_{\text{max}} = 4\sqrt{2}$ obtained experimentally.
 - The resulting $\tau_{\text{max}} = 32$.
Parameter Sampling Range

\[t = 3 \ (\theta = 70.5^\circ), \ 151 \text{ correct ASIFT matches.} \]
Parameter Sampling Range

t = 5.2 (θ = 78.9°), 12 correct ASIFT matches.
Parameter Sampling Range

t = 8 (θ = 82.8°), 0 correct match.
Parameter Sampling Range

\[t = 3.8 \ (\theta = 74.7^\circ), \ 116 \ \text{correct ASIFT matches}. \]
Parameter Sampling Range

\[t = 5.6 \ (\theta = 79.7^\circ) \], 26 correct ASIFT matches.
Parameter Sampling Range

\[t = 8 \ (\theta = 82.8^\circ), \ 0 \ \text{ASIFT match}. \]
Parameter Sampling Step: Δt

- $t = 1/\cos \theta$, θ is the latitude angle.
- θ sampled with higher precision when $\theta \to 90^\circ$.
- Geometric sampling of t: $\Delta t = t_{k+1}/t_k$.
- $\Delta t = \sqrt{2}$ is obtained experimentally: compare $\mathbf{u} = T_{t_1} \mathbf{u}_0$ and $\mathbf{v} = T_{t_2} \mathbf{u}_0$ with SIFT.

<table>
<thead>
<tr>
<th>t</th>
<th>1</th>
<th>$\sqrt{2}$</th>
<th>2</th>
<th>$2\sqrt{2}$</th>
<th>4</th>
<th>$4\sqrt{2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ</td>
<td>0°</td>
<td>45°</td>
<td>60°</td>
<td>69.3°</td>
<td>75.5°</td>
<td>79.8°</td>
</tr>
</tbody>
</table>
Parameter Sampling Step: $\Delta \phi$

- ϕ: longitude angle.
- ϕ sampled with higher precision when $\theta \to 90^\circ$: $t \uparrow \Rightarrow \Delta \phi \downarrow$.
- Arithmetical sampling of ϕ: $\Delta \phi = \phi_{k+1} - \phi_k$.
- $\Delta \phi = 2 \times \frac{36^\circ}{t} = \frac{72^\circ}{t}$ is obtained experimentally: compare $\mathbf{u} = T_t R_1(\phi) \mathbf{u}_0$ and $\mathbf{v} = T_t \mathbf{u}_0$ with SIFT.
Parameter Sampling

Perspective view

View from the zenith
Acceleration: Multi-resolution ASIFT

1. ASIFT on low-resolution images \((r \times r)\) sub-sampled.

2. ASIFT on high-resolution images obtained with the M best affine transforms (only in case of success in 1.).
ASIFT Complexity

- Complexity proportional to (area of query) \(\times \) (searched area).

- Image area proportional to number of simulated tilts.
 - \(t = 2^{k/2}, \ k = 0, \ldots, K \).
 - \(\phi \in [0^\circ, 180^\circ), \ \triangle \phi = \frac{72^\circ}{t} \):
 \(|\{\phi(t)\}| \sim t\).
 - At tilt \(t \), image area \(\sim 1/t \).

- Example: \(t_{\text{max}} = 4\sqrt{2} \) (i.e. \(K = 5 \), \(r \times r = 3 \times 3 \) subsampling.
 - Image area on one side:
 \[
 \frac{1 + K \frac{180^\circ}{72^\circ}}{r^2} = 1.5 \times \text{original image}
 \]
 - One sided ASIFT (tilts simulated on query only): total complexity = \(1.5 \times \text{SIFT} \), \(\tau_{\text{max}} = 4\sqrt{2} \approx 5.6 \).
 - Two sided ASIFT (tilts simulated on query and searched images): total complexity = \((1.5)^2 \times \text{SIFT} = 2.25 \times \text{SIFT} \), \(\tau_{\text{max}} = 32 \).
Experiments: Image Matching

Zoom change. Number of correct matches: ASIFT (left)—222; SIFT (middle)—87; MSER (right)—4.
Experiments: Image Matching

Frontal v.s. -45° angle, zoom $\times1$: absolute tilt $t = 2$ (middle), $t < 2$ (left part), $t > 2$ (right part). Number of correct matches: ASIFT (left)—624; SIFT (middle)—236; MSER (right)—11.
Experiments: Image Matching

Frontal v.s. 75° angle, zoom ×1: absolute tilt $t = 4$ (middle), $t < 4$ (left part), $t > 4$ (right part). Number of correct matches: ASIFT (left)—202; SIFT (middle)—15; MSER (right)—5.
Experiments: Image Matching

Frontal v.s. -80° angle, zoom $\times 10$: absolute tilt $t = 5.8$. Number of correct matches: ASIFT (left)—75; SIFT (middle)—1; MSER (right)—2.
Experiments: Image Matching

Correspondences between the magazine images taken with absolute tilts $t_1 = t_2 = 2$ with longitude angles $\phi_1 = 0^\circ$ and $\phi_2 = 50^\circ$, transition tilt $\tau = 3$. Number of correct matches: ASIFT (left)—881; SIFT (middle)—2; MSER (right)—87.
Experiments: Image Matching

Correspondences between the magazine images taken with absolute tilts \(t_1 = t_2 = 4 \) with longitude angles \(\phi_1 = 0^\circ \) and \(\phi_2 = 90^\circ \), transition tilt \(\tau = 16 \). Number of correct matches: ASIFT (left)—88; SIFT (middle)—1; MSER (right)—9.
Experiments: Image Matching

Graffiti 1 vs 6.
Transition tilt: $\tau \approx 3.2$.
Number of correct matches:
ASIFT (top)—721;
SIFT (middle)—0;
MSER (bottom)—70.
Experiments: Image Matching

Images proposed by Matas et al.
Number of correct matches:
ASIFT (top)—254;
SIFT (middle)—10;
MSER (bottom)—22.
Experiments: Image Matching

Road signs.
Transition tilt: \(\tau \approx 2.6 \).

Number of correct matches:
ASIFT (top)—50;
SIFT (middle)—0;
MSER (bottom)—1.
Experiments: Image Matching

Parkings.
Transition tilt: $\tau \approx 15$.

Number of correct matches:
ASIFT (top)—78;
SIFT (middle)—0;
MSER (bottom)—0.
Experiments: Image Matching

Ecole Polytechnique.

Transition tilt $\tau = 2.4$. Number of correct matches: ASIFT (left)—103; SIFT (middle)—13; MSER (right)—4.
Experiments: Image Matching

Stump. Transition tilt $\tau = 2.6$. Number of correct matches: ASIFT (left)—168; SIFT (middle)—1; MSER (right)—6.
Experiments: Image Matching

Pentagon. Transition tilt $\tau \approx 2.5$.

Number of correct matches: ASIFT (left)—378, SIFT (middle)—6, MSER(right)—17.
Experiments: Image Matching

Statue of Liberty. Transition tilt $\tau \in [1.3, \infty)$.

Number of correct matches: ASIFT (left)—22, SIFT (right)—1.
Experiments: Image Matching

Left: flag. ASIFT (shown)—141, SIFT—31, MSER—2.
Right: SpongeBob. ASIFT (shown)—370, SIFT—75, MSER—4.
Experiments: Object Tracking
Symmetry Detection in Perspective

Symmetry detection = image comparison with its flipped version.

ASIFT SIFT MSER
Summary: fully affine-invariant image comparison

- Camera interpretation of affine space: 6 parameters.
- High transition tilts.
- Simulation v.s. normalization.
- Simulate scale, longitude and latitude.
- Normalize translation and rotation.
- Mathematical proof: fully affine-invariant.
- Sample the camera hemisphere (longitude and latitude).
- Multi-resolution acceleration.
- Reasonably small complexity.
- State-of-the-art results.
Reference:

Patent:

Website and Online Demo: try ASIFT with your images!

- http://www.cmap.polytechnique.fr/~yu/research/ASIFT/demo.html

For more information,

Google ASIFT