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Dataset:	An	image	dataset	for	systematic	evaluation	of
robustness	to	absolute	and	transition	tilt	of	the	image	matching
algorithms	is	available	:	 zip	 tar/gz.

Source	code	and	executable
This	IPOL	implementation	reproduces	exactly	the	same	results	as	in	the	online	demo.	
2010/01/09:	updated	to	version	2.1.2,	minor	bug	corrected.

source	code:	 	 	 	 tar/gz	 zip	
The	standalone	C++	program	is	compilable	on	Linux,	Mac	OSX	and	Windows	systems.
executable:	 	 zip	
Executable	versions	are	available	for	Windows.

Note	from	the	editor:	The	source	code	was	updated	on	April	30,	2011	to	resolve	a	possible	copyright
issue.	Only	the	SVD	functions	were	replaced.

Overview
If	 a	physical	object	has	a	smooth	or	piecewise	smooth	boundary,	 its	 images	obtained	by	cameras	 in
varying	 positions	 undergo	 smooth	 apparent	 deformations.	 These	 deformations	 are	 locally	 well
approximated	by	affine	transforms	of	the	image	plane.

In	 consequence	 the	 solid	 object	 recognition	problem	 has	 often	 been	 led	 back	 to	 the	 computation	 of
affine	 invariant	 image	 local	 features.	 Such	 invariant	 features	 could	 be	 obtained	 by	 normalization
methods,	but	no	fully	affine	normalization	method	exists	for	the	time	being.	Yet	as	shown	in	(see	 ref.	3)
the	 similarity	 invariance	 (invariance	 to	 translation,	 rotation,	 and	 zoom)	 is	 dealt	 with	 rigorously	 by	 the
SIFT	method	(see	ref.	5).	By	simulating	on	both	images	zooms	out	and	by	normalizing	translation	and
rotation,	the	SIFT	method	succeeds	in	being	fully	invariant	to	four	out	of	the	six	parameters	of	an	affine
transform.

The	method	illustrated	and	demonstrated	in	this	work,	Affine-SIFT	(ASIFT),	simulates	a	set	of	sample
views	of	 the	 initial	 images,	obtainable	by	varying	 the	 two	camera	axis	orientation	parameters,	namely
the	latitude	and	the	longitude	angles,	which	are	not	treated	by	the	SIFT	method.	Then	it	applies	the	SIFT
method	 itself	 to	 all	 images	 thus	 generated.	 Thus,	ASIFT	 covers	 effectively	 all	 six	 parameters	 of	 the
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method	 itself	 to	 all	 images	 thus	 generated.	 Thus,	ASIFT	 covers	 effectively	 all	 six	 parameters	 of	 the
affine	 transform.	The	method	 is	mathematically	proved	 in	 (see	ref.	1)	 to	be	 fully	 affine	 invariant.	And,
against	any	prognosis,	 simulating	a	 large	enough	set	of	 sample	views	depending	on	 the	 two	camera
orientation	 parameters	 is	 feasible	 with	 no	 dramatic	 computational	 load.	 The	 main	 anamorphosis
(deformation)	from	an	image	to	another	caused	by	applying	affine	transforms	can	be	measured	by	the
transition	tilt,	a	new	geometric	concept	introduced	in	(see	ref.	1)	and	explained	below.

While	 state-of-the-art	methods	 before	ASIFT	 hardly	 exceeded	 transition	 tilts	 of	 2	 (SIFT),	 2.5	 (Harris-
Affine	and	Hessian-Affine	 (see	ref.	6)	and	10	 (see	ref.	4),	ASIFT	can	handle	 transition	 tilts	up	32	and
higher.	 MSER	 can	 actually	 deal	 with	transition	 tilts	 as	 high	 as	 10	 only	 when	 both	 objects	 are	 taken
roughly	at	the	same	distance.	Indeed,	contrarily	to	SIFT,	MSER	is	not	scale	invariant,	because	it	does
not	simulate	the	blur	due	to	an	increasing	distance	to	the	object.	The	affine	transforms	considered	in	the
celebrated	comparison	paper	(see	ref.	7)	do	not	have	high	transition	tilts	as	those	that	can	be	handled
by	ASIFT.	As	shown	by	the	experiment	archive,	most	scenes	with	negligible	or	moderate	camera	view
angle	 change	 that	match	with	ASIFT	also	match	with	SIFT	 (with	 usually	 fewer	matching	 points).	 But,
when	the	view	angle	change	becomes	important,	SIFT	and	other	methods	fail	while	ASIFT	continues	to
work,	as	we	shall	see	in	the	examples	below.

Disclaimer
The	present	work	publishes	only	the	ASIFT	algorithm	as	described	below.	It	does	not	publish	the	SIFT
and	ORSA	subroutines	which	are	called	by	the	ASIFT	code.	SIFT	and	ORSA	may	be	later	updated	or
replaced	by	other	subroutines.
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Figure	1.	The	projective	camera	model.

As	 illustrated	 by	 the	 camera	 model	 in	 Figure	 1,	digital	 image	 acquisition	 of	 a	 flat	 object	 can	 be
described	as

where	 	 is	 a	 digital	 image	 and	u0	 is	 an	 (ideal)	 infinite	 resolution	 frontal	 view	 of	 the	 flat	 object.	 The
parameters	 	and	A	are	respectively	a	plane	translation	and	a	planar	projective	map	due	to	the	camera
motion.	G1]	 is	 a	 Gaussian	 convolution	 modeling	 the	 optical	 blur,	 and	 	 is	 the	 standard	 sampling
operator	on	a	regular	grid	with	mesh	1.	The	Gaussian	kernel	is	assumed	to	be	broad	enough	to	ensure
no	aliasing	by	the	1-sampling,	therefore	with	a	Shannon-Whittaker	 interpolation	I,	one	can	recover	the
continuous	 image	from	 its	discrete	version:	 .	 	will	be	thus	omitted	 in	 the
following.

Affine	local	approximation

Figure	2.	Affine	local	approximation.

We	shall	proceed	to	a	further	simplification	of	the	above	model,	by	reducing	 A	to	an	affine	map.	Figure
2	shows	one	of	the	first	perspectively	correct	Renaissance	paintings	by	Paolo	Uccello.	The	perspective
on	 the	 ground	 is	 strongly	 projective:	 the	 rectangular	 pavement	 of	 the	 room	 becomes	 a	 trapezoid.
However,	 each	 tile	 on	 the	 pavement	 is	 almost	 a	 parallelogram.	This	 illustrates	 the	 local	 tangency	 of
perspective	deformations	 to	affine	maps.	 Indeed,	by	 the	 first	order	Taylor	 formula,	any	planar	smooth
deformation	can	be	approximated	around	each	point	by	an	affine	map.	The	perspective	deformation	of	a
plane	 object	 induced	 by	 a	 camera	motion	is	 a	 planar	 homographic	 transform,	 which	 is	smooth,	 and
therefore	locally	tangent	to	affine	transforms	u(x,y)	→	u(ax+by+e,	cx+dy+f)	in	each	image	region.

Affine	map	decomposition,	with	geometric	interpretation	as	a	camera
motion

Any	affine	map	A	with	strictly	positive	determinant	which	is	not	a	similarity	has	a	unique	decomposition

where	λ	>	0,	λ	t	 is	 the	determinant	of	A,	Ri	are	 rotations,	φ	∈	[0,	π),	 and	Tt	is	a	tilt,	namely	a	diagonal
matrix	with	first	eigenvalue	t	>	1	and	the	second	one	equal	to	1.

Figure	3.	Geometric	interpretation	of	affine	decomposition.
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Figure	3.	Geometric	interpretation	of	affine	decomposition.

Figure	3	shows	a	camera	motion	interpretation	of	the	affine	decomposition:	 φ	and	θ	=	arccos	1/t	are	the
viewpoint	 angles,	ψ	parameterizes	 the	camera	spin	and	λ	corresponds	 to	 the	zoom.	The	camera	(the
small	parallelogram	on	 the	 top-right)	 is	assumed	 to	stay	 far	away	 from	 the	 image	u	and	starts	 from	a
frontal	view	u,	i.e.,	λ	=	1,	t	=	1,	φ	=	ψ	=	0.	The	camera	can	first	move	parallel	to	the	object's	plane:	this
motion	induces	a	translation	 	that	is	eliminated	by	assuming	without	loss	of	generality	that	the	camera
axis	meets	the	image	plane	at	a	fixed	point.	The	plane	containing	the	normal	and	the	optical	axis	makes
an	 angle	φ	with	a	 fixed	vertical	plane.	This	angle	 is	called	"longitude".	 Its	optical	axis	 then	makes	a	θ
angle	with	 the	 normal	 to	 the	 image	plane	u.	This	parameter	 is	 called	 " latitude".	 Both	 parameters	 are
classical	coordinates	on	 the	"observation	hemisphere".	The	 camera	 can	 rotate	around	 its	 optical	 axis
(rotation	parameter	ψ).	Last	but	not	least,	the	camera	can	move	forward	or	backward,	as	measured	by
the	 zoom	 parameter	λ.	 We	 have	 seen	 that	 the	 affine	 model	is	 enough	 to	 give	 an	 account	 of	 local
projective	deformations.	If	the	camera	were	not	assumed	to	be	far	away,	the	plane	image	deformation
under	 a	 camera	motion	 would	 be	 a	 homography.	 Yet,	 as	 explained	 above,	 a	 homography	 is	 locally
tangent	to	an	affine	map.

Transition	tilts,	why	they	can	be	so	high?

The	parameter	t	defined	above	is	called	absolute	tilt,	since	it	measures	the	tilt	between	the	frontal	view
and	a	slanted	view.	In	real	applications,	both	compared	images	are	usually	slanted	views.	The	 transition
tilt	 is	designed	to	quantify	the	amount	of	tilt	between	two	such	images.	Assume	that	 v(x,y)	=	u(A(x,y))
and	w(x,y)	=	u(B(x,y))	are	two	slanted	views	of	an	flat	scene	whose	image	is	u(x,y),	where	A	and	B	are
two	 affine	 maps.	 Then	v(x,y)	 =	 w(AB-1(x,y)).	 The	 transition	 tilt	 between	v	 and	w	 is	 defined	 as	 the
absolute	tilt	associated	with	the	affine	map	AB-1.	 Let	t	 and	t'	 the	absolute	tilts	of	two	images	u	 and	u',
and	let	φ	and	φ'	be	their	longitude	angles.	The	 transition	tilt	τ(u,u')	between	the	two	images	depends	on
the	absolute	tilts	and	the	longitude	angles,	and	satisfies

t/t'	≤	τ(u,	u')	=	τ(u',u)	≤	t	t'

where	we	assume	t	≥	t' .	The	transition	tilt	can	therefore	be	be	much	higher	than	an	absolute	tilt.	Hence,
it	is	important	for	an	image	matching	algorithm	to	be	invariant	to	high	transition	tilts.

Figure	 4	 illustrates	 an	 example	 of	 high	 transition	 tilt.	 The	 frontal	 image	 (above)	 is	 squeezed	 in	 one
direction	 on	 the	 left	 image	 by	 a	 slanted	 view,	 and	 squeezed	 in	 an	 orthogonal	 direction	 by	 another
slanted	view.	The	absolute	tilt	(compression	factor)	is	about	6	in	each	view.	The	resulting	compression
factor,	or	transition	tilt	from	left	to	right	is	actually	6x6=36.

Figure	4.	High	transition	tilt.
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Figure	4.	High	transition	tilt.

Description	of	the	ASIFT	algorithm
A	 fully	 affine	 invariant	 image	matching	 algorithm	 needs	 to	 cover	 the	 6	 affine	 parameters.	 The	 SIFT
method	covers	4	parameters	by	normalizing	rotations	and	translations,	and	simulating	all	zooms	out	of
the	query	and	of	the	search	images.

Figure	5.	ASIFT	algorithm	overview.

As	 illustrated	 in	Figure	5,	ASIFT	complements	SIFT	by	simulating	 the	 two	parameters	 that	model	 the
camera	 optical	 axis	 direction	 (the	 original	 and	 simulated	 images	 are	 represented	 respectively	 by
squares	and	parallelograms),	and	then	applies	the	SIFT	method	to	compare	the	simulated	images,	so
that	all	 the	6	parameters	are	covered.	 In	other	words,	ASIFT	simulates	three	parameters:	 the	scale,
the	 camera	longitude	angle	 and	 the	latitude	angle	 (which	 is	equivalent	 to	 the	tilt)	 and	normalizes	 the
other	 three	 (translation	 and	rotation).	 ASIFT	 can	 thus	 be	 mathematically	 shown	 to	 be	 fully	 affine
invariant	(see	ref.	1).	Against	any	prognosis,	simulating	 the	whole	affine	space	 is	not	prohibitive	at	all
with	the	proposed	affine	space	sampling	(see	ref.	1	ref.	2).

Algorithm	description

ASIFT	proceeds	by	the	following	steps.

1.	 Each	image	is	transformed	by	simulating	all	possible	affine	distortions	caused	by	the	change	of
camera	optical	axis	orientation	from	a	frontal	position.	These	distortions	depend	upon	two
parameters:	the	longitude	φ	and	the	latitude	θ.	The	images	undergo	rotations	with	angle	φ
followed	by	tilts	with	parameter	t	=	1/|cos	θ|	(a	tilt	by	t	in	the	direction	of	x	is	the	operation	u(x,y)
→	u(tx,y)).	For	digital	images,	the	tilt	is	performed	by	a	directional	 t-subsampling.	It	therefore
requires	the	previous	application	of	an	antialiasing	filter	in	the	direction	of	x,	namely	the

convolution	by	a	Gaussian	with	standard	deviation	 .	The	value	 	is	the	value
shown	in	(see	ref.	3)	to	ensure	a	very	small	aliasing	error.	These	rotations	and	tilts	are	performed
for	a	finite	and	small	number	of	latitude	and	longitude	angles,	the	sampling	steps	of	these
parameters	ensuring	that	the	simulated	images	keep	close	to	any	other	possible	view	generated
by	other	values	of	φ	and	θ	(see	below).

2.	 All	simulated	images	are	compared	by	a	similarity	invariant	matching	algorithm	(SIFT).	SIFT	can
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be	replaced	by	any	other	similarity	invariant	matching	method.	(There	are	many	such	variants	of
SIFT.)	It	is	therefore	not	the	object	of	this	article	to	describe	the	SIFT	method.

3.	 The	SIFT	method	has	its	own	wrong	match	elimination	criterion.	Nonetheless,	it	generally	leaves
behind	false	matches,	even	in	image	pairs	that	do	not	correspond	to	the	same	scene.	ASIFT,	by
comparing	many	pairs,	can	therefore	accumulate	many	wrong	matches.	It	is	important	to	filter	out
these	matches.	The	criterion	used	is	that	the	retained	matches	must	be	compatible	with	an
epipolar	geometry.	We	use	to	that	goal	the	ORSA	method	(see	ref.	8),	which	is	considered	the
most	reliable	method,	robust	to	more	outliers	than	a	classic	RANSAC	procedure.	It	is	not	the	goal
of	this	article	to	present	ORSA.	It	is	simply	used	to	filter	out	the	matches	given	by	both	SIFT	and
ASIFT.	Thus,	it	may	occur	that	two	images	have	no	match	left	at	all.	This	does	not	necessarily
mean	that	there	are	no	ASIFT	matches;	the	matches	may	be	all	eliminated	as	incompatible	with
an	epipolar	geometry.

Parameter	sampling

Figure	6(a).	Sampling	of	the	parameters.	
The	samples	are	the	black	dots.	

Perspective	illustration	of	the	observation	hemisphere.

Figure	6(b).	Sampling	of	the	parameters.
The	samples	are	the	black	dots.	

Zenith	view	of	the	observation	hemisphere.

The	 sampling	 precision	 of	 the	 latitude	 and	 longitude	 angles	 should	 increase	with	θ,	 since	 the	 image
distortion	 caused	 by	 a	 fixed	 latitude	 or	 longitude	 angle	 displacement	 is	 more	 drastic	 at	 larger	θ.	 As
described	in	Figure	6,	the	sampling	of	the	latitude	and	longitude	angles	is	specified	below.

The	latitudes	θ	are	sampled	so	that	the	associated	tilts	follow	a	geometric	series	1,	a,	a2,	…,	an,	with
a	 >	 1.	 The	 choice	a	 =	 √2	 is	 a	 good	 compromise	 between	 accuracy	 and	 sparsity.	 In	 the	 present
implementation,	the	value	n	goes	up	to	5.	In	consequence	transition	tilts	going	up	to	32	(and	even	a
little	bit	more)	can	be	explored.

The	longitudes	φ	are	for	each	tilt	an	arithmetic	series	0,	b	/	t,	…,	kb	/	t,	where	b	≃	72°	seems	again	a
good	compromise,	and	k	is	the	last	integer	such	that	kb	/	t	<	180°.

Computational	complexity

Estimating	 the	 ASIFT	 complexity	 boils	 down	 to	 calculate	 the	 image	 area	 simulated	 by	 ASIFT.	 The
complexity	 of	 the	ASIFT	 feature	 computation	 is	 proportional	 to	 the	 image	 area	 under	 test.	 With	 the
parameter	 sample	 steps	Δt	 =	 √2,	 Δφ	 =	 72°/t,	 as	 proposed	 above,	 the	 simulated	 image	 area	 is
proportional	to	the	number	of	tilts	that	are	simulated.	With	the	proposed	simulated	tilt	range	[tmin,tmax]	=
[1,4√2],	which	allows	to	cover	a	transition	tilt	as	high	as	32,	the	total	simulated	area	is	about	13.5	times
the	area	of	 the	original	 image.	The	ASIFT	 feature	computation	complexity	 is	 therefore	13.5	 times	 the
complexity	 for	 computing	 SIFT	 features.	 The	 complexity	 growth	 is	 "linear"	 and	 thus	 marginal	 with
respect	to	the	"exponential"	growth	of	transition	tilt	invariance.
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Since	ASIFT	simulates	13.5	times	the	area	of	the	original	 images,	it	generates	about	13.5	times	more
features	 on	 both	 the	 query	 and	 the	 search	 images.	 The	 complexity	 of	ASIFT	 feature	 comparison	 is
therefore	13.52	≃	180	times	as	much	as	that	of	SIFT.

Note	 that	 on	 typical	 images,	 the	ASIFT	 feature	 computation	 dominates	 the	 computational	 complexity
with	 respect	 to	 feature	comparison.	So	 the	 total	ASIFT	computation	complexity	 typically	 is	about	13.5
times	that	of	SIFT	when	comparing	only	a	few	images.	If	instead	the	problem	is	to	compare	an	image	to
a	 huge	 database,	 this	 complexity	 is	 no	more	 negligible,	 and	 having	 180	 times	more	 comparisons	 to
perform	is	a	serious	limitation.

Coarse-to-fine	acceleration

An	 easy	 coarse-to-fine	 acceleration	 described	 in	(see	ref.	 1)	 reduces	 respectively	 the	 complexity	 of
ASIFT	feature	computation	and	comparison	to	1.5	and	2.25	times	that	of	SIFT.	This	acceleration	is	not
used	here.

Parallelization

In	addition,	the	SIFT	subroutines	(feature	computation	and	comparison)	in	ASIFT	are	independent	and
can	easily	be	implemented	in	parallel.	The	online	demo	uses	this	possibility.

Implementation

ASIFT	feature	computation

Implemented	in	the	C++	source	file	compute_asift_keypoints.cpp.

Input:
image	u
Input	parameters:
1.	Tilt	sampling	step:	\delta_t	=	\sqrt{2}
2.	Tilt	sampling	range:	n	=	5
3.	Rotation	sampling	step	factor:	b	=	72
Output:	ASIFT	keypoints	(referenced	by	tilt	and	rotation	values)

//	loop	over	tilts
for	t	=	1,	\delta_t,	\delta_t^2,	...,	\delta_t^n
{
				//	when	t	=	1	(no	tilt),	no	need	to	simulate	rotation
				if	(	t	==	1	)
				{
								theta	=	0;
								//	calculate	scale-,	rotation-	and	translation-invariant	features	on	the	origina
l	image
								key(t,	theta)	=	SIFT(u)	(--C++	routine:	compute_sift_keypoints)
				}
				else
				{
								//	loop	over	rotations	(angle	in	degree)
								for	theta	=	0,	b/t,	2b/t,	...,	kb/t	(such	that	kb/t	<	180)
								{
												//	Rotate	image	(with	bilinear	interpolation)
												u_r	=	rot(u,	theta)
												//	Anti-aliasing	filtering	(G_{0.8t}	is	a	Gaussian	convolution	with	kernel	s
tandard	deviation	equal	to	0.8t)
												//	This	1-dimensional	convolution	is	made	in	the	vertical	direction,	before	
sub-sampling	in	the	same	direction.
												u_f	=	G_{0.8t}	u_r
												//	Tilt	image	(subsample	in	vertical	direction	by	a	factor	of	t)
												u_t	=	tilt(u_f,	t)
											//	calculate	scale-,	rotation-	and	translation-invariant	features
												key(t,	theta)	=	SIFT(u_t)	(--C++	routine:	compute_sift_keypoints)

												Remove	the	keypoints	close	to	the	boundary	of	the	rotated	and	tilted	image	s
upport	(parallelogram)	in	u_t.	
												The	distance	threshold	is	set	equal	to	6\sqrt{2}	times	the	scale	of	each	key
point.	

												Normalize	the	coordinates	of	the	keypoints	from	the	rotated	and	tilted	image
	u_t	to	the	original	image	u.
								}



								}
				}
}

ASIFT	feature	comparison

Implemented	in	the	C++	source	file	compute_asift_matches.cpp.

Input:
ASIFT	keypoints	of	the	two	images:	key1	and	key2
Output:
Matched	keypoints:	matchinglist

//	loop	over	tilts	on	image	1
for	t1	=	1,	\delta_t,	\delta_t^2,	...,	\delta_t^n
{
				//	when	t1	=	1	(no	tilt),	no	rotation	simulated
				if	(	t1	==	1	)
				{
								theta1_all	=	[0]
				}
				else
				{
								theta1_all	=	[0,	b/t1,	2b/t1,	...,	kb/t1]	(such	that	kb/t1	<	180)
				}
				//	loop	over	rotations	on	image	1	(angle	in	degree)
				for	theta1	=	theta1_all[1],	...,	theta1_all[end]
								//	loop	over	tilts	on	image	2
								for	t2	=	1,	\delta_t,	\delta_t^2,	...,	\delta_t^n
								{
												//	when	t2	=	1	(no	tilt),	no	rotation	simulated
												if	(	t2	==	1	)
												{
																theta2_all	=	[0]
												}
												else
												{
																theta2_all	=	[0,	b/t2,	2b/t2,	...,	kb/t2]	(such	that	kb/t2	<	180)
												}
												//	loop	over	rotations	on	image	2	(angle	in	degree)
												for	theta2	=	theta2_all[1],	...,	theta2_all[end]
												{
																//	Matching	the	keypoints	between	the	two	simulated	images
																matchinglist(t1,	theta1,	t2,	theta2)	=	SIFT_match(keys1(t1,	theta1),	key
s2(t2,	theta2))	
																(--C++	routine:	compute_sift_matches)
												}
								}
}

Reshape	matchinglist	to	a	1D	vector	(the	tilt	and	rotation	parameters	are	no	longer	usef
ul).

//	matchinglist	may	contain	identical	matches	which	were	obtained	in	different	simulated
	image	pairs.
Remove	the	identical	matches	in	matchinglist	(retain	only	1).	
(Two	matches	are	considered	identical	if	the	distances	between	the	points	in	both	ends	a
re	small	than	\sqrt{2}.)

//	On	interpolated	images,	SIFT	is	sometimes	subject	to	an	artifact:		one
//	keypoint	in	one	image	is	matched	with	multiple	keypoints	in	the	other	image.
//	These	are		false	matches	which	must	be	detected	and		removed.
Remove	all	the	matches	such	that	a	keypoint	in	one	image	is	matched	with	multiple	keypoi
nts	in	another	image.
(A	keypoint	is	considered	matched	with	multiple	keypoints	if	the	distance	between	the	po
ints	is	smaller	than	1	
in	one	end	and	larger	than	2	in	the	other.)

//	Eliminate	false	matches	by	epipolar	geometry	filtering		[8]
matchinglist		=	ORSA(matchinglist)	(--C++	routine:	orsa)

Examples
ASIFT	is	compared	with	the	four	state-of-the-art	algorithms	the	SIFT,	Harris-Affine,	Hessian-Affine	and
MSER	detectors,	all	coded	with	the	SIFT	descriptor.	Various	types	of	images	(size	600×450)	were	used
for	 the	experiments.	The	SIFT	software	 is	 from	D.	Lowe.	The	Harris-Affine,	Hessian-Affine	and	MSER

http://www.cs.ubc.ca/~lowe/


for	 the	experiments.	The	SIFT	software	 is	 from	D.	Lowe.	The	Harris-Affine,	Hessian-Affine	and	MSER
programs	are	from	the	web	site	of	K.	Mikolajczyk.

video	tracking
planar	objects
monuments	and	constructions
3D	objects
complex	scenes
object	deformation

The	matches	are	connected	by	white	segments.

Video	tracking

ASIFT	 is	compared	with	SIFT	on	video	 tracking	 .	 In	each	video,	ASIFT	and	SIFT	 tracking	are	shown
respectively	on	the	top	and	bottom.	If	you	prefer	high-resolution	video,	please	download	the	video	files
by	clicking	the	links	below.

facade	(youtube	page,	high-resolution	video) magazine	(youtube	page

Planar	objects

Adam	short	distance	(zoom	×1)	at	frontal	view	and	at	75	degree	angle,	absolute	tilt	t	=	4	(middle),	<4
(left),	>4	(right)

Not	shown	Harris-Affine:	3	matches.	Hessian-Affine:	1	match

ASIFT:	202	matches SIFT:	15	matches

http://www.robots.ox.ac.uk/~vgg/research/affine/
http://www.youtube.com/watch?v=iY6d5pBdRC8
/data/algo/my_affine_sift/ASIFTtracking_spirou.avi
http://www.youtube.com/watch?v=RU6jN-U0TwM
/data/algo/my_affine_sift/ASIFTtracking_lepoint.avi


Adam	short	distance	(zoom	×10)	at	frontal	view	and	at	65	degree	angle,	absolute	tilt	t	=	2.4
Adam	short	distance	(zoom	×10)	at	frontal	view	and	at	80	degree	angle,	absolute	tilt	t	=	5.8
magazine	middle	distance	(zoom	×4)	at	frontal	view	and	at	80	degree	angle,	absolute	tilt	t	=	5.8
magazine	absolute	tilt	t1=	t2=	2,	with	longitude	angles	phi	1=	0	deg,	phi2=	50	deg,	transition	tilt	t	=	3
magazine	absolute	tilt	t1=	t2=	4,	with	longitude	angles	phi1=	0	deg,	phi2=	90	deg,	transition	tilt	t	=	16
facade	frontal	view	and	at	75	degree	angle,	absolute	tilt	t	=	3.8
graffiti	no.1	vs	no.	6	(images	from	K.	Mikolajczyk),	transition	tilt	t	~	3.2
direction	transition	tilt	t	~	2.6
parkings	transition	tilt	t	~	15
stump	transition	tilt	t	~	2.6

Monuments	and	constructions

round	building	transition	tilt	t	~	[1.8,	inf.)
palace	of	Versailles	transition	tilt	t	~	1.8
École	Polytechnique	pictures	at	frontal	view	and	at	65	degree	angle,	absolute	tilt	t	=	2.4

3D	objects

statue	transition	tilt	t	~	[1.6,	inf.)
can	transition	tilt	t	~	[2.3,	inf.)

Complex	scenes

office	transition	tilt	t	~	3
coffee	room	transition	tilt	t	~	[1.5,	3.3]

Object	deformation

Images	from	 Ling	and	Jacobs.

Sponge	Bob
CVPR
flag
girl
toy

Failure	Cases

./adam_zoom10_front-adam_zoom1_77degR_ASIFT_202matches.jpg
./adam_zoom10_front-adam_zoom1_77degR_SIFT_15matches.jpg
./adam_zoom10_front-adam_zoom1_77degR_MserSift_5matches.jpg
http://www.robots.ox.ac.uk/~vgg/research/affine/
http://www.ist.temple.edu/~hbling/publication/ling-deformation-iccv05.pdf


Failure	Cases

Strong	relief	effect

All	methods	fail!

ASIFT,	SIFT,	Harris-Affine,	Hessian-Affine,	MSER:	0	match.

The	image	on	the	right	in	close-up	shows	strong	relief	effect.

Repetitive	shapes

"Good"	false	matches.

Matches	can	be	arbitrary	among	repetitive	shapes.

./ASIFT_Liberty.jpg


ASIFT:	 171	 matches,	 many	 are	 "good"	 false	 matches	 (for	 example	 the	 matches	 between	 some
windows).
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