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Abstract

This work presents a simple but effective denoising algorithm using a local DCT thresholding.
This thresholding is applied separately to each color channel after decorrelation. Due to its
simplicity and excellent performance, this contribution can be considered as a baseline for
comparison and lower bound of performance for newly developed techniques.

Source Code

The source code (ANSI C), its documentation, and the online demo are accessible at the IPOL
web page of this article1.
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1 Introduction

Digital images are often contaminated by noise during the acquisition. Image denoising aims at
attenuating the noise while retaining the image content. The topic has been intensively studied
during the last two decades and numerous algorithms have been proposed and lead to brilliant
success.

This work presents an image denoising algorithm, arguably the simplest among all the counter-
parts, but surprisingly effective. The algorithm exploits the image pixel correlation in the spacial
dimension as well as in the color dimension. The color channels of an image are first decorrelated
with a 3-point orthogonal transform. Each decorrelated channel is then denoised separately via local
DCT (discrete cosine transform) thresholding: a channel is decomposed into sliding local patches,
which are denoised by thresholding in the DCT domain, and then averaged and aggregated to re-
construct the channel. The denoised image is obtained from the denoised decorrelated channels by
inverting the 3-point orthogonal transform.

This simple, robust and fast algorithm leads to image denoising results in the same ballpark as
the state-of-the-arts. Due to its simplicity and excellent performance, this contribution can be con-
sidered in addition as a baseline for comparison and lower bound of performance for newly developed
techniques.

1http://dx.doi.org/10.5201/ipol.2011.ys-dct
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2 Algorithm

2.1 Threshold Estimation and Sparse Signal Representation

A signal f ∈ RN is contaminated by a noise w ∈ RN that is often modeled as a zero-mean Gaussian
process independent of f

y = f + w,

where y ∈ RN is the observed noisy signal. Signal denoising aims at estimating f from y.
Let B = {φn}1≤n≤N be an orthonormal basis, whose vectors φn ∈ CN satisfy

〈φm, φn〉 =

{
1, if n = m

0, otherwise.

A thresholding estimator projects the noisy signal to the basis, and reconstructs the denoised
signal with the transform coefficients larger than the threshold T

f̃ =
N∑
n=1

ρT (〈y, φn〉)φn,

where

ρT (x) =

{
x, if |x| > T

0, otherwise,

is a thresholding operator.
The mean square error (MSE) of the thresholding estimate can be written as

E[‖f − f̃‖2] =
∑

n:|〈y,φn〉|≤T

|〈f , φn〉|2 +
∑

n:|〈y,φn〉|>T

σ2
n,

where σ2 = E[|〈w, φn〉|2]. The first and second terms are respectively the bias and variance of the
estimate. When the noise is Gaussian white of variance σ2 , it follows directly that

E[‖f − f̃‖2] =
∑

n:|〈y,φn〉|≤T

|〈f , φn〉|2 + σ2|{n : |〈y, φn〉| > T}|,

where |{·}| denotes the cardinal of the set {·} .
Donoho and Jonestone have shown that, with a threshold equal to σ

√
2 loge2 N , the MSE of the

thresholding estimate is close to that of an oracle projector [1].
An orthonormal basis {φn}1≤n≤N gives a sparse signal representation of a signal f if the signal

energy after the basis change is concentrated in a few transformed coefficients, while the rest of the
coefficients are zero, i.e., |{n : |〈f , φn〉| 6= 0}| � N .

Thresholding in a sparse representation reduces the variance of the estimate without increasing
the bias, therefore resulting in small MSE and better denoising estimate.

2.2 DCT Local Patch Denoising

It is well known that local Discrete Cosine Transform (DCT) basis, applied in the most popular
image compression standard JPEG, gives sparse representations of local image patches. Figure 1
illustrates an 8× 8 DCT basis.

The proposed denoising algorithm decomposes the image into local patches of size
√
N = 16×16,

and denoises the patches with thresholding estimate in the DCT domain. The 16× 16 DCT window
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Figure 1: 8× 8 DCT basis.

leads, on average, to the best denoising results. While it gives similar performance as smaller window
size when the noise level is low (σ < 30), when the noise level is high it outperforms significantly
smaller window, the gain with respect to window size of 8× 8 from on average 0.5 to 2 dB as σ goes
from 50 to 100. A window size larger than 16 × 16 does not bring further significant improvement.
(In the code, patch size of 16× 16 is set by default, and 8× 8 is a user option.)

It has been shown that introducing translation invariance considerably improves the thresholding
estimate in an orthonormal basis [2]. Following a common practice [3], translation invariant DCT
denoising is implemented by decomposing the image to sliding overlapping patches, calculating the
DCT denoising in each patch, and then aggregating the denoised patches to the image averaging
the overlapped pixels. The translation invariant DCT denoising significantly improves the denoising
performance, typically from about 2 to 5 dB, and removes the block artifact, at a cost of

√
N ×

√
N

times calculation with respect to estimation with non-overlapping patches.

2.3 Color Decorrelation

The three color channels of a color image are typically highly correlated. Decorrelating the color
channels before thresholding considerably improves the denoising estimate. To better understand
this, let us take a sparse signal representation point of view and look at an extreme example where
the three channels of an image are identical. Decorrelating the three channels at each pixel may
produce a sparse signal representation with one non-zero coefficient out of three. A thresholding
estimation thus reduces the noise variance to one third, which is equivalent to a PSNR improvement
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as high as 10 log10(3) ≈ 4.7dB, orders of magnitude larger than some gain that most denoising
algorithms struggle to achieve in a single image channel.

An orthonormal basis

{[1/
√

3, 1/
√

3, 1/
√

3]T , [1/
√

2, 0, − 1/
√

2]T , [1/
√

6, − 2/
√

6, 1/
√

6]T}

is used for color decorrelation. (Note that this is a 3-point DCT basis.) Each decorrelated color
channel is then denoised separately by the DCT denoising algorithm described above. Comparing
with standard color transformation such as the one from RGB to YUV, the orthonormal color
decomposition slightly improves the denoising performance thanks to its orthogonality. The color
decorrelation typically brings a PSNR improvement from about 1 to 3 dB.

2.4 Computational Complexity

The computational complexity of the DCT image denoising algorithm described above is dominated
by that of the DCT transform of the patches.

A DCT transform of a one-dimensional signal of size N can be implemented with a complexity
O(N logN). A two-dimensional DCT transform on an image patch of size

√
N ×

√
N can be

implemented in a separable way with a complexity O(N log
√
N) . An image of size S × C, where

S is the number of pixels in each color channel and C , typically equal to 3, is the number of color
channels, contains S×C sliding patches (slightly less than that in practice due to the border effect).
The overall complexity is therefore O(SCN log

√
N).

The DCT on different patches can be implemented in parallel, which may significantly reduce the
computation time.

3 Implementation

The following algorithm (Algorithm 1) is implemented in the C++ source file DCTdenoising.cpp.

Algorithm 1: DCT denoising algorithm.

Input : Noisy image, Gaussian white noise standard deviation σ
Output: Denoised image
if image is colored then

decorrelate the color channels of the noisy image (C++ routine: ColorTransform)

Decompose each color channel to sliding patches (C++ routine: Image2Patches)
for each image patch do

Calculate 2D-DCT transform of the patch (C++ routine: DCT2D)
Threshold the DCT coefficients, with a threshold equal to 3σ
Calculate inverse 2D-DCT transform of the patch (C++ routine: DCT2D)

Average and aggregate the patches to reconstruct each denoised channel (C++ routine:
Patches2Image)

if image is colored then
reverse the color decorrelation to obtain the denoised image from the denoised channels
(C++ routine: ColorTransform)

else
the denoised channel gives the denoised gray-level image
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4 Examples

Figure 2 illustrates the effectiveness of the DCT denoising algorithm. The noise is removed while
the underlying image structures are preserved.

Figure 2: Top, from left to right: original, noisy (σ = 15), and denoised images. Bottom, details.

Image Credits

Hervé Bry, CC-BY-NC-SA, Flickr2.
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