
Published in Image Processing On Line on 2012–06–13.
Submitted on 2012–00–00, accepted on 2012–00–00.
ISSN 2105–1232 c© 2012 IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
https://doi.org/10.5201/ipol.2012.llm-ksvd

2
0
1
5
/
0
6
/
1
6

v
0
.5
.1

IP
O
L

a
rt
ic
le

c
la
ss

An Implementation and Detailed Analysis of the K-SVD

Image Denoising Algorithm

Marc Lebrun1, Arthur Leclaire2

1CMLA, ENS Cachan, France (marc.lebrun@cmla.ens-cachan.fr)
2Université Paris Descartes, France (arthur.leclaire@parisdescartes.fr)

Communicated by Jean-Michel Morel Demo edited by Miguel Colom

Abstract

K-SVD is a signal representation method which, from a set of signals, can derive a dictionary
able to approximate each signal with a sparse combination of the atoms. This paper focuses on
the K-SVD-based image denoising algorithm. The implementation is described in detail and its
parameters are analyzed and varied to come up with a reliable implementation.

Keywords: denoising, sparse representation, dictionaries, learning, patches

1 Overview

Denoising is a major task of image processing. In the last decades, several denoising algorithms have
been proposed.

One class of such algorithms contains those which take profit of the analysis of the image in a
(redundant) frame. For example, in this subset, we can mention the threshold of the image coefficients
in an orthonormal basis, like the cosine basis [19, 18], a wavelet basis [8], or a curvelet basis [17].
In this category can also be included the methods which try to recover the main structures of the
signal by using a dictionary (which basically consists of a possibly redundant set of generators).
The matching pursuit algorithm [15] and the orthogonal matching pursuit [7] are of this type. The
efficiency of these methods comes from the fact that natural images can be sparsely approximated
in these dictionaries.

The variational methods form a second class of denoising algorithms. Among them let us mention
the total variation (TV) denoising [16, 4] where the chosen regularity model is the set of functions
of bounded variations.

In another class, one could include methods that take advantage of the non-local similarity of
patches in the image. Among the most famous, we can name NL-means [3], BM3D [6], and NL-
Bayes [10].

The K-SVD-based denoising algorithm merges some concepts coming from these three classes,
paving the way of dictionary learning. Indeed, the efficiency of the dictionary is encoded through a

Marc Lebrun, Arthur Leclaire, An Implementation and Detailed Analysis of the K-SVD Image Denoising Algorithm, Image Processing On
Line, 2 (2012), pp. 96–133. https://doi.org/10.5201/ipol.2012.llm-ksvd

https://doi.org/10.5201/ipol
https://doi.org/10.5201/ipol
http://creativecommons.org/licenses/by-nc-sa/3.0/
https://doi.org/10.5201/ipol.2012.llm-ksvd

An Implementation and Detailed Analysis of the K-SVD Image Denoising Algorithm

functional which is optimized taking profit of the non-local similarities of the image. It is divided
into three steps : a) sparse coding step, where, using the initial dictionary, we compute sparse
approximations of all patches (with a fixed size) of the image; b) dictionary update, where we try to
update the dictionary in such a manner that the quality of the sparse approximations is increased;
and next, c) reconstruction step which recovers the denoised image from the collection of denoised
patches. Actually, before getting to c), the algorithm carries out K iterations of steps a and b.

There is by now a thriving literature about dictionary learning. Here we will only quote the main
articles that led to the design of the K-SVD algorithm for color images. The K-SVD method was
introduced in [1] where the whole objective was to optimize the quality of sparse approximations of
vectors in a learned dictionary. Even if this article noticed the interest of the technique in image
processing tasks, it is in [9] that a detailed study has been led on the denoising of gray-level images.
Then, the adjustment to color images has been treated in [14]. Let us notice that this last article
proved that the K-SVD method can also be useful in other image processing tasks, such as non-
uniform denoising, demosaicing and inpainting.

Following these articles, dictionary learning has become a very active research topic. To go beyond
the scope of this article, see [13] or [11].

2 Theoretical Description

To get a maximal coherence between the different documents about K-SVD, we use the same nota-
tions as in the article [14].

2.1 Algorithm for Grayscale Images

This paragraph explains the algorithm described in [9]. We work with images written in column
vectors. In practice, in our C++ code, images are scanned one row at a time, these rows being next
concatenated to make a single column vector. The same is done for patches.

Hence, let us denote by x0 a size N column vector containing the unknown clean grayscale image.
Starting from x0, we assume that the noisy image is obtained as

y = x0 + w

where w is a white Gaussian noise vector of zero mean and known standard deviation σ. Conse-
quently, we look for an image x̂ that is close to the initial image, such that each of its patches admits
a sparse representation in terms of a learned dictionary.

For every possible position (i, j) of a pixel in the image x, we denote by Rijx the size n column
vector formed by the grayscale levels of the squared

√
n×
√
n patch of the image x and whose top-left

corner has coordinates (i, j). One can notice that, with the column notation, Rijx is precisely the
multiplication of x (column vector of size N) by a matrix Rij of size n × N whose columns are
indexed by the image pixels. Each of the rows of Rij allows to extract the value of one pixel of the
image x and thus is zero except for the coefficient of index p, which is equal to 1.

In the following, the notation D refers to a dictionary. It is a matrix of size n×k, with k ≥ n whose
columns are normalized (in Euclidean norm). We take k ≥ n because otherwise, there is no chance
that the columns of D can span Rn. The algorithm will require an initialization of the dictionary
: to this end, we may choose an usual orthogonal basis (discrete cosine transform, wavelets. . .), or
we may collect patches from clean images or even from the noisy image itself (without forgetting the
normalization). We give two examples of dictionaries in figure 1.

The dictionary allows to compute a sparse representation αij of each patch Rijx. The represen-
tations αij will thus be column vectors of size k satisfying Rijx ≈ Dαij. We put them together in a

97

Marc Lebrun, Arthur Leclaire

Figure 1: Left, a dictionary formed with random patches from the image “Castle” (converted in
grayscale levels) after addition of a white Gaussian noise. Right, the dictionary obtained at the end
of the K-SVD algorithm. For each atom, the contrast is enhanced differently.

matrix α with k rows and Np columns where Np is the number of patches of size
√
n ×
√
n of the

image.
With the above notation it is easy to detail each part of the algorithm. At first, D̂ is initialized

with an initial dictionary denoted by Dinit. The initialization alternatives will be discussed later on.
The first step looks for sparse representations of the patches Rijy of y in the dictionary D̂. In

other words, for each patch Rijy, a column vector α̂ij (of size k) is built such that it has only a few

non-zero coefficients and such that the distance between Rijy and its sparse approximation D̂α̂ij is
small.

The second step updates one by one the columns of the dictionary D̂ and the representations
α̂ij in such a way that all patches in the image y become more efficient. Therefore, the goal is to
decrease the quantity ∑

i,j

‖D̂α̂ij −Rijy‖22

while keeping the sparsity of the vectors α̂ij.
K iterations of these two first steps are performed. Once finished, to each patch Rijy of the image

y corresponds the denoised version D̂α̂ij. The third and last step consists in merging the denoised
versions of all patches of the image in order to obtain the final denoised image. A new parameter λ
is introduced in this part, which blends a portion of the initial noisy image into the final result. To
obtain a pixel p of the denoised image, a simple average is done on the values of p in the denoised
patches to which it belongs (weighted by 1), and the value of p in the noisy image y (weighted by
λ).

We will now take a closer look at each one of the three parts of the method.

2.1.1 Sparse Coding

This step allows, with a fixed dictionary D̂, to compute sparse representations α̂ of the patches Rijy

of the image in D̂. More precisely, an ORMP (Orthogonal Recursive Matching Pursuit) gives an
approximate solution of the (NP-complete) problem

Arg min
αij

||αij||0 such that ||Rijy − D̂αij||22 ≤ n(Cσ)2 . (1)

98

An Implementation and Detailed Analysis of the K-SVD Image Denoising Algorithm

where ‖αij‖0 refers to the l0 norm of αij, i.e. the number of non-zero coefficients of αij. We remind

the reader that D̂ is a matrix whose size is n × k, that αij is a size k column vector and that
Rijy is a size n column vector. If it were perfect, this ORMP would find a patch with the sparsest

representation in D̂ and which distance to Rijy is less than n(Cσ)2. This last constraint brings in a
new parameter C. This coefficient multiplying the standard deviation σ guarantees that, with high
probability, a white Gaussian noise of standard deviation σ on n pixels has an l2 norm lower than√
nCσ. We give details on the choice of C in Section 3. In fact, the ORMP is not perfect : indeed,

it only allows one to find a patch having one sparse (not necessarily the sparsest) representation in
D̂ and which distance to Rijy is lower than n(Cσ)2.

Let us give more details about how the ORMP can compute a sparse representation of a patch. A
good reference to learn about ORMP is [5]. Nevertheless, we shall give here a complete explanation
using the notation of our C++ code. In order to use lighter notations, we will rather explain how
the ORMP finds a sparse representation a ∈ Rk of a vector x ∈ Rn in a dictionary formed by the
normalized vectors d1, . . . , dk which span Rn.

Let x be a vector of Rn. We wand to find a sparse representation α of x in the dictionary D formed
by the normalized vectors d0, . . . , dk−1. Precisely, we are going to give an approximate solution of
the following optimization problem :

Arg min
α∈Rk

||α||0 such that ||x−Dα||22 ≤ ε . (2)

We will detail the choice of the atoms in order to stick to our C++ code.
We denote by lj the index of the element of the dictionary that we choose at the step j ≥ 0. We

also set Lj = {l0, . . . , lj}.
Let us assume that we are at the beginning of the j-th loop (j ≥ 0) (and thus l0, . . . , lj−1 are

already chosen).
We start by introducing the residue

r = x− ProjVect(dl0 ,...,dlj−1
)(x)

where ProjF refers to the subspace F , and where Vect(dl0 , . . . , dlj−1
) refers to the space spanned by

the vectors dl0 , . . . , dlj−1
. If ‖r‖2 < ε then we stop and α is the representation of ProjVect(dl0 ,...,dlj−1

)(x)

in (dl0 , . . . , dlj−1
) already obtained at the previous step, cf. its computation at the end of the loop 1.

We choose lj in order to minimize the norm of the new potential residue :

lj = Arg min
i/∈Lj−1

‖x− ProjVect(dl0 ,...,dlj−1
,di)

(x)‖2 .

Thanks to the Pythagorean theorem, this amounts to

lj = Arg max
i/∈Lj−1

‖ProjVect(dl0 ,...,dlj−1
,di)

(x)‖2 .

Then we set Lj = Lj−1 ∪ {lj}.
In order to compute the orthogonal projections

ProjVect(dl0 ,...,dlj−1
,di)

(x) , (i /∈ Lj−1)

we use the Gram-Schmidt process. We denote by (tl0 , . . . , tlj−1
) the orthogonal family obtained after

Gram-Schmidt orthogonalization of (dl0 , . . . , dlj−1
), and by (el0 , . . . , elj−1

) the orthonormal family

1if we break when j = 0, then α = 0

99

Marc Lebrun, Arthur Leclaire

obtained after Gram-Schmidt orthonormalization of (tl0 , . . . , tlj−1
). For i /∈ Lj−1, we denote by

(tl0 , . . . , tlj−1
, t

(j)
i) the family obtained after Gram-Schmidt orthogonalization of (dl0 , . . . , dlj−1

, di),

and (el0 , . . . , elj−1
, e

(j)
i) the (orthonormal) family obtained by normalizing of (tl0 , . . . , tlj−1

, t
(j)
i). The

reader have to be aware that this orthonormalization can be progressively computed : at the j-th
step, the vectors (tl0 , . . . , tlj−1

) and (el0 , . . . , elj−1
) are already computed. It is thus sufficient to detail,

at the j-th step, the computation of di and t
(j)
i for i /∈ Lj−1 :

t
(j)
i = di −

j−1∑
p=0

〈di, elp〉elp ,

‖t(j)i ‖2 = 1−
j−1∑
p=0

〈di, elp〉2 ,

e
(j)
i =

t
(j)
i

‖t(j)i ‖
.

We notice that

Proj
Vect(dl0 ,...,dlj−1

,d
(j)
i)

(x) = 〈x, el0〉el0 + . . .+ 〈x, elj−1
〉elj−1

+ 〈x, e(j)i 〉e
(j)
i

(where ProjF refers to the orthogonal projection onto the subspace F) and, consequently,

‖ProjVect(dl0 ,...,dlj−1
,di)

(x)‖2 = 〈x, el0〉2 + . . .+ 〈x, elj−1
〉2 + 〈x, e(j)i 〉2 .

Therefore, maximizing the norm of the projection is equivalent to maximize 〈x, e(j)i 〉. This is why
we choose

lj = Arg max
i/∈Lj−1

〈x, e(j)i 〉2

and with this index comes the vector tlj = t
(j)
lj

and the normalized vector elj = e
(j)
lj

. The computation

of 〈x, e(j)i 〉 is done by replacing e
(j)
i by its above given definition :

〈x, e(j)i 〉 =
〈x, di〉 −

∑j−1
p=0〈di, elp〉〈x, elp〉√

1−
∑j−1

p=0〈di, elp〉2
. (3)

To implement this computation efficiently, we notice that the denominator and the square of
the numerator are nothing but the subtraction of those used at the previous step by respectively
〈di, elj−1

〉〈x, elj−1
〉 and 〈di, elj−1

〉. Hence, at each step, we need 〈di, elj−1
〉 and 〈x, elj−1

〉 which corre-
spond in the code to the variables D_ELj[i][j] and x_elj, which are updated at each loop. The
computation of 〈x, elj−1

〉 is not a problem (it is only the formula 3 of the previous step !). However,
we have to explain the update of 〈di, elj−1

〉. We will see thereafter that the computation of α requires
the coordinates of (el0 , . . . , elj−1

) on the basis (dl0 , . . . , dlj−1
) and we will explain how we can obtain

them progressively. Once these coordinates are computed, the scalar product 〈di, elj−1
〉 can be ob-

tained by a linear combination of the scalar products 〈di, dls〉, (0 ≤ s < j). The numerator (〈x, t(j)i 〉)
is then saved in the variable x_T[i], and the square of the denominator in the variable scores[i].

Once we have chosen lj, we can go back to the beginning of the loop to stop or choose the next
atom. Clearly, the algorithm terminates because the atoms d1, . . . , dk span Rn.

At this point let us assume that we are at the end of the j-th loop (and thus, we have chosen
l0, . . . , lj). We still have to explain how the sparse representation α of x in D is computed.

100

An Implementation and Detailed Analysis of the K-SVD Image Denoising Algorithm

As (el0 , . . . , elj) is orthonormal and span Vect(dl0 , . . . , dlj), we have

x ≈ ProjVect(dl0 ,...,dlj)
=

j∑
p=0

〈x, elp〉elp .

The coefficients 〈x, ep〉, (p < j) have already been computed in the preceding step. The last coefficient
is given by the equality (3) for i = lj.

Finally, we have to go back to the representation in terms of dl1 , . . . , dlj . To this aim, we introduce
the coordinates of the (el0 , . . . , elj−1

) on the basis (dl0 , . . . , dlj−1
). Let us denote them by apq, (p ≤ q)

:

∀p < j, elp =

p∑
q=0

apqdlq .

At the j − 1th-step, the apq are computed for p < j (and again p ≤ q). It suffices to explain how we
compute ajq for q ≥ j. From the definition elj , replacing the elp , (p < j), we obtain

elj =
1

‖tlj‖

(
dlj −

j−1∑
p=0

p∑
q=0

〈dlj , elp〉apqdlq

)
,

from which we get (after inverting the sums)

ajj =
1

‖tlj‖
, (4)

∀q < j, ajq = − 1

‖tlj‖

(
j−1∑
p=q

〈dlj , elp〉apq

)
. (5)

Finally, we have

x ≈
j∑

p=0

〈x, elp〉elp =

j∑
q=0

(
j∑
p=q

〈x, elp〉apq

)
dlq ,

and thus we set
αs = 0 , if s /∈ Lj, and

αs =

j∑
p=q

〈x, elp〉apq , if s = lq .

We insist on the fact that the coordinates of (el0 , . . . , elj−1
) on the basis (dl0 , . . . , dlj−1

) are also
required for the choice of the index lj, as explained above. Subsequently, it is natural to compute
these coordinates at each loop.

Correspondence with the Notations Used in the Code Now we link the notations used in
the explanation above with the notations used in the code. First, in the code, let us warn the reader
that we have used indexation in column order, that is, D[i] refers to the i-th column of the matrix
D.

We have also used a convention : whenever a variable contains the matrix multiplication of
the transpose of B by A, then the result is saved in the variable A_B. Therefore, A_B = T B A, and
A_B[p][q] is the scalar product between A[p] and B[q].

Let us add that elj (even if it is not a proper variable) will of course refer to elj . Similarly, DLj
(resp. ELj) will refer to the matrix whose columns are (in order) dl0 , . . . , dlj (resp. el0 , . . . , elj). Last,

T will refer to the matrix whose columns are t
(j)
0 , . . . , t

(j)
k−1.

101

Marc Lebrun, Arthur Leclaire

· Np = Np

· n = n
· k = k
· epsilon = ε
· L : maximal sparsity allowed for the representations (here we do not use this constraint, i.e. in

our code, L = min(n, k))

· norm[i] = ‖t(j)i ‖2 = 1−
∑j−1

p=0〈di, elp〉2

· x_T[i] = 〈x, t(j)i 〉 = 〈x, di〉 −
∑j−1

p=0〈di, elp〉〈x, elp〉
· scores[i] = 〈x, e(j)i 〉2 = Rdn[i]2

norm[i]
· lj = lj
· invNorm = 1/sqrt(norm[lj]) = 1

‖tlj ‖
· x_elj = x_T[lj]*invNorm = 〈x, elj〉
· x_el[p] = 〈x, elp〉
· delta = x_elj*x_elj = 〈x, elj〉2
· normr = ‖x‖2 −

∑j
p=0〈x, elp〉2

· D_DLj[i][s] = 〈di, dls〉
· A[p][q] = apq, (p ≥ q)
· D_ELj[i][j] is equal to 〈di, elj〉 at the end of the j-th loop.
· val temporarily saves the variable 〈di, elj〉
· coord[q] = αlq =

∑j
p=q〈x, elp〉apq : “coordinate” of x on dlq

· s : summing index

Some Remarks on the Implementation

update of A equations (4) and (5) suggest the update :

A[j][j] = invNorm

∀i < j, A[j][i] =

(
−

j−1∑
k=i

D_ELj[lj][k] * A[k][i]

)
· invNorm .

numerical stability an artificial break is added in the code. It happens if ‖tj‖ < 10−6. Thus the
ORMP is stopped in order to avoid the division by ‖tj‖.

2.1.2 Dictionary Update

In this step, we will see that we will be able to update the columns of the dictionary one by one, to
make the quantity ∑

i,j

‖D̂α̂ij −Rijy‖22 (6)

decrease, without increasing the sparsity penalty ‖αij‖0. We will denote by d̂l (1 ≤ l ≤ k) the

columns of the dictionary D̂.
First, let us try to minimize the quantity (6) without taking care of the sparsity. As explained

above, we go through the columns of the dictionary, and the index of the current column will be
denoted by l, (1 ≤ l ≤ k). We are going to modify the atom d̂l and the coefficients α̂ij(l) in order
to improve the approximations in an L2 distortion sense. In order to translate this objective into an
optimization problem, for each (i, j), we introduce the residue

elij = Rijy − D̂α̂ij + d̂lα̂ij(l) (7)

102

An Implementation and Detailed Analysis of the K-SVD Image Denoising Algorithm

which is the error committed by deciding not to use d̂l any more in the representation of the patch
Rijy : elij is thus a size n vector.

These residues are grouped together in a matrix El (whose columns are indexed by (i, j)). The
values of the coefficients α̂ij(l) are also grouped in a row vector denoted by α̂l. Therefore, El is a

matrix of size n × Np and α̂l is a row vector of size Np. We need to find a new d̂l and a new row
vector α̂l which minimize∑

i,j

‖D̂α̂ij − d̂lα̂ij(l) + dlα
l −Rijy‖22 = ||El − dlαl||2F (8)

where the squared Frobenius norm ||M ||2F refers to the sum of the squared elements of M . This
Frobenius norm is also equal to the sum of the squared (Euclidean) norm of the columns, and it is
easy to check that minimizing (8) amounts to reduce the approximation error caused by d̂l. It is
well-known that the minimization of such a Frobenius norm consists in a rank-one approximation,
which always admits a solution, practically given by the singular value decomposition (SVD). Using
the SVD of El :

El = U∆V T (9)

(where U and V are orthogonal matrices and where ∆ is the null matrix except from its first diagonal,
where it is non-negative and decreasing), the updated values of d̂l and α̂l are respectively the first
column of U and the first column of V multiplied by ∆(1, 1). By the way, we will notice that the
rank-one approximation does not require the computation of the whole matrices U , V , and ∆. In
our implementation, it is sufficient to use a truncated SVD, which is much faster (especially if El is
large). Let us explain the method we used to compute the truncated SVD.

To use lighter notations, we use, as in the code, the notation X = El. Starting from the SVD
(9), one can write

XXT = U∆∆TUT ,

XTX = V∆T∆V T .

As a result, ∆(1, 1) is the square of the greatest eigenvalue of the symmetrical positive-definite matrix
XXT , and the first column of U is the corresponding eigenvector. The same observation is valid for
V . Therefore, we can find these eigenvectors and ∆(1, 1) thanks to the power method applied to the
matrices XXT and XTX. Concerning the convergence of the power method, one could refer to [2].
One could notice that in the pseudo-code that we present below, the power method can be applied
to the two matrices simultaneously.

The SVD function takes as arguments a matrix X of which we want the SVD, a maximal number
of iterations max_iter (set to 100 in the code) and a tolerance threshold ε (set to 10−6 in the code).
It gives back an approximation s of the greatest singular value of X, an approximation u of the first
column of U , and an approximation v of the first column of V .

Here is the pseudo-code.
Initialization : we arbitrarily initialize v (in the code, we set v = d̂l); we also set i = 0, s = 1 and
sold = 0.
While (i < max_iter and

∣∣ s−sold
s

∣∣ > ε), we proceed to the following affectations :

u← Xv, u← u

‖u‖
, v ← XTu, sold ← s, s← ‖v‖, v ← v

s

The values of s, u, and v obtained at the end of this loop are the return values of the truncated
SVD.

103

Marc Lebrun, Arthur Leclaire

Remark : At the end of this algorithm, we thus have

XXTu ≈ λu

where λ is the greatest eigenvalue of XXT . Taking the scalar product with u, and since u is
normalized, we have

‖XTu‖2 = 〈XXTu, u〉 ≈ λ ,

which yields

s ≈
√
λ .

This explains why s is an approximation of the largest singular value of X.
This way, for each l = 1, · · · , k, the energy (6) never increases. But for now, the sparsity of

the coefficients is not under control. In order to do that, a slight modification is brought in to the
preceding process : for each l,the operations involved in the update of d̂l and α̂l is restricted to the
patches which already used the atom d̂l before the update.

Setting

ωl = { (i, j) | α̂ij(l) 6= 0 } ,

the values that we will group together in El and α̂l will be only the values of elij and α̂ij(l) for indices
(i, j) ∈ ωl. Hence, the indices (i, j) of the sum of the LHS of (8) will be restricted to (i, j) ∈ ωl;
the matrix El is now of size n × Card(ωl) and α̂l is now a row vector of size Card(ωl). Also, in
(6), note that the terms of indices (i, j) /∈ ωl are not affected by this update. This proves that this
modification decreases (6) without increasing ‖αij‖0. This modification also implies a reduction of
the matrix El which SVD is being computed.

Recall that the sparse coding computes sparse representations α̂ and that the dictionary updates
make D̂ change but also modify α̂. After K iterations of these steps, we are in possession of a learned
dictionary D̂ and of sparse representations α̂ij of the patches of the image.

2.1.3 Reconstruction

Now that the first two parts of the algorithm built a dictionary D̂ and sparse representations α̂ij which
are well-adapted to our image, we can build the globally denoised image by solving the minimization
problem

x̂ = Arg min
x∈RN

λ||x− y||22 +
∑
i,j

||D̂α̂ij −Rijx||22 . (10)

The first term controls the global proximity to our reconstruction x̂ with the noisy image y. It is
thus a fidelity term that is weighted by the parameter λ. The second term controls the proximity
of the patch Rijx̂ of our reconstruction to the denoised patch Dαij. This functional is quadratic,
coercive, and differentiable. Subsequently, this problem admits a unique solution that we can compute
explicitly :

x̂ =

(
λI +

∑
i,j

RT
ijRij

)−1(
λy +

∑
i,j

RT
ijD̂α̂ij

)
. (11)

This formula can appear a little bit complicated, but it is in fact very simple. The only thing to
notice is that the matrix that has to be inverted is diagonal. In consequence, this formula only means
that the value of a pixel in the denoised image is computed by averaging the value of this pixel in
the noisy image (weighted by λ) and the values of this pixel on the patches to which he belongs
(weighted by 1). We obtain the values of the pixels of x̂, one by one, without requiring any matrix
inversion that (11) would perhaps suggest.

104

An Implementation and Detailed Analysis of the K-SVD Image Denoising Algorithm

2.1.4 Comments

In the articles [9] and [14] the following minimization problem is mentioned :

(x̂, D̂, α̂) = Arg min
D,x,α

λ||x− y||22 +
∑
i,j

µij||αij||0 +
∑
i,j

||Dαij −Rijx||22 (12)

which groups all the quantities that we have tried to minimize in the preceding paragraphs.
Let us briefly analyze this formula, even though the forthcoming comments are slightly redundant

with the previous explanation :

• the first term controls the global proximity of x̂ to the noisy image y (fidelity term);

• the second term controls the sparsity of the representations of the patches;

• last, the third term controls for each (i, j), the proximity of the patch Rijx̂ of our reconstruction
to the denoised patch Dαij.

The coefficients λ and µij set the balance between the importance given to the fidelity term and to
the sparsity constraints of the representations of the patches.

This non-convex problem is too difficult to be addressed in this form. This explains why the
article [9] suggests to break it down into parts, and to try to minimize separately the different terms
of (12). This way, we are led to the K-SVD algorithm. Notice also a serious difference: the values of
µij are not required in the above implementation.

Without specifying values for µij, we cannot really address the problems of linking the minimiza-
tion of (12) and the suggested iterative method. Moreover, we do not understand why the authors
did not set only one weight µ rather than weights µij depending on the patches. We would have to
explain why the sparsity of certain patches are more important than others. If the µij are not equal,
then their determination is still a crucial point of the method that remains to be analyzed.

The alternation of sparse coding step and dictionary update step makes difficult the analysis of
the aforementioned energies. On the one hand, the ORMP is only an approximate solution. On the
other hand, in the sparse coding step, the constraints are formed by parts of the Frobenius norm
that is minimized in the dictionary update. For this reason, we want to insist on the fact that
the minimization of (12) is nothing but a possible interpretation of the K-SVD method. Of course,
solving directly the problem (12) is appealing but seems for now out of reach.

The reader could notice that, at each of the K iterations of the first two steps, the algorithm
uses a SVD, thus explaining the name K-SVD. As stated in [1], the reference to K-means is not just
formal : in K-means, we do not allow sparse combinations of the atoms, but we try to optimize the
dictionary in such a way that the error committed by representing each observation with a single
atom in the dictionary is minimal.

2.2 Extending K-SVD to Color Images

It is now time to present the method proposed in [14] to adapt the grayscale algorithm to color
images. To address this problem, a first suggestion would be to apply the K-SVD algorithm to
each channel R, G and B separately. This naive solution gives color artifacts that are shown on the
left image of the figure 2. They are due to the fact that in natural images there is an important
correlation between channels. Another suggestion would be to apply a principal component analysis
on channels RGB, which would uncorrelate them, and then to apply the first suggestion in this more
appropriate environment. This solution has not been tried because the new proposition of [14] seems
even more promising.

105

Marc Lebrun, Arthur Leclaire

Figure 2: Denoised images with separated channels (left), and then concatenated channels (right).
(σ = 25). The reader will notice that the denoising is better on the sky and the water surfaces.

In order to obtain the colors correctly, the algorithm previously described will be applied on
column vectors which are the concatenation of the R,G,B values. In this way, the algorithm will better
update the dictionary, because it is able to learn correlations which exist between color channels. An
example of color dictionary is shown in figure 3.

One can see the difference in figure 2. We remind the reader that from now on the size of columns
which represent images is 3N , and the size of columns which represent patches is 3n.

Unfortunately, even with this adaptation, non-negligible color artifacts are still present.

The authors of [14] justify these artifacts with the following statement : the previously described
algorithm tries to adapt the dictionary to all patches contained in the image. This need of universality
implies that the atoms of the dictionary tend to look like grayscale atoms. To correct these color
artifacts, [14] suggests to modify the metric used in the break condition of the ORMP. From now on
we use the scalar product inferred metric

〈y, x〉γ = ytx+
γ

n2
ytJ tJx (13)

instead of the Euclidean metric, where we denote by J the matrix whose size is 3n × 3n built
from three diagonal blocks of size n× n, full of 1, and where γ ≥ 0 is parameter which needs to be
fixed. In other words, the new norm can be written as

||x||2γ = ||x||2 + γ(mR(x)2 +mG(x)2 +mB(x)2) (14)

where we denote by mC(x) the average of x on the channel C (and where the Euclidean norm is
denoted by || · ||).

Thus, the new metric, under the parameter γ, put more importance of the proximity of the mean
value of the patches.

106

An Implementation and Detailed Analysis of the K-SVD Image Denoising Algorithm

Figure 3: Left : dictionary composed by patches extracted randomly from the “Castle” image, on
whom a white gaussian noise has been added. Right : dictionary obtained at the end of the color
version of K-SVD. The contrast is enhanced independently for each atom.

This color correction can be easily integrated in the ORMP thanks to the following equality :

I +
γ

n
J =

(
I +

a

n
J
)t (

I +
a

n
J
)

(15)

where a > 0 is chosen so that γ = 2a+ a2. Thus we can write for all vectors x,

||x||γ =
∥∥∥(I +

a

n
J)x
∥∥∥ . (16)

Consequently, to work with the new metric, all columns have to be multiplied by (I + a
n
J) and

we can work again with the Euclidean norm. Nevertheless we remind the reader that in the ORMP
all columns of the dictionary are normalized, which is why a diagonal matrix D is introduced. Its
elements are the inverses of the norm of the columns of (I+ a

n
J)D. Its size is k×k. Then (I+ a

n
J)DD

has normalized columns. Now the ORMP can be applied to obtain the β̂ij such that(
I +

a

n
J
)

Rijy ≈
(
I +

a

n
J
)

DDβ̂ij

for the Euclidean norm. In the next session, if we denote

α̂ij = Dβ̂ij ,

we get

Rijy ≈ Dα̂ij

for the norm ‖ · ‖γ.
One can notice the contribution of this color version in the figure 4. Here again has appeared a

new parameter γ which will be briefly discussed in the following part.

2.3 Summary of the Algorithm

In this section all steps of the algorithm 1 are summarized in their right order.

107

Marc Lebrun, Arthur Leclaire

Original Noisy image

γ = 0 γ = 5.25

Figure 4: Denoising for σ = 30 with γ = 0 and γ = 5.25. Some color artifacts still remain, but the
denoising is slightly better in some areas when γ = 5.25, cf figure 5.

Original Noisy image

γ = 0 γ = 5.25

Figure 5: Denoising for σ = 30 with γ = 0 and γ = 5.25. Zooms.

108

An Implementation and Detailed Analysis of the K-SVD Image Denoising Algorithm

Algorithm 1: K-SVD algorithm

input : noisy image y, initial dictionary Dinit and parameters listed in the next part
output: denoised image x̂
All patches of the noisy image are collected in column vectors Rijy (channels R, G and B are
concatenated).
Set initially D̂ = Dinit.
for k = 1, · · ·K do

Sparse coding
The inverses of the norms of the columns of (I + a

n
J)D̂ are put in a diagonal matrix D

An ORMP is applied to the vectors (I + a
n
J)Rijy with the dictionary (I + a

n
J)DD in a

such way that sparse coefficients β̂ij for Euclidean norm are obtained, such that:(
I +

a

n
J
)

Rijy ≈
(
I +

a

n
J
)

DDβ̂ij.

Deduce α̂ij = Dβ̂ij (sparse too) which then verify Rijy ≈ Dα̂ij for the norm ‖ · ‖γ.
Dictionary update
for l = 1, · · · , k do

Introduce ωl = { (i, j) | α̂ij(l) 6= 0 }.
for (i, j) ∈ ωl do

Obtain the residue elij = Rijy − D̂α̂ij + d̂lα̂ij(l).

end
Put these column vectors together in a matrix El. Values α̂ij(l) are also assembled in a
row vector denoted by α̂l for (i, j) ∈ ωl.
Update d̂l and α̂l as solutions of the minimization problem:

(dl, α̂
l) = Arg min

dl,αl

‖El − dlαl‖2F .

In practice a truncated SVD is applied to the matrix El. It provides partially U , V
(orthogonal matrices) and ∆ (filled in with zeroes except on its first diagonal), such
that El = U∆V T . Then d̂l is defined again as the first column of U and α̂l as the first
column of V multiplied by ∆(1, 1).

end

end
Then the final result x̂ is obtained thanks to a weighting aggregation (the formula has already
been explained):

x̂ =

(
λI +

∑
i,j

Rt
ijRij

)−1(
λy +

∑
i,j

Rt
ijD̂α̂ij

)
.

109

Marc Lebrun, Arthur Leclaire

3 Influence of the Parameters on the Performance

One can notice that the algorithm as described previously has plenty of parameters that can be
tuned. Here is the exhaustive list :

• C : multiplier coefficient;

• λ : weight of the noisy image;

• K : number of iterations;

• k : size of the dictionary;

• γ : color correction parameter;

•
√
n : size of patches.

The question is to pick the right values for the various parameters listed above, and to evaluate
their influence on the final result.

3.1 Influence of C

This parameter is used in the stopping condition of the ORMP. In order to understand the chosen
value, let us get started with a clean patch x0 (where the length of the column is denoted by ñ = n
(resp. ñ = 3n) for grayscale (resp. color) images), on which a white Gaussian noise w is added to
obtain a noisy patch x. Then the ORMP tries to find a vector α as sparse as possible such that

||x−Dα||2 ≤
√
ñCσ .

If the noise has norm lower than
√
ñCσ, then x will be in the x0-centered sphere, which radius

is
√
ñCσ. If we assume that x0 is the only element of this sphere to have a sparse representation in

the dictionary D, then one can suppose that the ORMP will be able to find this x0. Then we will
ensure that the noise has a large probability to belong to this sphere.

Thus the idea of [14] is to force

P(||w||2 ≤
√
ñCσ) = 0.93 . (17)

Practically, the corresponding value is obtained by using the inverse of the distribution function
of χ2(ñ).

3.2 Influence of the Weighting parameter λ

The weighting parameter λ is used during the final reconstruction of the denoised image.
If for all λ ≥ 0 we denote by x̂λ the final result of the algorithm as described previously using

the parameter λ, then according to the definition of x̂λ (cf. formula (11)), one can notice that

x̂λ =
1

λ+ 1
(λy + x̂0) .

If we want to remove from the noisy image the same quantity of energy than the one that was
added by the noise, then it is natural to choose the parameter λ so that

‖x̂λ − y‖ =
√
Ñσ (18)

110

An Implementation and Detailed Analysis of the K-SVD Image Denoising Algorithm

where Ñ is equal to N (resp. 3N) for grayscale (resp. color) images. In other words the distance

between x̂λ and y is forced to be exactly equal to
√
Ñσ. As x̂λ belongs to the segment [x̂0,y], a

such λ exists if and only if

d := ‖x̂0 − y‖ ≥
√
Ñσ .

In this case one can easily see that the only λ leading to the equality (18) is

λ =
d√
Ñσ
− 1 .

Despite this theoretical value, the algorithm has been tested with plenty of choices for λ. If λ is
taken too large, then the contribution of the noisy image is too important and adds too much noise,
which consequently reduces the PSNR, as one can see in the table 1.

Some visual results are shown in figures 6, 7 and 8.

λ = 0 λ = 0.05

λ = 0.15 λ = 0.25

Figure 6: σ = 10

Table 2 shows the comparison between the empirically obtained parameter (λe) and the theoret-
ically obtained parameter (λt).

In the end the final kept value for λ is the one given by (18).

3.3 Influence of the Number of Iterations K

The iterative aspect of the method is important, because it allows the dictionary to be updated and
then to obtain a better sparse representation of the patches of the image. Moreover it allows to show

111

Marc Lebrun, Arthur Leclaire

λ
=

0
λ

=
0.05

λ
=

0.1
λ

=
0.15

λ
=

0.2
λ

=
0.25

λ
=

0.3
σ

P
S
N

R
R

M
S
E

P
S
N

R
R

M
S
E

P
S
N

R
R

M
S
E

P
S
N

R
R

M
S
E

P
S
N

R
R

M
S
E

P
S
N

R
R

M
S
E

P
S
N

R
R

M
S
E

2
44.43

1.53
4
4
.7

7
1
.4

7
44.70

1.48
44.52

1.52
44.32

1.55
44.13

1.58
43.97

1.61
5

39.03
2.85

3
9
.0

8
2
.8

3
38.97

2.87
38.78

2.93
38.57

3.01
38.34

3.08
38.12

3.16
10

34.55
4.77

3
4
.5

8
4
.7

6
34.53

4.79
34.42

4.84
34.28

4.92
34.13

5.01
33.96

5.11
20

30.47
7.64

3
0
.4

7
7
.6

3
30.44

7.66
30.38

7.72
30.30

7.79
30.20

7.88
30.08

7.98
30

2
8
.1

8
9
.9

4
2
8
.1

8
9
.9

4
28.15

9.98
28.10

10.03
28.03

10.11
27.96

10.20
27.86

10.30
40

2
6
.6

0
1
1
.9

2
26.58

11.95
26.55

11.99
26.50

12.06
26.45

12.14
26.38

12.24
26.30

12.35
60

2
4
.3

6
1
5
.4

4
24.33

15.49
24.29

15.55
24.25

15.63
24.20

15.73
24.14

15.83
24.07

15.95
80

2
2
.7

6
1
8
.5

5
22.73

18.62
22.69

18.71
22.64

18.81
22.59

18.92
22.54

19.03
22.48

19.17
100

2
1
.4

7
2
1
.5

3
21.43

21.63
21.38

21.74
21.34

21.86
21.28

21.99
21.23

22.13
21.17

22.28

T
ab

le
1:

In
b

o
ld

th
e

b
est

resu
lt

for
a

given
σ

.
O

th
er

p
aram

eters
are

fi
x
ed

to
:
K

=
15; √

n
=

5;
γ

=
5.25;

k
=

256.

112

An Implementation and Detailed Analysis of the K-SVD Image Denoising Algorithm

λ = 0 λ = 0.05

λ = 0.15 λ = 0.25

Figure 7: σ = 30

λt λe
σ PSNR RMSE value PSNR RMSE value

5 38.83 2.92 0.0050 38.64 2.98 0.05
10 34.24 4.95 0.0078 34.10 5.03 0.05
20 29.85 8.20 0.012 29.84 8.21 0.05
30 27.64 10.58 0.013 27.68 10.54 0.05
40 26.08 12.66 0.014 26.10 12.63 0.0
60 24.05 16.00 0.018 24.00 16.08 0.0
80 22.78 18.52 0.017 22.80 18.46 0.0
100 21.88 20.54 0.019 21.84 20.63 0.0

Table 2: In bold the best result for a given σ. Other parameters are fixed to : K = 15;
√
n = 5;

γ = 5.25; k = 256.

113

Marc Lebrun, Arthur Leclaire

λ = 0 λ = 0.05

λ = 0.15 λ = 0.25

Figure 8: σ = 80

114

An Implementation and Detailed Analysis of the K-SVD Image Denoising Algorithm

empirically the convergence of the method. Indeed when K is large enough further iterations should
improve the dictionary only marginally. Depending on the convergence of the method (which can
change according to σ), a huge number of iterations is assumed to be needed in order to assure the
best possible estimate. On an other side, each iteration is really expensive in terms of processing
time. Thus avoiding spurious iterations allows one to obtain a faster algorithm. In consequence the
main goal is to obtain a good compromise between having enough iterations to obtain a good result
close to the optimum and having a correct processing time.

Table 3 shows the PSNR and RMSE evolutions depending on the number of iterations.

One can notice that for σ ≥ 5 the PSNR converges, and the higher σ, the faster the convergence
of the PSNR. Thus it is possible to keep few iterations for high values of noise.

In order to better illustrate the speed of the PSNR convergence in function of K and σ, figure 9
shows f(PSNR(i)) according to the number of iterations i, where f is defined by

f(xi) =
xi − x0
xm

with xm = max(xi − x0).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
S

N
R

Nb Iterations

PSNR vs Nb Iterations

sigma = 2
sigma = 5

sigma = 10
sigma = 20
sigma = 30
sigma = 40
sigma = 60
sigma = 80

sigma = 100

Figure 9: PSNR vs number of iterations

In the following, the number of iterations will therefore be fixed to K = 15, no matter what σ.

115

Marc Lebrun, Arthur Leclaire

σ
=

2
σ
=

5
σ
=

1
0

σ
=

2
0

σ
=

3
0

σ
=

4
0

σ
=

6
0

σ
=

8
0

σ
=

1
0
0

K
P
S
N
R

R
M
S
E

P
S
N
R

R
M
S
E

P
S
N
R

R
M
S
E

P
S
N
R

R
M
S
E

P
S
N
R

R
M
S
E

P
S
N
R

R
M
S
E

P
S
N
R

R
M
S
E

P
S
N
R

R
M
S
E

P
S
N
R

R
M
S
E

1
4
4
.2
6

1
.5
6

3
8
.1
3

3
.1
6

3
3
.7
8

5
.2
2

2
9
.5
7

8
.4
7

2
7
.1
9

1
1
.1
5

2
5
.6
7

1
3
.2
7

2
3
.2
4

1
7
.5
6

2
1
.6
1

2
1
.1
7

2
0
.3
2

2
4
.5
6

2
4
4
.3
8

1
.5
4

3
8
.4
1

3
.0
6

3
4
.1
8

4
.9
8

3
0
.0
9

7
.9
7

2
7
.8
0

1
0
.3
9

2
6
.2
6

1
2
.4
0

2
3
.9
2

1
6
.2
3

2
2
.3
8

1
9
.3
8

2
1
.1
1

2
2
.4
4

3
4
4
.4
7

1
.5
2

3
8
.5
6

3
.0
1

3
4
.3
4

4
.8
9

3
0
.2
4

7
.8
4

2
7
.9
6

1
0
.2
0

2
6
.3
9

1
2
.2
2

2
4
.0
6

1
5
.9
8

2
2
.5
1

1
9
.1
0

2
1
.2
4

2
2
.1
1

4
4
4
.4
9

1
.5
2

3
8
.6
3

2
.9
8

3
4
.3
9

4
.8
6

3
0
.2
9

7
.8
0

2
8
.0
0

1
0
.1
4

2
6
.4
4

1
2
.1
4

2
4
.1
1

1
5
.8
8

2
2
.5
5

1
9
.0
2

2
1
.2
8

2
2
.0
0

5
4
4
.5
3

1
.5
1

3
8
.6
5

2
.9
8

3
4
.4
1

4
.8
5

3
0
.3
0

7
.7
9

2
8
.0
2

1
0
.1
2

2
6
.4
7

1
2
.1
1

2
4
.1
4

1
5
.8
3

2
2
.5
8

1
8
.9
5

2
1
.3
1

2
1
.9
3

6
4
4
.5
4

1
.5
1

3
8
.6
7

2
.9
7

3
4
.4
2

4
.8
4

3
0
.3
2

7
.7
7

2
8
.0
4

1
0
.1
1

2
6
.4
8

1
2
.0
9

2
4
.1
5

1
5
.8
1

2
2
.5
8

1
8
.9
4

2
1
.3
2

2
1
.8
9

7
4
4
.5
4

1
.5
1

3
8
.6
9

2
.9
6

3
4
.4
2

4
.8
4

3
0
.3
3

7
.7
7

2
8
.0
4

1
0
.1
0

2
6
.4
9

1
2
.0
8

2
4
.1
6

1
5
.7
9

2
2
.5
9

1
8
.9
1

2
1
.3
4

2
1
.8
6

8
4
4
.5
3

1
.5
1

3
8
.7
0

2
.9
6

3
4
.4
4

4
.8
4

3
0
.3
3

7
.7
6

2
8
.0
6

1
0
.0
8

2
6
.5
0

1
2
.0
7

2
4
.1
8

1
5
.7
6

2
2
.6
0

1
8
.9
0

2
1
.3
4

2
1
.8
4

9
4
4
.5
7

1
.5
1

3
8
.7
1

2
.9
6

3
4
.4
5

4
.8
3

3
0
.3
5

7
.7
5

2
8
.0
7

1
0
.0
7

2
6
.5
1

1
2
.0
5

2
4
.1
9

1
5
.7
5

2
2
.6
1

1
8
.8
9

2
1
.3
5

2
1
.8
3

1
0

4
4
.5
9

1
.5
0

3
8
.7
2

2
.9
5

3
4
.4
5

4
.8
3

3
0
.3
6

7
.7
4

2
8
.0
8

1
0
.0
6

2
6
.5
2

1
2
.0
4

2
4
.1
9

1
5
.7
4

2
2
.6
1

1
8
.8
7

2
1
.3
5

2
1
.8
2

1
1

4
4
.3
9

1
.5
4

3
8
.7
3

2
.9
5

3
4
.4
6

4
.8
2

3
0
.3
7

7
.7
3

2
8
.0
8

1
0
.0
5

2
6
.5
3

1
2
.0
3

2
4
.1
9

1
5
.7
3

2
2
.6
1

1
8
.8
7

2
1
.3
5

2
1
.8
2

1
2

4
4
.4
1

1
.5
3

3
8
.7
3

2
.9
5

3
4
.4
7

4
.8
2

3
0
.3
8

7
.7
2

2
8
.0
9

1
0
.0
5

2
6
.5
3

1
2
.0
2

2
4
.2
0

1
5
.7
2

2
2
.6
1

1
8
.8
7

2
1
.3
5

2
1
.8
2

1
3

4
4
.6
5

1
.4
9

3
8
.7
3

2
.9
5

3
4
.4
8

4
.8
1

3
0
.3
9

7
.7
1

2
8
.1
0

1
0
.0
4

2
6
.5
4

1
2
.0
0

2
4
.2
0

1
5
.7
1

2
2
.6
2

1
8
.8
5

2
1
.3
5

2
1
.8
1

1
4

4
4
.5
7

1
.5
1

3
8
.7
5

2
.9
4

3
4
.4
8

4
.8
1

3
0
.4
0

7
.7
0

2
8
.1
0

1
0
.0
3

2
6
.5
4

1
2
.0
0

2
4
.2
1

1
5
.7
1

2
2
.6
2

1
8
.8
5

2
1
.3
5

2
1
.8
1

1
5

4
4
.4
0

1
.5
3

3
8
.7
5

2
.9
4

3
4
.4
9

4
.8
0

3
0
.4
0

7
.7
0

2
8
.1
1

1
0
.0
2

2
6
.5
5

1
1
.9
9

2
4
.2
1

1
5
.7
1

2
2
.6
3

1
8
.8
4

2
1
.3
5

2
1
.8
2

1
6

4
4
.4
5

1
.5
3

3
8
.7
5

2
.9
4

3
4
.5
0

4
.8
0

3
0
.4
1

7
.6
9

2
8
.1
2

1
0
.0
1

2
6
.5
5

1
1
.9
9

2
4
.2
1

1
5
.7
0

2
2
.6
3

1
8
.8
3

2
1
.3
5

2
1
.8
2

1
7

4
4
.3
5

1
.5
4

3
8
.7
5

2
.9
5

3
4
.5
1

4
.8
0

3
0
.4
2

7
.6
8

2
8
.1
2

1
0
.0
0

2
6
.5
5

1
1
.9
9

2
4
.2
1

1
5
.6
9

2
2
.6
4

1
8
.8
2

2
1
.3
5

2
1
.8
2

1
8

4
4
.3
6

1
.5
4

3
8
.7
6

2
.9
4

3
4
.5
1

4
.8
0

3
0
.4
2

7
.6
8

2
8
.1
3

1
0
.0
0

2
6
.5
6

1
1
.9
8

2
4
.2
2

1
5
.6
9

2
2
.6
4

1
8
.8
2

2
1
.3
6

2
1
.8
1

1
9

4
4
.5
5

1
.5
1

3
8
.7
7

2
.9
4

3
4
.5
2

4
.7
9

3
0
.4
2

7
.6
8

2
8
.1
3

9
.9
9

2
6
.5
6

1
1
.9
8

2
4
.2
2

1
5
.6
8

2
2
.6
4

1
8
.8
1

2
1
.3
6

2
1
.8
1

2
0

4
4
.5
9

1
.5
0

3
8
.7
7

2
.9
4

3
4
.5
3

4
.7
9

3
0
.4
3

7
.6
7

2
8
.1
3

9
.9
9

2
6
.5
6

1
1
.9
8

2
4
.2
2

1
5
.6
8

2
2
.6
4

1
8
.8
1

2
1
.3
6

2
1
.8
1

T
ab

le
3:

O
th

er
p
aram

eters
are

fi
x
ed

to
:
√
n

=
5;
γ

=
5.25;

λ
=

0.15;
k

=
256.

116

An Implementation and Detailed Analysis of the K-SVD Image Denoising Algorithm

3.4 Influence of the Size of the Dictionary k

The only constraint on the size of the dictionary is to generate Rn. As we want some redundancy,
we set k ≥ n. Table 4 contains a study about this parameter.

k = 128 k = 196 k = 256 k = 320
σ PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE

2 44.13 1.58 44.40 1.54 44.66 1.49 44.70 1.48
5 38.44 3.05 38.69 2.96 38.73 2.95 38.76 2.94
10 34.32 4.90 34.41 4.85 34.45 4.83 34.50 4.80
20 30.32 7.77 30.37 7.72 30.42 7.68 30.44 7.67
30 28.07 10.07 28.08 10.05 28.10 10.03 28.10 10.04
40 26.54 12.01 26.55 11.99 26.53 12.01 26.54 12.00
60 24.37 15.42 24.32 15.50 24.30 15.54 24.26 15.61
80 22.73 18.63 22.66 18.76 22.61 18.88 22.57 18.97
100 21.48 21.60 21.48 21.59 21.32 21.91 21.27 22.02

Table 4: In bold the best result for a given σ. Other parameters are fixed to : K = 15;
√
n = 5;

γ = 5.25; λ = 0.15.

According to this table one can see that it might be interesting to choose larger sizes for the
dictionary for relatively small noise (σ ≤ 30), and smaller sizes for high noise (σ ≥ 60). Although
this parameter has an influence on the processing time, it remains relatively flexible according to
PSNR results. In the following, this parameter will therefore be fixed to k = 256.

3.5 Influence of the Correction Parameter γ

The parameter γ is only used in the case of color images. We will see that this empirical parameter
is quite flexible, because some low variations on its value have almost no consequences on the final
result.

In the following and according to the original article the correction parameter will therefore be
fixed to γ = 5.25.

3.6 Influence of the Size of the Patches
√
n

The size of the patches has a huge influence on the final result, and we can win several decibels in
PSNR by choosing an appropriate n. As for most of the patch-based denoising method, best results
are obtained by working with relatively big patches, as seen in table 6.

Similarly to other patch-based denoising method (for example BM3D), it is necessary to increase
the size of the patches when the noise increases.

Despite the fact that according to PSNR/RMSE results it seems better to take relatively small
patches (

√
n = 5 or 7) for small values of noise, we have to take into consideration the visual result.

Visual results for several values of the noise and for all studied patch sizes are shown in figures
10, 11, 12, and 13.

One can notice that visually the choice is not so easy. Too small patches give huge artifacts, and
leads to many low frequency fluctuations, but with big patches almost all details are lost. We get a
visually nicer image, but completely blurred.

117

Marc Lebrun, Arthur Leclaire

γ
=

3
.5

γ
=

4
.5

γ
=

4
.7
5

γ
=

5
γ
=

5
.2
5

γ
=

5
.5

γ
=

5
.7
5

γ
=

6
γ
=

7
σ

P
S
N
R

R
M
S
E

P
S
N
R

R
M
S
E

P
S
N
R

R
M
S
E

P
S
N
R

R
M
S
E

P
S
N
R

R
M
S
E

P
S
N
R

R
M
S
E

P
S
N
R

R
M
S
E

P
S
N
R

R
M
S
E

P
S
N
R

R
M
S
E

2
4
4
.2
4

1
.5
6

4
4
.6
7

1
.4
9

4
4
.6
6

1
.4
9

4
4
.6
4

1
.4
9

4
4
.6
6

1
.4
9

4
4
.5
8

1
.5
0

4
4
.6
7

1
.4
9

4
4
.6
4

1
.4
9

4
4
.6
6

1
.4
9

5
3
8
.7
5

2
.9
4

3
8
.7
7

2
.9
4

3
8
.7
5

2
.9
4

3
8
.7
5

2
.9
4

3
8
.7
7

2
.9
4

3
8
.7
6

2
.9
4

3
8
.7
7

2
.9
4

3
8
.7
7

2
.9
4

3
8
.7
4

2
.9
5

1
0

3
4
.4
8

4
.8
1

3
4
.5
0

4
.8
0

3
4
.4
7

4
.8
2

3
4
.4
9

4
.8
1

3
4
.5
0

4
.8
0

3
4
.4
9

4
.8
1

3
4
.4
9

4
.8
1

3
4
.4
9

4
.8
1

3
4
.5
1

4
.8
0

2
0

3
0
.3
9

7
.7
1

3
0
.3
9

7
.7
1

3
0
.3
9

7
.7
1

3
0
.3
7

7
.7
2

3
0
.3
5

7
.7
4

3
0
.3
7

7
.7
3

3
0
.3
6

7
.7
3

3
0
.3
7

7
.7
2

3
0
.3
6

7
.7
3

3
0

2
8
.1
0

1
0
.0
4

2
8
.0
8

1
0
.0
5

2
8
.0
9

1
0
.0
4

2
8
.1
0

1
0
.0
4

2
8
.0
9

1
0
.0
5

2
8
.0
7

1
0
.0
6

2
8
.0
8

1
0
.0
6

2
8
.0
9

1
0
.0
5

2
8
.0
7

1
0
.0
7

4
0

2
6
.5
3

1
2
.0
2

2
6
.5
2

1
2
.0
4

2
6
.5
1

1
2
.0
6

2
6
.5
2

1
2
.0
3

2
6
.5
0

1
2
.0
6

2
6
.5
4

1
2
.0
1

2
6
.5
0

1
2
.0
6

2
6
.5
1

1
2
.0
4

2
6
.5
1

1
2
.0
4

6
0

2
4
.2
9

1
5
.5
6

2
4
.2
7

1
5
.5
9

2
4
.2
8

1
5
.5
7

2
4
.2
7

1
5
.6
0

2
4
.2
6

1
5
.6
2

2
4
.2
4

1
5
.6
4

2
4
.2
7

1
5
.6
0

2
4
.2
9

1
5
.5
5

2
4
.2
6

1
5
.6
1

8
0

2
2
.6
8

1
8
.7
2

2
2
.7
0

1
8
.6
9

2
2
.6
8

1
8
.7
2

2
2
.6
4

1
8
.8
1

2
2
.6
9

1
8
.7
1

2
2
.6
7

1
8
.7
5

2
2
.6
9

1
8
.7
1

2
2
.6
6

1
8
.7
7

2
2
.6
8

1
8
.7
3

1
0
0

2
1
.4
0

2
1
.7
0

2
1
.3
6

2
1
.7
9

2
1
.3
7

2
1
.7
8

2
1
.3
8

2
1
.7
4

2
1
.3
7

2
1
.7
8

2
1
.3
8

2
1
.7
5

2
1
.3
7

2
1
.7
9

2
1
.3
7

2
1
.7
9

2
1
.3
6

2
1
.7
9

T
ab

le
5:

In
b

o
ld

th
e

b
est

resu
lt

for
a

given
σ

.
O

th
er

p
aram

eters
are

fi
x
ed

to
:
K

=
15; √

n
=

5;
λ

=
0.15;

k
=

256.

118

An Implementation and Detailed Analysis of the K-SVD Image Denoising Algorithm

√
n

=
3

√
n

=
5

√
n

=
7

√
n

=
9

√
n

=
11

√
n

=
13

√
n

=
15

σ
P

S
N

R
R

M
S
E

P
S
N

R
R

M
S
E

P
S
N

R
R

M
S
E

P
S
N

R
R

M
S
E

P
S
N

R
R

M
S
E

P
S
N

R
R

M
S
E

P
S
N

R
R

M
S
E

5
38

.5
2

3.
02

3
9
.0

7
2
.8

4
38

.8
7

2.
90

38
.5

5
3.

01
38

.4
2

3.
06

38
.1

2
3.

17
36

.8
0

3.
68

10
33

.8
7

5.
16

3
4
.6

5
4
.7

2
34

.4
5

4.
83

34
.1

8
4.

98
33

.8
9

5.
15

33
.6

2
5.

31
33

.3
7

5.
47

20
29

.2
7

8.
77

3
0
.5

2
7
.5

9
30

.3
2

7.
77

30
.0

4
8.

02
29

.7
4

8.
31

29
.4

8
8.

56
29

.2
6

8.
77

30
26

.4
6

12
.1

2
2
8
.1

9
9
.9

3
28

.1
1

10
.0

3
27

.7
8

10
.4

1
27

.4
8

10
.7

8
27

.2
0

11
.1

2
26

.9
9

11
.4

1
40

24
.4

0
15

.3
6

2
6
.5

6
1
1
.9

9
26

.5
5

12
.0

0
26

.2
4

12
.4

2
25

.9
0

12
.9

2
25

.6
0

13
.3

8
25

.3
5

13
.7

7
60

21
.5

1
21

.4
2

24
.4

2
15

.3
3

2
4
.6

6
1
4
.9

1
24

.3
7

15
.4

1
24

.0
6

15
.9

8
23

.6
9

16
.6

7
23

.4
1

17
.2

1
80

19
.3

0
27

.6
3

22
.7

2
18

.6
4

2
3
.3

3
1
7
.3

9
23

.1
5

17
.7

4
22

.8
7

18
.3

2
22

.5
9

18
.9

2
22

.2
8

19
.6

0
10

0
17

.5
6

33
.7

8
21

.4
7

21
.5

3
2
2
.3

9
1
9
.3

7
22

.3
8

19
.3

8
22

.1
3

19
.9

8
21

.8
4

20
.6

3
21

.5
6

21
.3

1

T
ab

le
6:

In
b

o
ld

th
e

b
es

t
re

su
lt

fo
r

a
gi

ve
n
σ

.
O

th
er

p
ar

am
et

er
s

ar
e

fi
x
ed

to
:
K

=
15

;
k

=
25

6;
γ

=
5.

25
;
λ

=
0

if
σ
>

0,
0.

05
ot

h
er

w
is

e.

119

Marc Lebrun, Arthur Leclaire

Noisy image
√
n = 3

√
n = 5

√
n = 7

√
n = 9

√
n = 11

√
n = 13

√
n = 15

Figure 10: σ = 10
120

An Implementation and Detailed Analysis of the K-SVD Image Denoising Algorithm

Noisy image
√
n = 3

√
n = 5

√
n = 7

√
n = 9

√
n = 11

√
n = 13

√
n = 15

Figure 11: σ = 30
121

Marc Lebrun, Arthur Leclaire

Noisy image
√
n = 3

√
n = 5

√
n = 7

√
n = 9

√
n = 11

√
n = 13

√
n = 15

Figure 12: σ = 60
122

An Implementation and Detailed Analysis of the K-SVD Image Denoising Algorithm

Noisy image
√
n = 3

√
n = 5

√
n = 7

√
n = 9

√
n = 11

√
n = 13

√
n = 15

Figure 13: σ = 100
123

Marc Lebrun, Arthur Leclaire

In conclusion a compromise has to be found, which cannot only be chosen according to the
PSNR/RMSE results, but also taken into account the visual aspect. The values of n which will
therefore be kept are

σ 0 < σ ≤ 20 20 < σ ≤ 60 60 < σ√
n 5 7 9

4 A Detailed Study of Possible Variants

4.1 Origin of the Initial Dictionary

In the original article, and in the previously described algorithm, the dictionary is initialized by
taking randomly k patches in the noisy image.

Despite the fact that the method works well in this way, one can wonder whether there would be
a better way to initialize the dictionary. For example by taking random patches from a noise-free
image.

Let us denote by Init0 the dictionary initialized on the original noiseless image; by Init1 the
dictionary initialized on the original noisy image, by Init2 the dictionary initialized on a noise-free
reference image.

Init0 Init1 Init2
σ PSNR RMSE PSNR RMSE PSNR RMSE

5 38.80 2.93 38.76 2.94 38.65 2.98
10 34.47 4.82 34.42 4.82 34.29 4.92
20 30.40 7.70 30.35 7.74 30.28 7.81
30 28.05 10.10 28.09 10.04 27.87 10.30
40 26.44 12.15 26.51 12.05 26.27 12.38
60 24.21 15.70 24.25 15.63 24.21 15.71
80 22.64 18.82 22.65 18.79 22.61 18.88
100 21.29 21.99 21.31 21.93 21.28 22.00

Table 7: In bold the best result for a given σ. Other parameters are fixed to : K = 15;
√
n = 5;

γ = 5.25; k = 256; λ = 0.15.

One can think that the initialization of the dictionary is quite important (because we run the
algorithm with few number iterations, so the maximum is not reached), because depending on the
initialization we have variations of more than 0.1dB. But when σ increases, one observes less variation
in the results. An explanation might be that the number of iterations K is then more appropriate,
so we are close to optimality, and the initialization is not really crucial.

In conclusion the initialization of the dictionary is not crucial, and the initialization by taking
random patches from the noisy image is quite good.

4.2 Training of the Dictionary

Because the algorithm can hardly take into account parallel instructions (at least the update of the
dictionary), the algorithm as previously described in this article is extremely slow. Its processing time
is directly proportional to the size of the dictionary2 as well as to the number of patches containing
in the image (then to the size of the image itself) and to the size of the patches.

2Although the study shows that the size of the dictionary can be reduced without affecting the result too much.

124

An Implementation and Detailed Analysis of the K-SVD Image Denoising Algorithm

If obviously we cannot reduce the size of the image and if we cannot modify the size of the patches
without highly damaging the final result, it is still possible to reduce the number of patches used
during the training part of the dictionary, by applying the following principle :

1. The set of patches is built on the whole image;

2. Keep one patch out of T to build a T times smaller patch set;

3. Apply the loop on the ORMP and the update of the dictionary by SVD K times on this sub-set,
in order to obtain a final dictionary Df ;

4. Then apply with only one iteration the whole algorithm on the initial full set of patches, but
with Df as previously obtained.

With this simple trick it is then possible to divide the processing time by slightly less3 than T .
Before applying this trick, we have to determinate its impact on the final result, in order to find the
more appropriate value of T for each σ.

We have seen during the study of the parameters that the result in PSNR for σ = 2 is highly
chaotic depending on the number of iterations K. For that reason we do not present results for this
particular value of noise.

Table 8 shows a summary for some values4 of T .
This study shows that it is possible to highly reduce the processing time of this method whilst

keeping a result close to the original method.
According to the obtained results, it seems reasonable to take T = 16 for σ ≤ 40 and T = 8 for

σ > 40.
In order to help the readers to make up their own idea concerning the gain in term of processing

time with this trick, table 9 shows the processing time in seconds for a 512× 512× 3 image on a i5
processor with 8Go of Ram5.

Thanks to this trick, we obtain reasonable processing time for σ ≥ 10. Moreover we can decrease
this time to 112 seconds (resp. 42s.) for σ = 5 (resp. σ = 10) by taking T = 32, without decreasing
the PSNR. But we cannot decrease the processing time more, because we have to process a single
iteration of the full set of patches, which is mainly responsible for the processing time.

One can be surprised by the fact that the processing time is decreasing with respect to σ. But it
can be easily explained :

• For very small values of noise, it is quite complex to get a sparse representation of the patches
since they are very different from one another. Then at the end of the ORMP we have to
process a large matrix;

• On the contrary for very high noise the signal is covered by the noise, then patches are very
similar. Thus it is easier to get a sparse representation of them, and then at the end of the
ORMP the matrix is even smaller.

5 Comparison with Several Classic and Recent Methods

In order to evaluate the real capacity of this new denoising method, a fair and precise comparison
with other state-of-the-art methods needs to be done. The other considered methods are BM3D,
DCT denoising, NL-means, TV denoising, NL-Bayes.

3We have to apply at the end a single iteration on the whole set of patches, which can be slower than the previous
15 ones on the sub-set.

4T = 1 represents the initial algorithm as described in this article without any modifications.
5Moreover the process of the ORMP is fully parallelized.

125

Marc Lebrun, Arthur Leclaire

T
=

1
T

=
2

T
=

4
T

=
8

T
=

12
T

=
16

T
=

20
σ

P
S
N

R
R

M
S
E

P
S
N

R
R

M
S
E

P
S
N

R
R

M
S
E

P
S
N

R
R

M
S
E

P
S
N

R
R

M
S
E

P
S
N

R
R

M
S
E

P
S
N

R
R

M
S
E

5
38.84

2.91
38.86

2.91
38.89

2.90
38.90

2.89
38.89

2.90
38.91

2.89
3
8
.9

2
2
.8

8
10

34.47
4.82

34.49
4.81

34.51
4.80

34.49
4.81

34.52
4.79

3
4
.5

5
4
.7

8
34.50

4.80
20

30.28
7.80

3
0
.3

1
7
.7

8
30.28

7.80
3
0
.3

1
7
.7

8
30.29

7.80
30.29

7.80
3
0
.3

1
7
.7

8
30

2
8
.0

5
1
0
.0

9
2
8
.0

5
1
0
.0

9
28.04

10.10
28.04

10.10
28.04

10.10
28.01

10.13
28.01

10.14
40

26.61
11.91

2
6
.6

3
1
1
.8

8
2
6
.6

3
1
1
.8

8
26.59

11.94
26.59

11.94
26.56

11.98
26.58

11.96
60

2
4
.6

9
1
4
.8

7
24.65

14.92
24.65

14.92
24.60

15.02
24.56

15.08
24.56

15.08
24.52

15.15
80

2
3
.2

8
1
7
.4

7
23.23

17.59
23.22

17.61
23.14

17.75
23.07

17.90
23.00

18.06
23.03

17.98
100

2
2
.2

8
1
9
.6

1
22.25

19.67
22.18

19.84
22.12

19.98
22.07

20.09
22.04

20.15
22.00

20.25

T
ab

le
8:

In
b

o
ld

th
e

b
est

resu
lt

for
a

given
σ

.
P

aram
eters

are
fi
x
ed

to
:
K

=
15; √

n
=

7;
γ

=
5.25;

k
=

256;
λ

=
0.05.

126

An Implementation and Detailed Analysis of the K-SVD Image Denoising Algorithm

σ 5 10 20 30 40 60 80 100

T = 1 1306 446 213 165 152 141 138 137
T tabulated 140 53 28 23 22 29 29 28

Table 9: Processing time.

Moreover, results for K-SVD will be shown for the algorithm which gives best PSNR results
(named K-SVD 1 in the following) and the one which gives better visual results (K-SVD 2)6.

The following study has been led on the following noise-free color image (σreel ¡¡ 1). All algorithms
have been processed on the same noisy images obtained from noiseless images (saved in real values
and not sampled on [0, 255])) :

5.1 Comparative Table

According to the results shown in table 10, one can observe that the order of the methods is quite
independent of noise value. In order to help the reader to make up its own idea concerning the
method performances comparatively to the others, table 11 shows a mean of the scores.

5.2 Images

In addition to the PNSR/RMSE results, it is really interesting to compare visually those methods.
The results for σ = 20 are shown in figure 14.

6 Conclusion

In this article, we have proposed a detailed analysis of the K-SVD algorithm, already introduced
in the articles [9] and [14]. Through this explanation, we showed why we could expect remarkable
denoising results from this algorithm. But we also noticed immediately the difficulty of the related
optimization problems.

In a numerical way, we have observed the stability of this method, but we also brought up its
heavy computational cost. In spite of these drawbacks, our experiments have clarified the impact
of the different parameters on the result, and thus we have proposed reliable values to tune some of
them. Moreover, we showed some denoising experiments which prove that the K-SVD method leads
to good results, both in terms of PSNR values and of visual quality. The skeptical reader can pursue
our experiments by applying the proposed demonstration to the images of her choice. Finally, the
suggested modification (taking into account only a subset of the patches of the image) seems to get
similar results with an interesting reduction of the execution time.

In conclusion, the K-SVD method can be considered to be part of the state of the art. But, above
all it has to be seen as a first successful use of dictionary learning to address an image processing task.
The more recent algorithms of this field, in particular those which replace the l0-sparsity constraint
by a l1 constraint (cf. [12]), seem very promising. They lead to a great gain in computational time,
and therefore allow one to handle bigger images.

6To know the difference, please see the study on the influence of the size of the patches n.

127

Marc Lebrun, Arthur Leclaire

T
V

d
en

oisin
g

N
L

-m
ean

s
D

C
T

d
en

oisin
g

K
-S

V
D

1
K

-S
V

D
2

N
L

-B
ayes

B
M

3D
σ

P
S
N

R
R

M
S
E

P
S
N

R
R

M
S
E

P
S
N

R
R

M
S
E

P
S
N

R
R

M
S
E

P
S
N

R
R

M
S
E

P
S
N

R
R

M
S
E

P
S
N

R
R

M
S
E

5
35.57

4.25
37.37

3.45
38.92

2.89
39.04

2.85
39.06

2.84
39.84

2.60
39.53

2.69
10

31.61
6.70

33.44
5.43

34.25
4.94

34.60
4.75

34.59
4.75

35.26
4.40

35.13
4.47

20
28.09

10.05
29.70

8.35
29.92

8.14
30.46

7.65
30.48

7.63
30.91

7.26
31.00

7.19
30

26.19
12.50

27.07
11.30

27.58
10.65

28.17
9.95

28.14
9.99

28.57
9.51

28.74
9.32

40
24.94

14.44
25.57

13.43
26.14

12.58
26.72

11.76
26.70

11.79
27.05

11.33
27.09

11.27
60

23.31
17.42

23.36
17.32

24.19
15.74

24.66
14.91

24.57
15.07

24.87
14.56

25.39
13.71

80
22.26

19.66
21.83

20.66
22.96

18.14
23.40

17.24
23.31

17.42
23.60

16.85
24.21

15.71
100

21.52
21.41

20.85
23.12

22.08
20.07

22.45
19.23

22.05
20.14

22.70
18.69

23.21
17.62

T
ab

le
10:

R
esu

lts
of

th
e

m
eth

o
d
s.

128

An Implementation and Detailed Analysis of the K-SVD Image Denoising Algorithm

Noisy image TV Denoising

NL-means TV Denoising

K-SVD 1 K-SVD 2

BM3D NL-Bayes

Figure 14: σ = 20
129

Marc Lebrun, Arthur Leclaire

TV denoising NL-means DCT denoising K-SVD 1
PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE
26.69 13.30 27.40 12.88 28.26 11.64 28.69 11.04

K-SVD 2 NL-Bayes BM3D
PSNR RMSE PSNR RMSE PSNR RMSE
28.61 11.2 29.10 10.65 29.29 10.25

Table 11: Summary of the methods.

Acknowledgment

The authors are grateful to Julien Mairal and Jean-Michel Morel for their help and advises.

Glossary

Global Notations

· x: generic notation for an image;
· x0: clean image;
· N : number of pixels of x0;
· Ñ : is equal to N (resp. 3N) for a grayscale (resp. color) image;
· w: white Gaussian noise which is added to x0;
· σ: noise standard deviation;
· y: noisy image: y = x0 + w;
· x̂: denoised image obtained after applying the algorithm;
· x̂λ: (in the paragraph 3.2) final denoised image obtained after applying the algorithm with the

parameter λ;
· (i, j): position of a generic pixel in the image x;
· n: total number of pixels in a patch. As we are working with square patches, n is a perfect

square;
· Np: number of patches whose size is

√
n×
√
n contained in the image x;

· Rij: matrix whose size is n×N making the extraction of a square patch whose size is
√
n×
√
n

and whose up left pixel has coordinate (i, j). Columns of Rij are indexed by the pixels of x;
· D: generic notation for a dictionary;
· dl: column of index l (1 ≤ l ≤ k) of the dictionary D;
· k: number of atoms in the dictionary;
· αij: generic notation for the representation of the patch Rijx in the dictionary: Rijx ≈ Dαij;
· α: matrix whose columns are formed by αij. Then columns of α are indexed by (i, j) and the

matrix has as many columns as there is patches of size
√
n×
√
n in the image x;

· D̂: current dictionary (updated at each iteration of the algorithm);
· K: number of iterations of the algorithm;
· Dinit: initial dictionary;
· α̂ij: current representation of the patch Rijx in D̂ (updated for each iteration of the algorithm);
· α̂: matrix whose columns are α̂ij;
· λ: weighting of ‖x− y‖22 in the minimization problem (12). This coefficient is used during the

reconstruction step;
· µij: weighting of ‖αij‖0 in the minimization problem (12). This coefficient is not explicitly

used in the algorithm;

130

An Implementation and Detailed Analysis of the K-SVD Image Denoising Algorithm

· C: Thanks to this coefficient, the norm l2 on n pixels of a white Gaussian noise whose standard
deviation is σ is lower than

√
nCσ with probability 0.93. This coefficient is used during the

break condition of the ORMP;
· d̂l: column of the dictionary whose index is l, (1 ≤ l ≤ k);
· α̂ij(l): coefficient of α̂ij of index l. It matches to the weighting of the atom d̂l in the represen-

tation of the patch Rijx;
· elij = Rijx̂− D̂α̂ij + d̂lα̂ij(l): residue corresponding to the atom l and the patch Rijx (it is a

column vector whose size is n);
· El: matrix grouping the residues elij together;
· (U,∆, V): singular value decomposition of El;
· ωl: set of indices all (i, j) such that α̂ij(l) 6= 0;
· I: identity square matrix whose size is N ×N ;
· γ: parameter of the new metric of the ORMP for the color processing;
· x, y: generic notations for column vectors whose size is ñ;
· α: generic notation for the representation of a vector x in the dictionary D: x ≈ Dα;
· J : square matrix whose size is 3n× 3n, built with three blocks of size n× n full of 1;
· mC(x): average of x in the channel C;
· I: square identity matrix, whose size is 3n× 3n;
· a: positive solution of γ = 2a+ a2. Then we get a =

√
1 + γ − 1;

· ñ: ñ = n (resp. ñ = 3n) if we are working on grayscale (resp. color) images;
· β̂ij: result of the ORMP for the current representation of the color patch Rijx in D̂ with the

metric ‖ · ‖;
· D: diagonal matrix containing the inverse of the norm of the columns of (I + a

n
J)D.

Specific Notations to the Explanation of the ORMP

· x: generic vector of Rn;
· D: dictionary used to compute a sparse representation of x;
· d0, . . . , dk−1: atoms of the dictionary (columns of D);
· α ∈ Rk: sparse representation of x in D;
· ProjF : orthogonal projection onto the vector sub-space F ;
· j: loop index of the ORMP, from 0 to k;
· lj: index of the jth chosen vector;
· Lj = {l0, . . . , lj};
· r = x− ProjVect(dl0 ,...,dlj−1

)(x): current residue;

· (tl0 , . . . , tlj−1
): orthogonal set of (dl0 , . . . , dlj−1

) obtained by Gram-Schmidt process;
· (el0 , . . . , elj−1

): orthonormal set of (dl0 , . . . , dlj−1
) obtained by Gram-Schmidt process;

· (tl0 , . . . , tlj−1
, t

(j)
i): orthogonal set of (dl0 , . . . , dlj−1

, di) obtained by Gram-Schmidt process;

· (el0 , . . . , elj−1
, e

(j)
i): orthonormal set of (dl0 , . . . , dlj−1

, di) obtained by Gram-Schmidt process;
· apq: coordinate of elp on the vector dlq (equal to 0 except if p ≤ q).

Specific Notations to the Explanation of the Truncated SVD

· X: matrix on which the truncated SVD will be applied. Let us denote X = U∆V T with U and
V orthogonal matrices, and coefficients of ∆ are equal to 0 except on its first diagonal where
they are non-negative and decreasing;
· U,∆, V : exact SVD of X: X = U∆V T ;
· s: estimate of the biggest singular value of XXT ;
· sold: value of s at the end of the previous loop;
· u: estimate of the first column of U ;
· v: estimate of the first column of V ;

131

Marc Lebrun, Arthur Leclaire

· max_iter: maximal number of authorized iterations (fixed to 100 in the C++ code);
· ε: tolerance threshold controlling the break condition of the SVD (fixed to 10−6 in the C++

code).

References

[1] M. Aharon, Michael Elad, and A. Bruckstein. K-SVD: An Algorithm for Designing Overcomplete
Dictionaries for Sparse Representation. IEEE Transactions on image processing, pages 9–12,
2005. http://dx.doi.org/10.1109/TSP.2006.881199.

[2] G. Allaire and S. M. Kaber. Algèbre Linéaire Numérique. Ellipses, Paris, 2002.
ISBN:2729810013.

[3] A. Buades, B. Coll, and J.M. Morel. A non local algorithm for image denoising. IEEE Computer
Vision and Pattern Recognition, 2:60–65, 2005. http://dx.doi.org/10.1109/CVPR.2005.38.

[4] A. Chambolle. An algorithm for total variation minimization and applications. Journal of
Mathematical Imaging and Vision, 20:89–97, 2004. http://dx.doi.org/10.1023/B:JMIV.

OOOOO11325.36760.1e.

[5] S.F. Cotter, R. Adler, R.D. Rao, and K. Kreutz-Delgado. Forward sequential algorithms for best
basis selection. In Vision, Image and Signal Processing, IEE Proceedings, volume 146, pages
235–244, 1999. http://dx.doi.org/10.1049/ip-vis:19990445.

[6] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image denoising by sparse 3D transform-
domain collaborative filtering. IEEE Transactions on image processing, 16:2007, 2007. http:

//dx.doi.org/10.1109/TIP.2007.901238.

[7] G. Davis, S. Mallat, and M. Avellaneda. Adaptive greedy approximations. Journal of construc-
tive Approximation, 13:57–98, 1997. http://dx.doi.org/10.1007/BF02678430.

[8] D. Donoho and I. Johnstone. Ideal spatial adaptation by wavelet shrinkage. Biometrika, 81:425–
455, 1993. http://dx.doi.org/10.1093/biomet/81.3.425.

[9] M. Elad and M. Aharon. Image denoising via sparse and redundant representations over learned
dictionaries. IEEE Transactions on image processing, 15(12):3736–3745, 2006. http://dx.doi.
org/10.1109/TIP.2006.881969.

[10] M. Lebrun, A. Buades, and J.M. Morel. Implementation of the non-local bayes image denoising.
Image Processing on Line, http: // www. ipol. im/ , 2011. ipol.im . Workshop, 2011.

[11] J. Mairal. Représentations parcimonieuses en apprentissage statistique, traitement d’image et
vision par ordinateur. PhD thesis, 2010.

[12] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix factorization and sparse
coding. Journal of Machine Learning Research, 11:19–60, 2010.

[13] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Non-local sparse models for image
restoration. In ICCV’09, pages 2272–2279, 2009. http://dx.doi.org/10.1109/ICCV.2009.

5459452.

132

http://dx.doi.org/10.1109/TSP.2006.881199
http://dx.doi.org/10.1109/CVPR.2005.38
http://dx.doi.org/10.1023/B:JMIV.OOOOO11325.36760.1e
http://dx.doi.org/10.1023/B:JMIV.OOOOO11325.36760.1e
http://dx.doi.org/10.1049/ip-vis:19990445
http://dx.doi.org/10.1109/TIP.2007.901238
http://dx.doi.org/10.1109/TIP.2007.901238
http://dx.doi.org/10.1007/BF02678430
http://dx.doi.org/10.1093/biomet/81.3.425
http://dx.doi.org/10.1109/TIP.2006.881969
http://dx.doi.org/10.1109/TIP.2006.881969
http://www.ipol.im/
http://dx.doi.org/10.1109/ICCV.2009.5459452
http://dx.doi.org/10.1109/ICCV.2009.5459452

An Implementation and Detailed Analysis of the K-SVD Image Denoising Algorithm

[14] J. Mairal, M. Elad, and G. Sapiro. Sparse representation for color image restoration. IEEE
Transactions on image processing, 17(1):53–69, 2008. http://dx.doi.org/10.1109/TIP.2007.
911828.

[15] S. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries. IEEE Transactions
on signal processing, 41(12), December 1992. http://dx.doi.org/10.1109/78.258082.

[16] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms.
Phys. D, 60:259–268, 1992. http://dx.doi.org/10.1016/0167-2789(92)90242-F.

[17] J.L. Starck, E.J. Candès, and D.L. Donoho. The curvelet transform for image denoising. IEEE
Transactions on image processing, 11:670–684, 2002. http://dx.doi.org/10.1109/TIP.2002.
1014998.

[18] L.P. Yaroslavsky. Local adaptive image restoration and enhancement with the use of DFT and
DCT in a running window. In Proceedings of SPIE, volume 2825, pages 2–13, 1996. http:

//dx.doi.org/10.1007/3-540-76076-8_114.

[19] L.P. Yaroslavsky, K.O. Egiazarian, and J.T. Astola. Transform domain image restoration
methods: review, comparison, and interpretation. In Society of Photo-Optical Instrumen-
tation Engineers (SPIE) Conference Series, volume 4304, pages 155–169, May 2001. http:

//dx.doi.org/10.1117/12.424970.

133

http://dx.doi.org/10.1109/TIP.2007.911828
http://dx.doi.org/10.1109/TIP.2007.911828
http://dx.doi.org/10.1109/78.258082
http://dx.doi.org/10.1016/0167-2789(92)90242-F
http://dx.doi.org/10.1109/TIP.2002.1014998
http://dx.doi.org/10.1109/TIP.2002.1014998
http://dx.doi.org/10.1007/3-540-76076-8_114
http://dx.doi.org/10.1007/3-540-76076-8_114
http://dx.doi.org/10.1117/12.424970
http://dx.doi.org/10.1117/12.424970

	Overview
	Theoretical Description
	Algorithm for Grayscale Images
	Sparse Coding
	Dictionary Update
	Reconstruction
	Comments

	Extending K-SVD to Color Images
	Summary of the Algorithm

	Influence of the Parameters on the Performance
	Influence of C
	Influence of the Weighting parameter lambda
	Influence of the Number of Iterations K
	Influence of the Size of the Dictionary k
	Influence of the Correction Parameter
	Influence of the Size of the Patches n

	A Detailed Study of Possible Variants
	Origin of the Initial Dictionary
	Training of the Dictionary

	Comparison with Several Classic and Recent Methods
	Comparative Table
	Images

	Conclusion

