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Abstract

This article presents a detailed implementation of the Non-Local Bayes (NL-Bayes) image de-
noising algorithm. In a nutshell, NL-Bayes is an improved variant of NL-means. In the NL-
means algorithm, each patch is replaced by a weighted mean of the most similar patches present
in a neighborhood. Images being mostly self-similar, such instances of similar patches are gen-
erally found, and averaging them increases the SNR. The NL-Bayes strategy improves on
NL-means by evaluating for each group of similar patches a Gaussian vector model. To each
patch is therefore associated a mean (which would be the result of NL-means), but also a covari-
ance matrix estimating the variability of the patch group. This permits to compute an optimal
(in the sense of Bayesian minimal mean square error) estimate of each noisy patch in the group,
by a simple matrix inversion.
The implementation proceeds in two identical iterations, but the second iteration uses the de-
noised image of the first iteration to estimate better the mean and covariance of the patch
Gaussian models. A discussion of the algorithm shows that it is close in spirit to several state
of the art algorithms (TSID, BM3D, BM3D-SAPCA), and that its structure is actually close to
BM3D. Thorough experimental comparison made in this paper also shows that the algorithm
achieves the best state of the art on color images in terms of PSNR and image quality. On grey
level images, it reaches a performance similar to the more complex BM3D-SAPCA (no color
version is available for this last algorithm).

Source Code

The ANSI C implementation of NL-Bayes image denoising algorithm has been peer reviewed
and accepted by IPOL. The source code, the code documentation, and the online demo are
accessible at the IPOL web page of this article1.
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1 Introduction

Image denoising is the first step of any image processing chain. Early studies applied linear Wiener
filters equivalent to a frequency reduction of the Fourier transform. These filters are more efficient
when applied locally on the DCT (Yaroslavsky et al. [21, 20]). A recent and particularly efficient
implementation of DCT denoising on color images is proposed by Yu et al. [22].

In the past two decades several studies have proposed non-linear variational methods like the
total variation minimization (Rudin et al. [19]), for which a recent implementation is proposed by
Getreuer [12]. Still more recently, several methods have expanded the Wiener filtering method
to other linear transforms, in particular the wavelet transform (Donoho et al. [8]). All of the above
mentioned methods rely on an underlying image regularity in a functional space. The latest denoising
methods have attempted to take advantage of another regularity, the self-similar structures present
in most images. The Nonlocal-means (NL-means) method (Buades et al. [1, 2]) seems to be one
of the first methods of this kind. It proposed to look for similar patches of an image and average
them. There is a faithful implementation of this method for color images [3]. Patch-based denoising
methods have developed into attempts to model the patch space of an image, or of a set of images.
Algorithms proposing parsimonious but redundant representations of patches on patch dictionaries
are proposed by Elad et al. [10], Mairal et al. [15, 16], Yu et al. [23]. Lebrun et al [14] proposed a
recent analysis and implementation of the KSVD method. This parsimonious decomposition method
has become a paradigm for all image restoration tools, including also de-blurring or in-painting.

The BM3D method (Dabov et al. [5]) is probably the most efficient patch-based current method.
It merges the local DCT thresholding-based method and the NL-means method based on patch
comparison. Indeed, BM3D creates a 3D block with all patches similar to a reference patch, on
which a threshold on the 3D transformed block is applied. We refer to its detailed analysis and
implementation by Lebrun [13].

A more recent NL-means variant shares with BM3D the idea of applying a transform threshold
to the 3D block. This method, due to Zhang et al. [24], replaces the DCT by an adaptive local
linear transform, the principal component analysis (PCA). The method proceeds in two identical
steps which can only be distinguished by the noise parameter that is used. Like BM3D the method
creates an array of vectors with all patches similar to a reference patch. A linear minimum mean
square error (LMMSE) method is applied on the obtained coefficients before applying the inverse
transform. Unlike what is done in BM3D, only the estimate obtained for the reference pixel is kept.
The second step attempts to remove the noise left by the first step. A similar enhancement for the
BM3D method replacing the DCT by a local PCA on similar blocks (with adaptive shape) has also
been considered by Dabov et al. [6]. Nevertheless, according to this paper, the performance gain
with respect to BM3D is modest.

Last but not least, the Bayesian approaches for image denoising have been proposed as early as
1972 by Richardson [18]. Being first parametric and limited to rather restrictive Markov random field
models [11], they have expanded recently to non-parametric methods. The seed for the recent non
parametric estimation methods is a now famous algorithm to synthesize textures from examples [9].
The underlying Markovian assumption is that, in a textured image, the stochastic model for a given
pixel i can predicted from a local image neighborhood P of i, which we shall call “patch”.

As we will see in this paper, the Bayesian approach can be merged with Fourier methods like
BM3D, in a new method called NL-Bayes. A natural extension of this method, called NL-PCA
in the following, can be seen as we described it as a fusion of BM3D and TSID (Two-Step Image
Denoising), where NL-PCA begins and ends like BM3D, the only change being the use of the PCA
instead of the DCT or Bi-orthogonal spline wavelet.

We shall take advantage of the similarity of the steps of the method with BM3D, and follow
closely the description used for BM3D [13]. Like in BM3D, each step of the NL-Bayes algorithm is
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realized in three parts: a) finding the image patches similar to a given image patch and grouping
then in a 3D block; b) collaborative filtering; c) aggregation. The collaborative filtering is realized
in two parts: a) applying Bayes’ formula on the 3D block; and b) repositioning the 3D block. This
3D filtering is applied simultaneously on a group of 2D image blocks. Since these filtered patches
overlap, many estimates are obtained, which need to be combined for each pixel. Aggregation is a
particular averaging procedure used to take advantage of this redundancy.

The paper is organized as follows. We introduce the Bayesian method in Section 2. The developed
image denoising algorithm is described in Section 3. The detailed study of its parameters and
variation can be found in Section 5. Experimental results and comparison to several state-of-the-art
denoising algorithms is given in Section 6. A detailed comparison with original PCA-based denoising
methods is given in Section 7. A glossary at the end of this document gives a synopsis of the relevant
notation.

A complete presentation of the theory underlying NL-Bayes, and a discussion of all related algo-
rithms, is done in the companion paper [4], to appear in SIIMS.

2 Theory

This section presents a short derivation of the main formulas used in the algorithm. For a detailed
analysis, see our SIIMS paper [4]. Given u the noiseless ideal image and ũ the noisy image corrupted
with additive white Gaussian noise of standard deviation σ so that

ũ = u+ n, (1)

the conditional distribution P(ũ | u) reads

P(ũ | u) =
1

(2πσ2)
N
2

e−
||u−ũ||2

2σ2 , (2)

where N is the total number of pixels in the image. Given a noiseless patch P of u with dimension
k × k and P̃ an observed noisy version of P , the independence of noise realizations for the different
pixels implies that

P(P̃ | P ) = c.e−
‖P̃−P‖2

2σ2 , (3)

where P and P̃ are considered as vectors with k2 components and ‖P‖ denotes the Euclidean norm
of P . Knowing P̃ , our goal is to deduce P by maximizing P(P | P̃ ). Using Bayes’ rule, we can
compute this last conditional probability as

P(P | P̃ ) =
P(P̃ | P )P(P )

P(P̃ )
. (4)

P̃ being observed, this formula could be used to deduce the patch P maximizing the right term,
viewed as a function of P . This is unfortunately not possible, unless we have a probability model
for P . We shall now discuss how to proceed when all observed patches are noisy. Assume that the
patches Q similar to P follow a Gaussian model where CP denotes the covariance matrix of the
patches similar to P and P the expectation of the patches similar to P . This means that

P(Q) = c. e−
(Q−P )tC−1

P
(Q−P )

2 (5)
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From (3) and (4) we obtain for each observed P̃ the following equivalence of problems:

Arg max
P

P(P | P̃ ) ⇔ Arg max
P

P(P̃ | P )P(P )

⇔ Arg max
P

e−
‖P−P̃‖2

2σ2 e−
(P−P )tC−1

P
(P−P )

2

⇔ Arg min
P

‖P − P̃‖2

σ2
+ (P − P )tC−1P (P − P ).

This expression is not satisfactory, because the noiseless patch P and the patches similar to P cannot
be observed directly. Yet, since we are observing the noisy version P̃ , we can at least compute the
patches Q̃ similar to P̃ . An empirical covariance matrix can therefore be obtained with enough such
observable samples Q̃. P and n being independent, we deduce from (1), under the assumption that
CP̃ is a Gaussian vector that

CP̃ = CP + σ2I; EQ̃ = P . (6)

These relations assume that patches similar to P̃ have been searched in a neighborhood large enough
to include all patches similar to P , but not too large either, to avoid containing outliers. A safe
strategy for that is to search for similar patches in a distance slightly larger than the plausible
distance caused by noise. If the above estimates are correct, the MAP (maximum a posteriori
estimation) problem boils down by (6) to the feasible minimization problem:

Arg max
P

P(P | P̃ )⇔ Arg min
P

‖P − P̃‖2

σ2
+ (P − P̃ )t(CP̃ − σ

2I)−1(P − P̃ ).

Differentiating this quadratic function with respect to P and equating to zero yields

P − P̃ + σ2(CP̃ − σ
2I)−1(P − P̃ ) = 0

and therefore
P = P̃ +

[
CP̃ − σ

2I
]
C−1

P̃
(P̃ − P̃ ) (7)

Thus a restored patch Pbasic can be obtained from the observed patch P̃ by the one step estimation

Pbasic = P̃ +
[
CP̃ − σ

2I
]
C−1

P̃
(P̃ − P̃ ). (8)

In a second step, where all patches have been denoised at the first step, all the denoised patches can
be used again to obtain a better unbiased estimation Cbasic

P̃
for CP , the covariance of the cluster

containing P , and P̃
basic

a new estimation of P̃ , the average of patches similar to P̃ . Indeed, the
patch similarity is better estimated with the denoised patches, then sets of similar patches are more
accurate. Then it follows from (6) and (8) that we can obtain a second better denoised patch,

Pfinal = P̃
basic

+ Cbasic
P̃

[
Cbasic

P̃
+ σ2I

]−1
(P̃ − P̃

basic

) (9)

The computation of CP̃ and P̃ will be discussed in section 3.

3 Implementation

3.1 BM3D

The algorithm developed in this paper is very similar to BM3D and also has two successive steps. In
order to use this similarity as much as possible our notation and exposition order will be as close as
possible to those used in our previous article on BM3D [13]. Here is a brief overview of BM3D:
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Step 1 : First denoising loop on the image. We denote by P̃ the reference current noisy patch.

Grouping : Stacking up similar patches to the reference one, using a similarity threshold
applied to the distance between patches in order to build the 3D block P(P̃ );

Collaborative Filtering : A 3D linear transform is applied to the 3D block, then a hard
thresholding is applied to the coefficients, and finally the inverse 3D transform is applied.
A weight is associated with the whole 3D block, depending on its sparsity;

Aggregation : A first basic estimate of the denoised image is obtained by doing a weighted
aggregation of every estimate obtained in the preceding step for each pixel. This basic
estimate will be denoted by ubasic.

Step 2 : Second denoising step using the result of the first as “oracle”.

Grouping : The distance between patches is computed on the basic estimate. Two 3D blocks
are formed:

• Pbasic(Pbasic) by stacking up patches from the basic estimation ubasic and,

• Pbasic(P̃ ) by stacking up patches in the same order from the original noisy image ũ.

Collaborative Filtering : A 3D transform is applied on both 3D blocks, followed by a Wiener
filtering of the group Pbasic(P̃ ) using the empirical oracular coefficients obtained from the
group Pbasic(Pbasic), and finally by the inverse 3D transform. A weight is computed for
the whole 3D block. It depends on the norm of the empirical Wiener coefficients;

Aggregation : A final estimate of the denoised image is obtained by using a weighted aggre-
gation of every estimate obtained for each pixel. This final estimate will be denoted by
ufinal.

3.2 Comparison of the Structure of NL-Bayes with BM3D

Both algorithms will be described for color images. They can also be applied on grey level images;
the changes in that case will be indicated. Like BM3D, NL-Bayes is applied in two successive steps,
the result of the first one serving as oracle for the second one:

1. the first step provides a basic estimate ubasic by using (8) during the collaborative filtering.
Parameters in this step are denoted by the exponent 1;

2. the second step is based both on the original noisy image ũ and on the basic estimate obtained
during the first step ubasic in order to apply (9) during the collaborative filtering. Parameters
in this step are denoted by the exponent 2.

Table 1 permits to compare steps between BM3D and NL-Bayes for color images.

3.3 The First Step of NL-Bayes

Only for the first step, the noisy image ũ in the usual RGB color space is converted in a different
color space where an independent denoising of each channel will not create noticeable color artifacts.
Most algorithms use the Y UV system which separates the luminance and chromatic parts of the
image. BM3D, uses a linear transform multiplying the RGB vector by the matrix

YoUoVo =

1
3

1
3

1
3

1
2

0 −1
2

1
4
−1

2
1
4
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Step 1 BM3D NL-Bayes

Preprocessing Transformation to the Y0U0V0 Transformation to the Y0U0V0
color space color space

Scanning step between p1 = 3 p1 = 1
two patches

Processing already used Yes No
patches

Grouping
Distance between patches Channel Y0 Channel Y0

Normalized quadratic distance Normalized quadratic distance
Similarity threshold Fixed, tabulated according to σ -

Patches kept N1 best N1 best
Patches ordered No No

3D groups formed One for each channel Y0, U0 and V0 one for each channel Y0, U0 et V0
Collaborative Filtering

3D transform 2D Bior1.5 on each patch followed by -
1D Hadamard transform along the

third dimension
Filter Hard thresholding on the coefficients Bayesian, based on (12)

of the DCT
Weighting Depending on the number of non-zero -

coefficients after Hard thresholding

Aggregation Identical part

Post processing - Transform to the RGB color space

Step 2 BM3D NL-Bayes

Step between two p2 = 3 p2 = 1
patches

Process of an already Yes No
used patch

Grouping
Distance Channel Y0 of ubasic All channels of ubasic

Normalized quadratic distance Normalized quadratic distance
Similarity threshold Fixed, tabulated according to the σ Adaptive according to the

distance of the N2-th best patch
Patches kept N1 best All

Patches ordered No No
3D groups formed Two for each channel Two

Collaborative Filtering
3D transform 2D DCT then 1D Hadamard -

transform on both groups
Filter Wiener filter using ubasic as oracle Bayesian, based on (15)

Weighting Depending on the norm of the -
empirical Wiener coefficients

Aggregation Identical part

Post processing Transformation to the RGB color space -

Table 1: Comparison of NL-Bayes with BM3D
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We wrote the matrix above without normalization for readability, but the matrix is normalized to
become orthonormal. In that way, σ still is the value of the standard deviation of the noise on
each channel Y0, U0 and V0. The transform increases the SNR of the geometric component, the Y0
component being an average of the three colors. The geometric component is perceptually more
important than the chromatic ones, and the presence of less noise permits a better performance of
the algorithm in this component. The components U0 and V0 are differences of channels, which cancel
or attenuate the signal. Thus a higher noise reduction on the chromatic components U0 and V0 is
possible, due to their observable regularity.

We denote by P̃ the current reference patch with size k1 × k1 (seen as a column vector) of the
noisy image ũ.

Grouping : The original noisy image ũ is explored in a P̃ -centered n1×n1 neighborhood for patches
Q̃ similar to the reference patch P̃ . The normalized quadratic distance between each patch Q̃
of the neighborhood and the reference patch P̃ is computed as

d2
(
P̃ , Q̃

)
=
‖P̃ − Q̃‖22

(k1)2
.

This distance is computed on the luminance channel Y0 only. All patches Q̃ of the neighborhood
are sorted according to their distance to the reference patch P̃ , and the N1 closest patches to P̃
are kept. Then three sets of similar patches – one for each channel – are built: PY0(P̃ ), PU0(P̃ )
and PV0(P̃ ). But the sets of similar patches for the chromatic channels are built with patches
whose index are the same as for Q̃ ∈ PY0(P̃ ), and in the same order. After this step, the same
procedure is applied on each channel, but separately. For a sake of simplicity, we will describe
the procedure for a generic channel.

Collaborative Filtering : Let P(P̃ ) be the set of patches Q̃ similar to the reference patch P̃
obtained at the grouping step. We start by detecting if P̃ belongs to a homogeneous2 area by
processing the square of the standard deviation of P(P̃ ):

σ2
P̃

=
M1

M1 − 1

 1

M1

∑
Q̃∈P(P̃ )

∑
x∈Q̃

(
Q̃(x)

)2
−

 1

M1

∑
Q̃∈P(P̃ )

∑
x∈Q̃

Q̃(x)

2 (10)

where M1 = N1(k1)2. Since a huge number (M1) of realizations of the variable u(i) is taken
into account, in a homogeneous area this random variable should be very concentrated around
its mean. Thus, fixing a threshold γ close to 1,

• if σP̃ ≤ γσ, we can assume that with high probability P̃ belongs to a homogeneous area.
In this case, the better result that can be obtained for the group is the average. Therefore,
the estimate of all patches in the set of similar patches P(P̃ ) is

∀Q̃ ∈ P(P̃ ), ∀x ∈ Qbasic, Qbasic(x) =
1

M1

∑
Q̃∈P(P̃ )

∑
y∈Q̃

Q̃(y)

• else, P̃ is assumed to contain some signal, for which a Gaussian model is built. By the
law of large numbers we have

CP̃ '
1

#P(P̃ )− 1

∑
Q̃∈P(P̃ )

(
Q̃− P̃

)(
Q̃− P̃

)t
, P̃ ' 1

#P(P̃ )

∑
Q̃∈P(P̃ )

Q̃. (11)

2By homogeneous we mean a flat area, where there is no geometric detail.
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Once CP̃ and P̃ have been computed, (8) yields an estimate for every patch in the set of
similar patches,

∀Q̃ ∈ P(P̃ ), Qbasic = P̃ +
[
CP̃ − β1σ

2I
]
C−1

P̃

(
Q̃− P̃

)
. (12)

where β1 is a parameter of conservative attenuation close to 1.

Remark: As CP̃ is in principle real and symmetric positive definite, it should be invertible.
Nevertheless it may sometimes (but seldom) be ill-conditioned. If the computation of the
inverse does not end well, the algorithm simply sets ∀Q̃ ∈ P(P̃ ), Qbasic = Q.

Aggregation : When the collaborative filtering is achieved, an estimate is associated with every
used patch. This yields a variable number of estimates for each pixel. To take advantage of
these multiple estimates an aggregation must be done. Contrary to BM3D, this aggregation is
not weighted. The final estimate after this first step is given by

ubasic(x) =

∑
P̃

∑
Q̃∈P(P̃ )

χQ̃(x)Qbasic(x)

∑
P̃

∑
Q̃∈P(P̃ )

χQ̃(x)

with χQ̃(x) = 1 if and only if x ∈ Q̃, 0 otherwise.

Remark: For practical purposes, this computation is simplified by using two buffers ν and δ,
where respectively the numerator and the denominator are kept in memory

∀Q̃ ∈ P(P̃ ),∀x ∈ Q̃,
{

ν(x) = ν(x) +Qbasic(x)
δ(x) = δ(x) + 1

Thus the final estimate is simply obtained by dividing both buffers element-by-element.

Acceleration : To speed up the algorithm, each patch that has been used (and therefore denoised
at least once) in a 3D group is no more considered as reference patch P̃ . Nevertheless, it may
be denoised several times, being potentially chosen in other groups.

Once ubasic
Y0

, ubasic
U0

and ubasic
V0

have been obtained, inverting the color transform yields back ubasic,
the first estimate of the image in the RGB color space.

3.4 Second Step of NL-Bayes

In this second step of the algorithm a basic estimate ubasic of the denoised image is available. The
second step follows exactly the same scheme as the first, but performs a Wiener filter of the original
noisy image ũ, using as oracle the basic estimate ubasic.

Grouping : The patch matching is processed on the basic estimate only. But this time the distance
involves all channels, which are assumed denoised by the first step:

∀Qbasic, d2(Pbasic, Qbasic) =
1

Nc

Nc∑
c=1

‖Pbasic
c −Qbasic

c ‖22
(k2)2

(13)

where Nc denotes the number of channels in the image. As a difference with the first step
where only N1 patches were kept, here a threshold τ is used to obtain a set of similar patches

Pbasic(Pbasic) = {Qbasic : d2(Pbasic, Qbasic) ≤ τ},

with

8
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• τ = max (τ0, dN2);

• τ0 is a fixed parameter;

• dN2 is the distance between the reference patch and its N2-th best similar patches, sorted
by their distance to Pbasic.

Thus, using τ , many more similar patches can be picked in homogeneous areas. A second set
of similar patches from the noisy image ũ is built

Pbasic(P̃ ) = {Q̃ : d2(Pbasic, Qbasic) ≤ τ},

by stacking up patches together in the same order as Pbasic(Pbasic).

Collaborative Filtering : Once 3D-blocks are built the collaborative filtering is applied. Then by
the law of large numbers,

Cbasic
P ' 1

#Pbasic(Pbasic)− 1

∑
Qbasic∈Pbasic(Pbasic)

(
Qbasic − P̃

basic
)(

Qbasic − P̃
basic

)t

,

P̃
basic

' 1

#Pbasic(P̃ )

∑
Q̃∈Pbasic(P̃ )

Q̃.

(14)

Once Cbasic
P̃

and P̃
basic

are computed, (9) yields an estimate for every patch in the set of similar
patches

∀Q̃ ∈ Pbasic(P̃ ), Qfinal = P̃
basic

+ Cbasic
P̃

[
Cbasic

P̃
+ β2σ

2I
]−1(

Q̃− P̃
basic

)
(15)

Aggregation : When the collaborative filtering is achieved, an estimate is associated with every
used patch and therefore a variable number of estimates for every pixel. Once again, contrarily
to BM3D, this aggregation is not weighted. The final estimate after this second step is given
by

ufinal(x) =

∑
P̃

∑
Q̃∈Pbasic(P̃ )

χQ̃(x)Qfinal(x)

∑
P̃

∑
Q̃∈Pbasic(P̃ )

χQ̃(x)

with χQ̃(x) = 1 if and only if x ∈ Q̃, 0 otherwise.

Remark: For practical purposes, this computation is simplified by using two buffers ν and δ,
where respectively the numerator and the denominator are kept in memory

∀Q̃ ∈ Pbasic(P̃ ),∀x ∈ Q̃,
{

ν(x) = ν(x) +Qfinal(x)
δ(x) = δ(x) + 1

Thus the final estimate is simply obtained by dividing both buffers element-by-element. Once
again, in order to speed up the algorithm, each patch used once in a 3D group is no more
processed as reference patch. It can be used anyway several times as secondary patch in other
3D blocks.

9
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3.5 NL-PCA: a Particular Case of NL-Bayes

The Bayesian approach on which NL-Bayes is based can lead to formulate another algorithm, which
we shall call NL-PCA. Its idea is to perform a Principal Component Analysis (PCA) on the 3D group
P(P̃ ). This idea was first proposed by Zhang et al. [24] and is also studied in detail by Deledalle et
al. [7]. NL-PCA is obtained by replacing in BM3D the fixed linear transform (DCT, bi-orthogonal
spline wavelet) by a learned basis for each patch, obtained by PCA on the patches of the 3D block.
Indeed, applying a PCA to the 3D group amounts to diagonalize its covariance matrix, and the
eigenvectors give the adaptive basis. In continuation, the collaborative filtering and the aggregation
parts can be applied exactly like in BM3D. The algorithm developed by Deledalle et al. [7] is very
close to the first step of the NL-PCA algorithm described hereafter. This article will be described
and commented in more detail in section 7.

Diagonalizing the covariance matrix CP̃ , denoting the associated isometry by R1 and denot-
ing by S1(j) the squares of the associated eigenvalues, the restoration formula (8) becomes on the
eigenfunction basis: (

R1(Pbasic − P̃ )
)
j

=
S1(j)− σ2

S1(j)

(
R1(P̃ − P̃ )

)
j
.

The only (classic) variation with respect to this estimate is that CP̃ should be positive semi-definite.
Thus S1(j) − σ2 is replaced in the above formula by (S1(j)− σ2)

+
and, instead of −σ2, a more

conservative attenuation is applied, −β2σ2 where an empirical β slightly larger than 1 accounts for
the error of model. A still more conservative estimate is applied for large noises (typically if σ ≤ 40),
where the estimate becomes(

R1(Pbasic − P̃ )
)
j

=


(
R1(P̃ − P̃ )

)
j

if S1(j) ≥ β2σ2

0 otherwise.

In the same way, in the second step, diagonalizing Cbasic
P̃

and denoting the associated isometry by R2

and the squares of the associated eigenvalues by S2(j), the restoration formula (9) becomes, without
any alteration to the model,(

R2(Pfinal − P̃
basic

)

)
j

=
S2(j)

S2(j) + σ2

(
R2(P̃ − P̃

basic
)

j

which retrieves exactly a classical Wiener filter based on the PCA of Pbasic(P̃ ).

4 Influence of the Parameters on the Performance of NL-

Bayes

We applied the previously described algorithm to noiseless images to which a simulated white noise
had been added. Many images have been tested, but for the sake of simplicity only one result for
each σ will be shown. To evaluate quantitatively the denoising results, two classic measurements
have been used:

• The Root Mean Square Error (RMSE) between the reference image (noiseless) uR and the
denoised image uD. The RMSE is

RMSE =

√√√√√
∑
x∈X

(uR(x)− uD(x))2

|X|
;

the smaller it is, the better the denoising.
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• the Peak Signal to Noise Ratio (PSNR) evaluated in decibels (dB) by

PSNR = 20 log10

(
255

RMSE

)
;

the larger it is, the better the denoising.

The question is: how to select the right values for the various parameters in the algorithm as described
previously, and to evaluate their influence on the final result? The parameters of the method are:

• k1, k2: size of patches;

• N1, N2: maximum number of similar patches kept;

• n1, n2: search window size;

• γ: used to determine if a patch belongs to an homogeneous area;

• β1, β2: coefficient used during the collaborative filtering;

• τ0: minimum threshold to determine similar patches during the second step.

It would be impossible to try all combinations of all parameters. Thus, the principle of the study is
to assign to all parameters an optimal or robust value, while only one is varied. The parameters will
therefore fixed in the following way:

• k1 and k2 as explained in Section 4.1;

• N1 and N2 as explained in Section 4.6;

• the homogeneous area trick is always used on the first step;

• n1 = 5× k1;

• n2 = 5× k2;

• γ = 1.05;

• β1 = 1.0;

• β2 =

{
1.2 if σ < 50
1.0 otherwise.

;

• τ0 = 4.

4.1 Influence of the Size of the Patches k1 and k2

The size of the patches influences the result, but unlike BM3D, NL-Bayes gives its best results for
significantly smaller patch sizes. This fact may be the most surprising result of this comparison.

Unsurprisingly, from the examination of table 2 follows that the size of patches must increase
with the noise value. According to these results, the following optimal values will be chosen for the
size of patches:

σ 0 ≤ σ < 20 20 ≤ σ < 50 50 ≤ σ < 70 70 ≤ σ
k1 3 5 7 7
k2 3 3 5 7
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σ = 2 σ = 5
k2 3 5 7 3 5 7
k1 PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE
3 46.03 1.27 45.96 1.28 45.88 1.30 39.89 2.58 39.83 2.60 39.75 2.62
5 46.03 1.27 45.92 1.29 45.83 1.30 39.89 2.58 39.77 2.62 39.68 2.65
7 46.00 1.28 45.89 1.29 45.78 1.31 39.87 2.59 39.73 2.63 39.61 2.67

σ = 10 σ = 20
k2 3 5 7 3 5 7
k1 PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE
3 35.38 4.34 35.34 4.36 35.27 4.40 31.16 7.06 31.20 7.02 31.15 7.06
5 35.39 4.34 35.29 4.39 35.20 4.43 31.20 7.02 31.14 7.07 31.08 7.12
7 35.36 4.35 35.24 4.41 35.11 4.48 31.16 7.06 31.10 7.10 30.99 7.20

σ = 30 σ = 40
k2 3 5 7 3 5 7
k1 PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE
3 28.81 9.25 28.92 9.13 28.90 9.15 27.18 11.16 27.33 10.97 27.34 10.95
5 28.90 9.15 28.89 9.16 28.85 9.21 27.33 10.97 27.36 10.93 27.34 10.95
7 28.85 9.21 28.85 9.21 28.76 9.30 27.31 10.99 27.35 10.94 27.28 11.03

σ = 60 σ = 80
k2 3 5 7 3 5 7
k1 PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE
3 24.90 14.51 25.30 13.85 25.38 13.73 23.15 17.74 23.74 16.58 23.94 16.20
5 25.27 13.90 25.46 13.60 25.47 13.58 23.78 16.50 24.02 16.05 24.08 15.94
7 25.26 13.92 25.45 13.62 25.44 13.63 23.83 16.41 24.09 15.92 24.10 15.91

σ = 100
k2 3 5 7
k1 PSNR RMSE PSNR RMSE PSNR RMSE
3 21.79 20.75 22.62 18.86 22.88 18.30
5 22.65 18.79 22.98 18.09 23.06 17.93
7 22.75 18.58 23.06 17.93 23.11 17.83

Table 2: Influence of the size of the patches k1 and k2. In bold the best result for a given σ.
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4.2 Influence of γ

The parameter γ is used to determine if a set of similar patches belongs to a homogeneous area as
defined in (10). This parameter must be fixed carefully. If its value is too big, small details in the
image may be lost. If instead its value is too small, homogeneous area will not be denoised enough
and artifacts can become conspicuous in these regions. Thus, although the PSNR gain is moderate,
the visual impact of this step is important.

γ = 0.95 γ = 1.0 γ = 1.05 γ = 1.1
σ PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE

2 46.00 1.28 45.99 1.28 46.00 1.28 46.00 1.28
5 39.88 2.58 39.89 2.58 39.89 2.58 39.89 2.58
10 35.38 4.34 35.38 4.34 35.38 4.34 35.37 4.35
20 31.20 7.02 31.23 7.00 31.24 6.99 31.23 7.00
30 28.83 9.22 28.90 9.15 28.91 9.14 28.92 9.13
40 27.25 11.07 27.35 10.94 27.38 10.90 27.37 10.91
60 25.33 13.80 25.44 13.68 25.45 13.61 25.40 13.69
80 24.12 15.86 24.20 15.72 24.16 15.79 24.04 16.01
100 23.15 17.75 23.23 17.58 23.19 17.65 22.99 18.08

Table 3: Influence of γ. In bold best result for a given σ.

One can deduce from table 3 that small variations on γ lead to significant variations for high
noise. According to this study, γ can be fixed to 1.05, whatever the value of noise.

4.3 Influence of β1

This parameter is used in (12) and influences the filtering during the first step. The theoretical value
is β1 = 1.0, but a study of its influence needs to be done to learn its best empirical value.

β1 = 0.8 β1 = 0.9 β1 = 1.0 β1 = 1.1 β1 = 1.2
σ PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE

2 45.92 1.29 45.98 1.28 46.01 1.28 46.02 1.27 46.03 1.27
5 39.71 2.64 39.80 2.61 39.85 2.59 39.88 2.59 39.86 2.59
10 35.22 4.42 35.34 4.36 35.39 4.33 35.40 4.33 35.37 4.35
20 30.96 7.22 31.12 7.08 31.20 7.02 31.18 7.03 31.09 7.11
30 28.64 9.43 28.85 9.21 28.92 9.13 28.89 9.16 28.75 9.31
40 27.07 11.30 27.27 11.05 27.34 10.95 27.30 11.01 27.13 11.22
60 25.07 14.23 25.38 13.72 25.46 13.59 25.36 13.75 25.08 14.21
80 23.80 16.45 24.13 15.94 24.19 15.73 24.08 15.93 23.78 16.50
100 22.85 18.37 23.09 17.86 23.12 17.80 23.00 18.06 22.70 18.67

Table 4: Influence of β1. In bold best result for a given σ.

The theoretical value is confirmed by this study (table 4). Thus β1 is fixed to 1.0, whatever the
value of the noise.

4.4 Influence of β2

This parameter is used in (15) influences the filtering during the first step. The theoretical value is
β2 = 1.0, but a study of its influence needs to be done to learn its best empirical value.
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β2 = 0.8 β2 = 0.9 β2 = 1.0 β2 = 1.1 β2 = 1.2
σ PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE

2 45.91 1.29 45.95 1.28 45.98 1.28 46.00 1.28 46.01 1.27
5 39.75 2.62 39.79 2.61 39.82 2.60 39.84 2.60 39.86 2.59
10 35.30 4.38 35.34 4.36 35.36 4.35 35.38 4.34 35.39 4.33
20 31.13 7.08 31.17 7.05 31.19 7.03 31.19 7.03 31.20 7.02
30 28.85 9.20 28.87 9.18 28.89 9.16 28.90 9.15 28.89 9.16
40 27.27 11.04 27.28 11.02 27.31 10.99 27.30 11.00 27.30 11.00
60 25.48 13.57 25.49 13.56 25.47 13.58 25.46 13.59 25.45 13.61
80 24.16 15.79 24.17 15.77 24.16 15.79 24.15 15.82 24.12 15.86
100 23.12 17.80 23.12 17.81 23.10 17.84 23.09 17.87 23.07 17.91

Table 5: Influence of β2. In bold best result for a given σ.

Here again (table 5) the theoretical value seems to work well, but a slight gain can be obtained
if β2 is tabulated according to σ. The chosen value for β2 will be 1.2 if σ > 50, 1.0 otherwise.

4.5 Influence of the Size of the Search Window n1 and n2

The size of the search window influences the grouping part of the algorithm. Since the total number
of patches Q̃ contained in the neighborhood which needs to be sorted is proportional to the size of
the search window, the computational time of the algorithm increases with n1 and n2. We would
therefore like to minimize these numbers. Nevertheless, if the size of the search window is too small,
the “similar” patches will not be that similar to the reference patch P̃ . Thus it is necessary to find a
good compromise between a good PSNR and a relatively small size for the search window. Moreover,
the size of the search window is intuitively dependent on the size of patches k1 and k2. This is why n1

and n2 will be determined as a factor of k1 and k2, i.e. n1 = αk1 and n2 = αk2. For this comparison,
the others parameters are fixed as usual.

α = 3 α = 4 α = 5 α = 6 α = 7
σ PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE

2 45.95 1.28 46.00 1.28 46.01 1.28 46.02 1.27 46.01 1.28
5 39.74 2.63 39.82 2.60 39.84 2.59 39.86 2.59 39.86 2.59
10 35.19 4.43 35.33 4.37 35.36 4.35 35.40 4.33 35.41 5.32
20 30.98 7.20 31.17 7.05 31.23 6.99 31.30 6.94 31.32 6.93
30 28.63 9.44 28.85 9.20 28.92 9.13 28.99 9.06 29.02 9.02
40 27.05 11.33 27.30 11.00 27.38 10.90 27.46 10.80 27.50 10.75
60 25.13 14.12 25.34 13.79 25.42 13.66 25.52 13.51 25.55 13.46
80 23.85 16.37 24.09 15.93 24.18 15.77 24.25 15.63 24.28 15.57
100 22.85 18.35 23.04 17.97 23.13 17.79 23.19 17.67 23.23 17.57

Table 6: Influence of the size of the search window n1 and n2. In bold best result for a given σ.

It follows from the comparison table 6 that increasing the size of the search window improves
the result by finding more similar patches. Accordingly the parameters are fixed to n1 = 7k1 and
n2 = 7k2.
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4.6 Influence of the Minimal Number of Closest Neighbors, N1 and N2

As we have to invert a matrix in (12) and (15), a minimal number of similar patches is needed.
Otherwise this matrix will not been invertible. Thus, N1 and N2 have to be determined empirically.
Moreover, they depend on the noisy image. For this reason, only the final chosen values are given
here

N1 =


30 if k1 = 3
60 if k1 = 5
90 if k1 = 7

N2 =


30 if k2 = 3
60 if k2 = 5
90 if k2 = 7

4.7 Influence of τ0

This parameter is used only in the second step, to fix the minimum threshold between two similar
patches. Indeed in the second step we got an estimate ubasic and the distances between patches
are better estimated on ubasic than on ũ. Thus, in homogeneous areas we can allow for many more
similar patches than n2. The parameter τ0 is voluntarily kept small, because otherwise patches which
differ significantly from the reference patch would be considered similar.

τ0 = 0 τ0 = 2 τ0 = 4 τ0 = 8 τ0 = 16
σ PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE

2 45.99 1.28 46.01 1.27 46.00 1.28 45.94 1.29 45.81 1.30
5 39.88 2.58 39.93 2.57 39.91 2.58 39.85 2.59 39.68 2.64
10 35.36 4.35 35.44 4.31 35.45 4.30 35.39 4.34 35.21 4.42
20 31.17 7.05 31.28 6.96 31.29 6.95 31.25 6.99 31.08 7.12
30 28.82 9.23 29.01 9.03 29.02 9.02 29.03 9.02 28.89 9.16
40 27.18 11.16 27.40 10.87 27.44 10.82 27.46 10.80 27.34 10.95
60 25.43 13.64 25.55 13.46 25.58 13.42 25.54 13.47 25.44 13.64
80 24.08 15.94 24.18 15.75 24.21 15.71 24.17 15.78 24.00 16.10
100 23.16 17.72 23.28 17.48 23.33 17.37 23.31 17.42 23.08 17.88

Table 7: Influence of τ0. In bold best result for a given σ.

Using the minimum threshold with a small value (τ0 = 2 or 4) is always better than (τ0 = 0).
Moreover, as expected, a too large value (τ0 = 16) gives really worse results. According to this
comparison (table 7), we shall set τ0 = 4.

4.8 Summary Table of the Best Parameters

Here is the summary table with the final chosen values for all parameters, depending on the value of
the noise:

σ 0 ≤ σ < 20 20 ≤ σ < 50 50 ≤ σ < 70 70 ≤ σ
k1 3 5 7 7
k2 3 3 5 7
γ 1.05 1.05 1.05 1.05
β1 1.0 1.0 1.0 1.0
β2 1.2 1.2 1.0 1.0
n1 21 35 49 49
n2 21 21 35 49
N1 30 60 90 90
N2 30 30 60 90
τ0 4 4 4 4
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5 A Detailed Study of the Algorithm

This part discusses several sound variants for each step of the algorithm. It gives experimental
evidence that the choices taken in the algorithm are the best in terms of PSNR.

5.1 Grouping

5.1.1 Color Space Transform

The Y0U0V0 space will be compared to RGB, for both steps. When RGB is chosen in the algorithm,

• the distance is computed on all channels like in (13);

• the collaborative filtering is done on each channel separately;

• N1 is increased to avoid having a non-invertible matrix.

Step 1 / Step 2 RGB / RGB Y0U0V0 / RGB RGB / Y0U0V0 Y0U0V0 / Y0U0V0
σ PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE

2 46.10 1.26 46.04 1.27 45.83 1.30 45.80 1.31
5 39.89 2.58 39.86 2.59 39.66 2.65 39.64 2.66
10 35.39 4.33 35.42 4.32 35.22 4.42 35.25 4.41
20 31.10 7.10 31.30 6.94 31.00 7.19 31.18 7.03
30 28.73 9.33 28.93 9.11 28.65 9.41 28.85 9.20
40 27.23 11.08 27.47 10.78 27.18 11.15 27.43 10.84
60 23.87 16.34 25.54 13.48 23.82 16.43 25.52 13.50
80 22.96 18.13 24.24 15.66 22.92 18.23 24.24 15.65
100 22.14 19.93 23.24 17.56 22.10 20.02 23.25 17.54

Table 8: Color space transform. In bold the best PSNR for a given σ. In italic results with many
observed non-invertible matrices in the first step.

Despite the fact that N1 has been increased in the case where RGB is chosen for the first step,
in practice the matrix CP̃ is often not invertible. This explains why the result is that bad for high
values of the noise when RGB is chosen for the first step (table 8).

5.2 Collaborative Filtering

5.2.1 The Homogeneous Area Criterion

One of the innovations in NL-Bayes is the detection of the homogeneous areas in the first step. In
order to show its relevance, table 9 has some results with and without this criterion, in both steps:

One can see that the homogeneity detection is useful for medium and high values of the noise
variance. On an image with many homogeneous areas, the application of this detection avoids
artifacts, as one can see in figure 1 for a noise standard deviation equal to 20.

5.2.2 Diagonalizing the Covariance Matrix

As presented in section 3.5, CP̃ and Cbasic
P̃

can be diagonalized with the use of a PCA on the 3D

block P(P̃ ) and Pbasic(P̃ ), which leads to an algorithm which we called NL-PCA. The principal
difference between NL-PCA and NL-Bayes is in the collaborative filtering part, as detailed in 3.5.
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Original image Noisy image σ = 30

No / No | PSNR = 33.93 / RMSE = 5.13 Yes / No | PSNR = 38.82 / RMSE = 2.92

No / Yes | PSNR = 38.69 / RMSE = 2.96 Yes / Yes | PSNR = 38.36 / RMSE = 3.08

Figure 1: Results with and without the homogeneous area criterion.
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Step 1 / Step 2 No / No Yes / No No / Yes Yes / Yes
σ PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE

2 46.04 1.27 46.04 1.27 46.04 1.27 46.04 1.27
5 39.89 2.58 39.90 2.57 39.88 2.58 39.89 2.58
10 35.36 4.35 35.39 4.33 35.37 4.34 35.35 4.35
20 31.05 7.14 31.27 6.96 31.29 6.95 31.26 6.98
30 28.68 9.38 29.01 9.04 29.01 9.04 28.97 9.08
40 27.05 11.32 27.48 10.78 27.47 10.79 27.42 10.85
60 25.39 13.70 25.58 13.41 25.55 13.45 25.45 13.62
80 24.14 15.83 24.26 15.62 24.16 15.80 23.98 16.12
100 23.09 17.86 23.27 17.49 23.15 17.73 22.93 18.20

Table 9: The homogeneous area criterion. In bold the best PSNR for a given σ.

All the rest is exactly the same. We compare here the results of NL-PCA to NL-Bayes on three
(noiseless) images (figure 2), to which noise was added.

Dice Flowers

Traffic

Figure 2: Images used for the comparison of NL-PCA and NL-Bayes.

Table 10 shows that NL-Bayes is slightly better than NL-PCA. Nevertheless, the results of NL-
PCA could be improved by adapting the parameters, and adding a weight to the aggregation part,
like BM3D does. Indeed, the values of N1 and N2 are not adapted to NL-PCA: this parameter has
large values to avoid non-invertible matrices, but the PCA can be hedged if patches in P(P̃ ) are not
that similar. Moreover, β1 and β2 need to be adapted too. NL-Bayes is faster than NL-PCA by an
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Dice Flowers Traffic
NL-PCA NL-Bayes NL-PCA NL-Bayes NL-PCA NL-Bayes

σ PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE
2 48.85 0.92 49.08 0.90 47.59 1.06 47.77 1.04 45.00 1.43 45.25 1.39
5 45.84 1.30 45.92 1.29 43.35 1.73 43.41 1.72 39.42 2.73 39.59 2.67
10 43.17 1.77 43.31 1.74 39.66 2.65 39.83 2.60 35.40 4.33 35.49 4.29
20 40.68 2.36 40.56 2.39 36.33 3.89 36.42 3.85 31.28 6.96 31.48 6.80
30 38.83 2.92 38.81 2.92 34.16 5.00 34.20 4.97 29.20 8.84 29.34 8.70
40 37.35 3.46 37.35 3.46 32.52 6.03 32.59 5.98 27.80 10.39 27.87 10.30
60 35.60 4.23 35.62 4.22 30.72 7.42 30.84 7.32 25.77 13.12 26.01 12.77
80 34.53 4.79 34.60 4.75 29.28 8.76 29.47 8.57 24.62 14.98 24.75 14.76
100 33.46 5.41 33.48 5.40 28.15 9.98 28.26 9.85 23.76 16.54 23.85 16.37

Table 10: Diagonalizing the covariance matrix. In bold the best PSNR for a given σ.

average factor of 50%, due to the fact that there is only one matrix inversion, and not a PCA.

5.2.3 Ideal Wiener and Upper Bounds for the Performance

There is a significantly PSNR improvement by using the second step, because the covariance matrix
is better estimated. To judge the contribution of this second step better, it is possible to compare it
with an ideal Wiener filter, which is obtained when the original noise-free image is taken as oracle
reference, i.e. as the output of the first step. This ideal Wiener filter is the best possible estimate for
the second step of this algorithm. It is therefore interesting to see how far we stand from this ideal
estimate with the current one, in table 11.

Algorithm Ideal Wiener
σ PSNR RMSE PSNR RMSE

2 45.98 1.28 47.40 1.09
5 39.89 2.58 41.50 2.15
10 35.45 4.30 37.28 3.49
20 31.26 6.97 33.42 5.44
30 28.96 9.09 31.42 6.85
40 27.46 10.81 30.13 7.95
60 25.58 13.41 27.97 10.19
80 24.29 15.57 26.66 11.85
100 23.25 17.55 25.80 13.08

Table 11: Ideal Wiener and upper bounds for the performance. In bold the best PSNR for a given
σ.

Of course, the Wiener filter using the noise-free image as oracle is better than the filter using the
basic estimate obtained after the first step. One can see that there is a large room for improvement
for this first step, of 2 to 3 dBs. The images in figures 3, 4 and 5 compare the visual performance
for different values of the noise.

5.3 The “Paste” Option

To speed up the algorithm, a paste trick has been used. Whenever a patch Q̃ ∈ P(P̃ ) has an estimate,
it is no more processed as a reference patch. One could think that this trick produces artifacts and
has an impact on the PSNR. To check that, we will compare for both steps this paste option,
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Original image Noisy image (σ = 10)

NL-Bayes (σ = 10) Ideal Wiener (σ = 10)

Figure 3: NL-Bayes and ideal Wiener, σ = 10.
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Original image Noisy image (σ = 30)

NL-Bayes (σ = 30) Ideal Wiener (σ = 30)

Figure 4: NL-Bayes and ideal Wiener, σ = 30.
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Original image Noisy image (σ = 80)

NL-Bayes (σ = 80) Ideal Wiener (σ = 80)

Figure 5: NL-Bayes and ideal Wiener, σ = 80.
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denoted by “paste” in the following, and another trick used in BM3D. This other trick, denoted by
“step” divides approximately the number of processed reference patches by nine, by taking a 3 pixels
scanning step row and column.

Step 1 / Step 2 Step / Step Paste / Step Step / Paste Paste / Paste
σ PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE

2 45.99 1.28 46.00 1.28 46.03 1.27 46.03 1.27
5 39.81 2.61 39.84 2.59 39.87 2.59 39.87 2.59
10 35.33 4.36 35.40 4.33 35.41 4.32 35.43 4.31
20 31.25 6.98 31.27 6.96 31.30 6.94 31.31 6.93
30 28.97 9.08 28.98 9.06 29.01 9.03 29.02 9.02
40 27.35 10.94 27.39 10.89 27.40 10.87 27.43 10.84
60 25.47 13.58 25.52 13.51 25.51 13.53 25.53 13.48
80 24.16 15.79 24.22 15.68 24.20 15.73 24.24 15.66
100 23.24 17.55 23.28 17.47 23.26 17.52 23.27 17.50

Table 12: The “paste” option. In bold the best PSNR for a given σ.

There is no significant PSNR loss by using both acceleration tricks (table 12). The fact that the
use of the “paste” option improves things could be explained by the fact that in a area with many
details, patches are very different in a very small area. Then almost every patch will be treated as a
reference patch, while with the “step” trick only 1 patch out of 9 will be treated, and then very small
details will be processed worse. The use of this “paste” trick speeds up a bit more the algorithm than
the “step” trick, by almost 30%, depending on the percentage of homogeneous areas in the noisy
image.

5.4 Influence of the Second Step

Using a second step to obtain a better covariance matrix improves a lot the final result, as we can
see in table 13.

First step Second step
σ PSNR RMSE PSNR RMSE

2 45.65 1.33 46.03 1.27
5 39.41 2.73 39.88 2.58
10 34.84 4.62 35.45 4.30
20 30.47 7.64 31.24 6.99
30 28.15 9.97 28.99 9.06
40 26.58 11.95 27.46 10.80
60 24.15 15.80 25.50 13.53
80 22.87 18.32 24.25 15.64
100 21.92 20.43 23.27 17.51

Table 13: Influence of the second step.

6 Comparison with Several Classic and Recent Methods

In order to evaluate the real capacity of NL-Bayes, a fair and precise comparison with other state-
of-the-art methods had to be done. The four first considered methods have public and commented
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implementations in Image Processing On Line [13, 22, 14, 3]. Thus, the experiments below can be
verified on line for five of the compared algorithms.

• BM3D;

• DCT denoising;

• NL-means;

• K-SVD;

• BM3D-SAPCA (only for grey level images) as described by Dabov et al. [6];

• BLS-GSM as described bu Portilla et al. [17].

The following study has been led on the noise-free color images (σreal << 1) shown in figure 6.
All algorithms have been processed on the same noisy images obtained from noiseless images (saved
in real values and not sampled on [0, 255])):

6.1 Comparative Table

6.1.1 Color Images

According to the results (tables 14 and 15), one can observe that the comparative performance of
the methods is quite independent of the noise value. The summary table below shows a mean of the
scores over all test images3.

Methods NL-Bayes BM3D DCT K-SVD NL-means BLS-GSM
Mean 33.52 32.98 31.77 32.17 31.70 NA

6.1.2 Grey Level Images

For grey level images, the size of patches needs to be increased for both steps in NL-Bayes. Then k1

and k2 are set to 5 for small values of noise, instead of 3. The other parameters are identical to the
color case.

According to the results in tables 16 and 17, one can observe again that the comparative perfor-
mance of the methods is quite independent of the noise value. Here is a summary table showing a
mean of the PSNR scores over all test images:

Methods NL-Bayes BM3D DCT K-SVD NL-means BLS-GSM BM3D-SAPCA
Mean 32.02 31.79 30.96 30.40 30.59 NA NA

For slight values of the noise, BM3D-SAPCA performs better in terms of PSNR, and also visually.
Thus, it appears that using shape adaptive patches slightly improves the performance. Edges appear
more “straight” with BM3D-SAPCA than with NL-Bayes. Unfortunately one can also observe several
oscillating artifacts (cosine outliers) on the results in figure 7. Nevertheless, for medium and large
values of the noise, due to its inherent artifacts, BM3D-SAPCA has slightly less convincing results.
We also noticed that using the same homogeneous area criterion for grey level images than for color
images, but with three times less samples blurs the result of NL-Bayes. This homogeneity criterion
should be refined for grey level images.

3As Alley and Trees are too big for BLS-GSM, summary results can not be shown for the BLS-GSM method
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Alley Computer

Dice Flowers

Girl Traffic

Trees Valldemossa

Figure 6: Noise-free color images.
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σ = 2 NL-Bayes BM3D DCT denoising K-SVD NL-means BLS-GSM
Alley 45.39 44.95 44.54 41.22 42.79 NA

Computer 45.88 45.21 44.55 44.80 44.07 44.69
Dice 49.07 48.85 48.48 48.03 48.52 48.59

Flowers 47.77 47.30 47.14 47.32 46.41 47.12
Girl 47.64 47.38 46.94 47.24 46.95 47.14

Traffic 45.26 44.58 44.22 43.52 43.58 44.15
Trees 43.51 43.08 42.89 37.46 42.23 NA

Valldemossa 45.14 44.71 44.42 38.96 43.34 44.41
Mean 46.21 45.76 45.40 43.57 44.74 NA

σ = 5 NL-Bayes BM3D DCT denoising K-SVD NL-means BLS-GSM
Alley 39.35 38.96 38.29 38.42 37.28 NA

Computer 40.73 39.98 38.98 39.58 38.99 39.30
Dice 45.95 45.81 45.06 45.29 45.11 45.21

Flowers 43.39 43.00 42.58 43.11 42.10 42.76
Girl 44.23 44.05 43.36 43.57 43.48 43.70

Traffic 39.59 38.67 38.09 38.78 37.61 38.10
Trees 36.67 36.09 35.66 35.57 34.69 NA

Valldemossa 38.77 38.35 37.89 37.91 35.97 38.02
Mean 41.08 40.61 39.99 40.28 39.40 NA

σ = 10 NL-Bayes BM3D DCT denoising K-SVD NL-means BLS-GSM
Alley 35.12 34.83 33.92 34.31 33.59 NA

Computer 36.98 36.26 35.00 35.76 35.54 35.47
Dice 43.32 43.05 41.84 41.72 41.97 42.21

Flowers 39.82 39.48 38.61 39.35 38.46 39.10
Girl 41.72 41.45 40.35 40.31 40.48 41.14

Traffic 35.47 34.56 33.76 34.72 33.98 33.92
Trees 31.89 31.25 30.68 31.05 29.56 NA

Valldemossa 34.14 33.79 33.17 33.31 32.13 33.41
Mean 37.31 36.83 35.92 36.32 35.71 NA

σ = 20 NL-Bayes BM3D DCT denoising K-SVD NL-means BLS-GSM
Alley 31.37 31.21 30.13 30.55 29.94 NA

Computer 33.27 32.69 31.08 31.94 31.61 31.89
Dice 40.55 39.94 37.94 37.30 38.20 39.00

Flowers 36.33 35.86 34.41 35.28 34.38 35.34
Girl 39.10 38.72 36.74 36.42 36.92 38.49

Traffic 31.49 30.83 29.79 30.70 30.11 30.14
Trees 27.51 26.91 26.15 26.87 26.35 NA

Valldemossa 29.86 29.59 28.69 29.08 28.44 29.17
Mean 33.68 33.22 31.87 32.27 31.99 NA

Table 14: Comparative results on color images from σ = 2 to σ = 20. In bold the best PSNR for a
given image.
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σ = 30 NL-Bayes BM3D DCT denoising K-SVD NL-means BLS-GSM
Alley 29.37 29.34 28.20 28.60 27.82 NA

Computer 31.12 30.70 28.75 29.88 29.24 29.90
Dice 38.80 37.95 34.69 36.44 36.85 37.05

Flowers 34.22 33.77 31.98 33.58 32.26 33.19
Girl 37.32 36.98 33.73 35.40 35.55 36.91

Traffic 29.35 28.85 27.64 28.59 27.71 28.20
Trees 25.22 24.67 23.81 24.53 23.78 NA

Valldemossa 27.53 27.30 26.34 26.79 25.87 26.97
Mean 31.62 31.19 29.39 30.48 29.89 NA

σ = 40 NL-Bayes BM3D DCT denoising K-SVD NL-means BLS-GSM
Alley 28.05 28.07 26.89 27.27 26.47 NA

Computer 29.50 29.12 26.92 28.22 27.52 28.52
Dice 37.26 36.35 32.42 34.60 35.16 35.50

Flowers 32.63 32.11 30.23 31.92 30.51 31.68
Girl 36.05 35.70 31.26 33.81 34.13 35.61

Traffic 27.86 27.46 26.14 27.14 26.20 26.93
Trees 23.67 23.18 22.30 23.06 22.40 NA

Valldemossa 26.02 25.80 24.88 25.32 24.44 25.50
Mean 30.13 29.72 27.63 28.92 28.35 NA

σ = 60 NL-Bayes BM3D DCT denoising K-SVD NL-means BLS-GSM
Alley 26.37 26.40 25.49 25.66 24.66 NA

Computer 27.52 27.04 25.57 26.28 25.26 26.68
Dice 35.71 34.09 32.08 32.94 33.26 33.61

Flowers 30.80 29.94 28.81 30.04 28.27 29.70
Girl 34.71 33.71 31.94 32.53 32.61 34.08

Traffic 25.98 25.75 24.74 25.36 24.27 25.26
Trees 21.78 21.19 20.68 21.27 20.45 NA

Valldemossa 24.12 23.87 23.05 23.40 22.40 23.69
Mean 28.37 27.75 26.55 27.19 26.40 NA

σ = 80 NL-Bayes BM3D DCT denoising K-SVD NL-means BLS-GSM
Alley 25.22 25.39 24.47 24.50 23.39 NA

Computer 25.97 25.88 24.16 24.91 23.68 25.41
Dice 34.57 32.37 30.04 31.04 31.38 32.16

Flowers 29.41 28.53 27.27 28.47 26.58 28.29
Girl 33.64 32.20 29.83 30.83 31.10 32.93

Traffic 24.70 24.68 23.53 24.13 22.94 24.19
Trees 20.58 20.43 19.70 20.17 19.30 NA

Valldemossa 22.83 22.87 21.96 22.20 21.09 22.54
Mean 27.11 26.54 25.12 25.78 24.93 NA

σ = 100 NL-Bayes BM3D DCT denoising K-SVD NL-means BLS-GSM
Alley 24.42 24.37 23.63 23.59 22.52 NA

Computer 24.87 24.40 23.08 23.85 22.55 24.48
Dice 33.42 30.42 28.53 29.52 29.91 31.06

Flowers 28.20 27.04 26.09 27.29 25.43 27.23
Girl 32.73 30.56 28.13 29.43 30.07 32.02

Traffic 23.84 23.53 22.69 23.20 21.96 23.41
Trees 19.82 19.48 19.03 19.38 18.56 NA

Valldemossa 21.91 21.91 21.18 21.24 20.08 21.72
Mean 26.15 25.21 24.05 24.69 23.88 NA

Table 15: Comparative results on color images from σ = 30 to σ = 100. In bold the best PSNR for
a given image.
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σ = 2 NL-Bayes BM3D DCT denoising K-SVD NL-means BLS-GSM BM3D-SAPCA
Alley 43.49 43.27 42.90 43.08 42.58 43.01 43.49

Computer 45.02 44.65 44.24 44.45 44.01 44.06 44.98
Dice 49.43 49.73 49.28 48.79 48.47 49.31 49.91

Flowers 47.79 48.15 48.18 47.69 46.04 48.10 48.38
Girl 47.81 47.95 47.44 47.19 46.95 47.59 48.11

Traffic 44.28 44.00 43.78 43.81 43.53 43.48 44.28
Trees 42.72 42.51 42.43 42.44 42.27 42.42 42.65

Valldemossa 43.86 43.66 43.54 43.49 43.29 43.31 43.83
Mean 45.55 45.49 45.22 45.12 44.64 45.16 45.70

σ = 5 NL-Bayes BM3D DCT denoising K-SVD NL-means BLS-GSM BM3D-SAPCA
Alley 37.10 36.83 36.15 36.57 36.32 36.47 37.12

Computer 39.23 38.73 37.89 38.24 38.01 38.05 39.25
Dice 45.37 45.69 45.00 42.75 43.39 45.03 46.13

Flowers 42.27 42.83 42.56 41.64 40.33 42.76 43.03
Girl 43.46 43.54 42.87 41.63 42.07 43.23 43.78

Traffic 37.87 37.48 37.03 37.18 36.73 37.00 37.89
Trees 35.36 35.06 34.77 34.99 34.46 35.00 35.29

Valldemossa 36.85 36.59 36.23 36.32 35.74 36.26 36.80
Mean 39.69 39.59 39.06 38.66 38.38 39.22 39.91

σ = 10 NL-Bayes BM3D DCT denoising K-SVD NL-means BLS-GSM BM3D-SAPCA
Alley 32.93 32.72 31.90 32.35 32.23 32.28 33.00

Computer 35.11 34.60 33.31 33.80 33.73 33.87 35.19
Dice 42.45 42.45 41.47 37.58 38.99 41.65 43.07

Flowers 38.42 38.85 38.25 36.74 35.95 38.68 38.97
Girl 40.65 40.61 39.64 37.09 38.01 40.21 40.87

Traffic 33.30 32.95 32.16 32.50 32.40 32.42 33.36
Trees 30.22 29.84 29.21 29.76 29.54 29.77 30.14

Valldemossa 31.98 31.69 30.97 31.29 31.18 31.30 31.90
Mean 35.63 35.47 34.61 33.89 34.00 35.02 35.81

σ = 20 NL-Bayes BM3D DCT denoising K-SVD NL-means BLS-GSM BM3D-SAPCA
Alley 29.42 29.34 28.47 28.47 28.71 28.84 29.57

Computer 31.09 30.86 29.21 29.40 30.03 30.10 31.36
Dice 39.58 39.02 37.60 31.97 36.88 38.17 39.58

Flowers 34.65 34.91 33.83 31.62 32.84 34.71 34.94
Girl 37.80 37.72 36.19 31.88 35.74 37.36 37.99

Traffic 29.27 29.07 28.17 28.30 28.51 28.53 29.36
Trees 25.78 25.34 24.50 25.30 25.23 25.22 25.55

Valldemossa 27.68 27.41 26.56 26.90 27.07 27.03 27.59
Mean 31.91 31.71 30.57 29.23 30.63 31.24 31.99

Table 16: Comparative results on grey level images from σ = 5 to σ = 20. In bold the best PSNR
for a given image.
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σ = 30 NL-Bayes BM3D DCT denoising K-SVD NL-means BLS-GSM BM3D-SAPCA
Alley 27.60 27.63 26.78 26.97 26.73 27.15 27.86

Computer 28.88 28.74 27.04 27.79 27.68 28.00 29.10
Dice 37.84 37.03 35.22 32.70 34.23 36.25 37.27

Flowers 32.59 32.64 31.30 31.07 30.40 32.57 32.72
Girl 36.10 35.80 34.11 32.31 33.39 35.69 36.03

Traffic 27.20 27.13 26.27 26.69 26.38 26.56 27.33
Trees 23.55 23.21 22.45 23.15 23.08 23.08 23.27

Valldemossa 25.54 25.32 24.53 24.98 24.90 25.02 25.49
Mean 29.91 29.69 28.46 28.21 28.35 29.29 29.88

σ = 40 NL-Bayes BM3D DCT denoising K-SVD NL-means BLS-GSM BM3D-SAPCA
Alley 26.36 26.55 25.69 25.65 25.51 26.02 26.65

Computer 27.38 27.27 25.60 26.20 26.10 26.64 27.70
Dice 36.26 35.41 33.26 30.42 33.70 34.74 35.46

Flowers 31.01 31.03 29.59 29.17 28.83 30.94 31.10
Girl 34.81 34.47 32.38 30.19 32.67 34.40 34.28

Traffic 25.82 25.86 25.06 25.31 24.89 25.34 26.03
Trees 22.20 21.99 21.30 21.89 21.66 21.84 21.99

Valldemossa 24.21 24.08 23.35 23.67 23.53 23.72 24.14
Mean 28.51 28.33 27.03 26.56 27.11 27.95 28.42

σ = 60 NL-Bayes BM3D DCT denoising K-SVD NL-means BLS-GSM
Alley 24.91 25.07 24.32 24.35 23.73 24.63

Computer 25.46 25.39 23.88 24.59 23.88 24.88
Dice 34.47 33.16 31.97 29.73 31.88 32.67

Flowers 28.92 28.83 28.14 27.83 26.71 29.03
Girl 33.30 32.45 31.72 29.66 31.21 32.79

Traffic 24.19 24.31 23.46 23.82 23.11 23.83
Trees 20.64 20.57 19.95 20.42 19.96 20.43

Valldemossa 22.60 22.52 21.72 22.12 21.61 22.15
Mean 26.81 26.54 25.64 25.32 25.26 26.30

σ = 80 NL-Bayes BM3D DCT denoising K-SVD NL-means BLS-GSM
Alley 23.74 24.02 23.39 23.14 22.66 NA

Computer 23.98 24.08 22.71 23.21 22.47 23.69
Dice 33.09 31.21 30.16 27.35 29.92 31.23

Flowers 27.40 27.31 26.62 26.30 25.26 27.63
Girl 32.18 30.99 30.27 27.70 30.02 31.64

Traffic 23.08 23.25 22.53 22.66 21.92 22.84
Trees 19.75 19.80 19.26 19.64 19.10 19.63

Valldemossa 21.47 21.49 20.84 21.01 20.45 21.17
Mean 25.59 25.27 24.47 23.88 23.98 NA

σ = 100 NL-Bayes BM3D DCT denoising K-SVD NL-means BLS-GSM
Alley 22.97 23.06 22.71 22.14 21.84 NA

Computer 22.89 22.86 21.88 22.17 21.35 22.81
Dice 31.57 29.14 28.84 25.53 28.44 30.16

Flowers 26.31 26.09 25.59 25.02 24.17 26.56
Girl 31.07 29.24 28.95 26.16 28.73 30.71

Traffic 22.25 22.36 21.79 21.70 20.99 22.11
Trees 19.00 19.17 18.79 19.07 18.51 19.11

Valldemossa 20.61 20.66 20.18 20.17 19.51 20.46
Mean 24.58 24.07 23.59 22.75 22.94 NA

Table 17: Comparative results on grey level images from σ = 30 to σ = 100. In bold the best PSNR
for a given image.

29



Marc Lebrun, Antoni Buades, Jean-Michel Morel

Original image Noisy image, σ = 30

NL-Bayes BM3D-SAPCA

Figure 7: Comparison on grey level images.
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The better visual results with BM3D-SAPCA for moderate noise seem to be due to the adaptive
shapes, but also to the larger patch size (8×8 against 5×5). Nonetheless, everything has a price. NL-
Bayes is significantly simpler than BM3D-SAPCA. Indeed BM3D-SAPCA employs image patches
(neighborhoods) which can have data-adaptive shape. The PCA bases are obtained by eigenvalue
decomposition of empirical second-moment matrices that are estimated from groups of similar shape-
adaptive neighborhoods. The anisotropic shape-adaptive patches are obtained using the 8-directional
LPA-ICI techniques. The principal steps of this algorithm are:

1. Obtain shape-adaptive neighborhood centered at the current pixel using the 8-directional LPA-
ICI;

2. Find patches similar to the reference patch using block-matching, and extract an shape-adaptive
neighborhood from each of these matched blocks using the shape obtained in Step 1;

3. Determine the transform to be applied on the shape-adaptive neighborhoods (depending on
the number of similar blocks), which can be eigenvectors of a second-moment matrix, or a
shape-adaptive DCT;

4. Form a 3-D array by stacking together the shape-adaptive neighborhoods with highest similarity
to the reference one;

5. Apply the transform obtained in Step 3 on each of the grouped shape-adaptive neighborhoods.
Subsequently, apply a 1-D orthogonal transform (e.g., Haar wavelet decomposition) along the
third dimension of the 3-D group;

6. Perform shrinkage (hard-thresholding or empirical Wiener filtering) on the 3-D spectrum;

7. Invert the 3-D transform of Step 5 to obtain estimates for all of the grouped shape-adaptive
neighborhoods;

8. Return the obtained estimates to their original locations using weighted averaging in case of
overlapping.

In terms of complexity, NL-Bayes is also significantly faster than BM3D-SAPCA. On an i5
processor compiling with GCC with optimization mode -O3, in the Ubuntu 12.10 system the average
CPU time on this paper’s image database was of 20 seconds for NL-Bayes and 900 seconds for the
BM3D-SAPCA binary. The comparison cannot be made more complete as we do not dispose of the
source code of BM3D-SAPCA, and ignore its degree of parallelism.

6.2 Images

In addition to the PSNR/RMSE results, it is really interesting to compare visually all methods,
especially to remark (and regret) the inherent and characteristic artifacts of each one.

A relatively low noise shows each method at its best (figure 8).

The noise standard deviation limit beyond which artifacts appear with all methods is σ = 40
(figure 11). It is the limit between moderate noise, where we get visually acceptable results, and
high noise where no method gives so far visually acceptable results.

Above σ = 40 (figure 12), inherent and characteristic artifacts become obvious. These limitations
are important to explore. They open up the question of denoising high noise.
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Original noise-free image Noisy image, σ = 10

NL-Bayes BM3D

DCT denoising K-SVD

NL-means BLS-GSM

Figure 8: Visual comparison of all methods, σ = 10.
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Original noise-free image Noisy image, σ = 20

NL-Bayes BM3D

DCT denoising K-SVD

NL-means BLS-GSM

Figure 9: Visual comparison of all methods, σ = 20.
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Original noise-free image Noisy image, σ = 30

NL-Bayes BM3D

DCT denoising K-SVD

NL-means BLS-GSM

Figure 10: Visual comparison of all methods, σ = 30.
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Original noise-free image Noisy image, σ = 40

NL-Bayes BM3D

DCT denoising K-SVD

NL-means BLS-GSM

Figure 11: Visual comparison of all methods, σ = 40.
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Original noise-free image Noisy image, σ = 80

NL-Bayes BM3D

DCT denoising K-SVD

NL-means BLS-GSM

Figure 12: Visual comparison of all methods, σ = 80.
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6.3 Experimental Conclusion

This detailed study carried out on NL-Bayes had led us to the following conclusions:

• working on very small size of patches, this method is really fast for small and medium noise,
even more thanks to the acceleration trick that used patches are no more processed again as
reference patches;

• The main elements which allow for real improvements of the results are:

– working in the Y0U0V0 space color for the first step;

– making a second step with the result of the first step as “oracle”;

– aggregating the estimates. This aggregation is improved significantly by working with a
3D group and by keeping all estimates obtained of the similar 2D-patches like BM3D;

– using the homogeneous area criteria to remove almost all artifacts in homogeneous area.

• Nevertheless, there is still room for improvement, by, perhaps:

– using a multi-scale approach to remove low frequency noise;

– using a more complex model than the Gaussian patch model.

7 Comparison to PCA Based Methods

7.1 Comments About “Image Denoising with Patch Based PCA: Local
Versus Global”

The use of the PCA (Principal Component Analysis) has been treated in detail by Deledalle et al. [7].
This article proposes to use a PCA to learn an orthonormal basis adapted locally or globally to the
image. The interesting part in this article is the confrontation of global versus local PCA. Indeed,
a first simple approach is to learn the PCA over the whole image, and then to denoise patches by
applying a hard thresholding to the coefficients of the patch on the new learned orthonormal basis.
This works quite well, but for patches with a rare structure, the denoising is not optimal, because
this structure is under-represented in the whole image. Thus, to adapt the method to every kind of
structure, even the rarest, the solution is to learn the PCA more locally, on small windows around
the current patch. Nevertheless, working on a small windows, there is a risk of not finding enough
patches to learn an unbiased PCA.

Another interesting point of this article is that it shows the first eigenvectors and the last ones of
each PCA. One can easily see that the first eigenvectors describe the orientation of the gradient of
the patches, whereas the last ones present only noise. This illustrates experimentally how canceling
the coefficients of the last eigenvectors (those with the lowest corresponding eigenvalues) permits to
remove the noise in the image without affecting structure or details. Despite this interesting study,
one can finger-point some defaults of this article. In fact, its PSNR results are worse than BM3D
and the algorithm is slower. These defaults are partly due to the fact that this paper does not use all
tricks that improve the denoising performance: only gray-level images are treated, no second oracular
step is applied. The size of the patches can probably be reduced. Nevertheless, the algorithm applies
a uniform aggregation. A puzzling result of their study is that applying a hard threshold gives better
results than a Wiener filter. But a second step would demonstrate that with the right oracle given
by the first step, the Wiener filter is in fact better, being optimal in theory. Regrettably, only small
noise values σ ∈ [5, 20] have been tested.
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7.2 Analysis and Comments About TSID

This part considers the original method described by Zhang et al. [24]. As this algorithm is really
close to NL-PCA, it will be compared to it stepwise, and for this purpose the same notation is
adopted.

7.2.1 Implementation

The algorithm is divided in two separate steps. Contrarily to NL-PCA, these steps are identical,
except for the used value of σ which is upgraded after the first step. Thus, only one step will
be described. This algorithm was originally developed for gray level images. In the following we
therefore examine the application to gray level images. The image is scanned pixel per pixel. Let
us denote by P̃ the current reference patch which size is k1 × k1 (with k1 = 5) and xr the current
central pixel of P̃ . The loop on the image is done on xr. Like for NL-PCA and BM3D, each step is
divided into 3 parts:

Grouping : Similar patches Q̃ are found by block-matching with the same distance as the one used
for NL-Bayes. A patch is considered similar if its distance to P̃ is below a fixed threshold,
depending on σ. Moreover, to stabilize the process of the PCA on the obtained 3D-block, a
minimum number (denoted by NP ) of similar patches is requested. In this case the NP best
patches obtained during block-matching are used.

Collaborative Filtering : When the set of similar patches has been obtained, a matrix is built,
containing all similar patches seen as vectors. Then, as for NL-PCA, the columns of the
matrix are first centered around their common center of mass. After that, a singular value
decomposition (SVD) of the centered matrix is obtained. Then, a LMMSE (Wiener filter) is
applied to the new coefficients, and the patch is finally reconstructed with these new coefficients
on the PCA.

Getting the estimate : The principal difference with NL-PCA, is that only the estimate of the
central pixel of the reference patch xr is kept, which clearly decreases the PSNR, no aggregation
step being possible.

7.2.2 Extending to Color Images

In BM3D the extension to color images is done by using Y0U0V0 instead of RGB; the grouping part
is done only on the Y0 channel and the rest of the algorithm is performed independently on the three
channels. For TSID instead this extension is done in the simplest way; the whole algorithm is applied
independently on the three channels R, G and B. This is another point that could have been very
easily improved, but was not envisaged by the authors.

7.2.3 Comparisons Between TSID and NL-PCA

Table 18 shows some average comparative results over both sets of color and grey images in terms
of PSNR for TSID and NL-PCA.
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NL-PCA TSID
σ PSNR RMSE PSNR RMSE

2 45.29 1.39 44.06 1.60
5 40.84 2.31 39.09 2.83
10 37.30 3.48 35.72 4.17
20 33.35 5.48 32.07 6.35
30 30.74 7.40 29.70 8.35
40 28.86 9.19 27.92 10.24
60 27.57 10.66 25.55 13.46
80 25.97 12.83 23.93 16.21
100 24.72 14.81 22.87 18.32

NL-PCA TSID
σ PSNR RMSE PSNR RMSE

2 46.03 1.27 43.76 1.65
5 39.84 2.60 36.97 3.61
10 35.28 4.39 32.18 6.27
20 30.92 7.25 28.03 10.11
30 28.61 9.46 25.94 12.87
40 27.08 11.29 24.59 15.03
60 24.94 14.43 22.74 18.59
80 23.63 16.78 21.45 21.57
100 22.60 18.90 20.48 24.14

Grey level images Color images

Table 18: Comparisons between TSID and NL-PCA.

“Twelve labours” and the Spanish government under TIN2011-27539. The first author acknowledges
support by DxO Labs through a CIFRE PhD scholarship.

Glossary

Subscripts of variables in bold are semantic subscripts.

Parameters

• k1 × k1 (resp. k2 × k2): dimension of patches for the first (resp. second) step of the algorithm;

• n1 × n1 (resp. n2 × n2): dimension of search zone for similar patches for the first (resp. second) step
of the algorithm;

• N1 (resp. N2): number of retained similar patches Q̃ (resp. Qbasic) to the reference one P̃ (resp.
Pbasic) for the first (resp. second) step of the algorithm;

• τ0: fixed threshold used to estimate the similarity threshold τ in the second step of the algorithm;

• γ: used to determine if a patch belongs to an homogeneous area;

• β1 (resp. β2): parameter of conservative attenuation close to 1 used in the first (resp. second) step of
the algorithm.

Notations

• basic: designates the first step of the algorithm;

• final: designates the second step of the algorithm;

• 1: designates parameters used in the first step of the algorithm;

• 2: designates parameters used in the second step of the algorithm;

• u: noiseless ideal image;

• ũ: noisy image;
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• ubasic: basic estimate of the denoised image, obtained at the end of the first step of the algorithm;

• ufinal: final denoised image obtained at the end of the second step of the algorithm;

• n: Gaussian noise of standard deviation σ;

• σ: standard deviation of white noise at each pixel;

• N : total number of pixels or patches in the image;

• P : noiseless reference patch of u;

• Q: second patch compared to P ;

• P̃ , Q̃: noisy patches;

• Pbasic (resp. Pfinal): restored patch after the first (resp. second) step of the algorithm;

• P(G): probability of an event G (in the image and noise stochastic models);

• EQ: expectation (of a random patch Q);

• P : empirical expectation of the patches similar to P ;

• d(P̃ , Q̃): Euclidean distance between patches (considered as vectors of their values);

• CP : covariance matrix (of patches similar to P or P̃ );

• I: identity matrix;

• P(P̃ ): set of similar patches Q̃ to the reference one P̃ for the first step of the algorithm;

• Pbasic(Pbasic): set of similar patches Qbasic to the reference one Pbasic in the basic estimation ubasic

for the second step of the algorithm;

• Pbasic(P̃ ): set of similar patches Q̃ to the reference one P̃ in the noisy image ũ, obtained by stacking
up patches together in the same order as Pbasic(Pbasic).

Image Credits

by A. Buades, CC-BY

by M. Colom, CC-BY
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