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Abstract

The seminal work of Horn and Schunck is the first variational method for optical flow estima-
tion. It introduced a novel framework where the optical flow is computed as the solution of
a minimization problem. From the assumption that pixel intensities do not change over time,
the optical flow constraint equation is derived. This equation relates the optical flow with the
derivatives of the image. There are infinitely many vector fields that satisfy the optical flow con-
straint, thus the problem is ill-posed. To overcome this problem, Horn and Schunck introduced
an additional regularity condition that restricts the possible solutions. Their method minimizes
both the optical flow constraint and the magnitude of the variations of the flow field, producing
smooth vector fields. One of the limitations of this method is that, typically, it can only estimate
small motions. In the presence of large displacements, this method fails when the gradient of
the image is not smooth enough. In this work, we describe an implementation of the original
Horn and Schunck method and also introduce a multi-scale strategy in order to deal with larger
displacements. For this multi-scale strategy, we create a pyramidal structure of downsampled
images and change the optical flow constraint equation with a nonlinear formulation. In order
to tackle this nonlinear formula, we linearize it and solve the method iteratively in each scale. In
this sense, there are two common approaches: one that computes the motion increment in the
iterations; or the one we follow, that computes the full flow during the iterations. The solutions
are incrementally refined over the scales. This pyramidal structure is a standard tool in many
optical flow methods.

Source Code

A standalone ANSI C implementation is available1. This file contains two main programs:
horn schunck classic.c, which implements the original Horn and Schunck method; and the
implementation of the multi-scale approach, in file horn schunck pyramidal.c. This latter
implementation is best suited for general image sequences.

Keywords: optical flow, multiscale, pyramidal

1Version 3.0, from the article web page https://doi.org/10.5201/ipol.2013.20.
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1 Introduction

Let I(x, y, t) be a video sequence, and let (x(t), y(t)) be the trajectory of a material point projected to
the image plane. The brightness constancy assumption states that the pixel intensities, I(x(t), y(t), t)
remain constant over time:

dI

dt
= 0. (1)

This identity must hold for the trajectories of every point in the image domain, whose velocities
at one instant define a vector field

h = (u, v) =

(

dx

dt
,
dy

dt

)

. (2)

Thus, the vector field h satisfies pointwise the following linear condition, which is derived from
the brightness constancy assumption by applying the chain rule:

∇I · h+ It = 0, (3)

with ∇I = (Ix, Iy). This is the optical flow constraint equation. This equation cannot be solved
pointwise, since the number of parameters to be estimated is larger than the number of linearly
independent equations. This indeterminacy is called the aperture problem: there is not enough
information to recover the optical flow at one point by only looking at first order derivatives of the
image intensity. This is illustrated in figure 1.

Figure 1: Optical flow constraint.

The optical flow constraint equation represents a line perpendicular to the image gradient. Thus,
given this constraint alone, it is only possible to estimate the magnitude of the motion in the gradient
direction as:

h = −It
∇I

|∇I|2
, (4)

which is the smallest motion satisfying the optical flow constraint. This equation is also called normal
flow.
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2 The Classical Horn and Schunck Method

The proposal of Horn and Schunck consists in formulating the problem of optical flow estimation as
a variational problem, where the desired vector field h is defined as the minimizer of a certain energy
functional J(h). This functional has two terms: a data attachment term, given by the optical flow
constraint, and a regularity term that is based on the gradient of the flow:

J(h) =

∫

Ω

(Ixu+ Iyv + It)
2 + α2

(

|∇u|2 + |∇v|2)
)

, (5)

where α is a parameter to control the weight of the smoothness term compared to the optical flow
constraint. The parameter α is squared so that its units are units of grey-level, and it can be regarded
as the intensity of an additive Gaussian noise present in the input images. This energy model uses
quadratic functionals in both terms. This assumes that the image noise and the flow derivatives are
expected to follow a Gaussian distribution. A direct consequence of this kind of functionals is that
the method is very sensitive to the presence of noise and the computed flow fields are very smooth.
These shortcomings have led to the appearance of many research works that try to deal with these
limitations. The use of L1 functionals [7, 20, 17], has turned out to be a better approach.

The minimization of the above functional yields the following Euler-Lagrange equations:

I2xu+ IxIyv = α2div(∇u)− IxIt,

IxIyu+ I2yv = α2div(∇v)− IyIt. (6)

The Laplacian can be approximated with the following expressions, which will be useful for the
discretization below:

div (∇u) ≈ (ū− u),

div (∇v) ≈ (v̄ − v), (7)

where (ū, v̄) are local averages of (u, v). This approximation is analogous to the commonly used
“difference of gaussians”, where the Laplacian operator is approximated by the difference of blurred
versions of the image [13]; in this case the smallest blur is zero. Solving the equations above for (u, v)
and re-arranging the terms, we obtain the following system of equations:

(

α2 + I2x + I2y
)

(u− ū) = −Ix (Ixū+ Iyv̄ + It) ,
(

α2 + I2x + I2y
)

(v − v̄) = −Iy (Ixū+ Iyv̄ + It) . (8)

Writing these equations for each pixel of the input images, we obtain a sparse system of linear
equations (see figure 2). This system can be solved efficiently with an iterative scheme, as explained
in the next section.

2.1 Numerical Scheme

The partial derivatives, Ix, Iy and It, are approximated using forward differences and averaging
between two consecutive frames:

Ix ≈
1

4
(Ii,j+1,k − Ii,j,k + Ii+1,j+1,k − Ii+1,j,k + Ii,j+1,k+1 − Ii,j,k+1 + Ii+1,j+1,k+1 − Ii+1,j,k+1) ,

Iy ≈
1

4
(Ii+1,j,k − Ii,j,k + Ii+1,j+1,k − Ii,j+1,k + Ii+1,j,k+1 − Ii,j,k+1 + Ii+1,j+1,k+1 − Ii,j+1,k+1) ,

It ≈
1

4
(Ii,j,k+1 − Ii,j,k + Ii+1,j,k+1 − Ii+1,j,k + Ii,j+1,k+1 − Ii,j+1,k + Ii+1,j+1,k+1 − Ii+1,j+1,k+1) , (9)
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Figure 2: System of linear equations (8) for an input image of size 5 × 4. The following abridged
notation is used to write the system in matrix form. The 40 unknowns ui, vi correspond to the
values of the vector field (u, v), ordered lexicographically as in figure 3. All functions, such as IxIt
are evaluated at the pixel corresponding to their position. The symbol P denotes I2x + α2. The
symbol Q denotes I2y + α2. The symbol R denotes IxIy. Finally, we use the constants σ = −α2/6
and ς = −α2/12. This system is written assuming Dirichlet boundary conditions. For Neumann
boundary conditions, the constants σ and ς corresponding to the boundaries of the image must be
changed to zero.

0 1 2 3 4
5 6 7 8 9
10 11 12 13 14
15 16 17 18 19

Figure 3: Indices for the pixel positions used on figure 2.
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with Neumann boundary conditions. The local averages (ū, v̄) are estimated from the eight neighbors
of (u, v) as:

ū ≈
1

6
(un

i−1,j + un
i+1,j + un

i,j−1 + un
i,j+1) +

1

12
(un

i−1,j−1 + un
i+1,j−1 + un

i−1,j+1 + un
i+1,j+1),

v̄ ≈
1

6
(vni−1,j + vni+1,j + vni,j−1 + vni,j+1) +

1

12
(vni−1,j−1 + vni+1,j−1 + vni−1,j+1 + vni+1,j+1), (10)

with Neumann boundary conditions. The coefficients of this discretization are the same as in the
original paper by Horn and Schunck [12]. In order to have a correct discretization of the Laplacian,
these should be chosen so that the sum of coefficients are equal to the coefficient associated with
(u, v). The solution of the above sparse system of linear equations can be obtained by means of the
following iterative scheme:

un+1 :=ūn − Ix
Ixū

n + Iyv̄
n + It

α2 + I2x + I2y
,

vn+1 :=v̄n − Iy
Ixū

n + Iyv̄
n + It

α2 + I2x + I2y
. (11)

This iterative scheme is the Jacobi method for solving the linear system (8). To stop the iterative
process before a fixed number of iterations, a stopping criterion based on two consecutive values of
h = (u, v) can be used. If hn, hn+1 are successive approximations of the vector field, the stopping
criterion is

1

N

∑

i,j

(

un+1
i,j − un

i,j

)2
+
(

vn+1
i,j − vni,j

)2
< ε2. (12)

This criterion is based on the change of the solution in each iteration. The advantage of this is
that it is fast and easy to compute. Another alternative is the use of the residual [10].

In this section, we have explained the numerical scheme of the original optical flow method by
Horn and Schunck [12]. The software associated to this article contains this implementation in file
horn schunck classic.c.

In the following section, we modify the original method in order to handle larger displacements.
We introduce a pyramidal scheme, which is the standard approach in most of nowadays variational op-
tical flow methods. The implementation of this method is included in file horn schunck pyramidal.c.

3 The Horn and Schunck Method for Recovering Large Dis-

placements: A Pyramidal Approach

The optical flow constraint equation (3) is only suitable when the partial derivatives can be correctly
approximated. This is the case when the motion field is small enough or the gradient of the image is
linear. However, in the presence of large displacements, these conditions are not typically preserved,
and it is common to replace it with a nonlinear formulation:

I1(x)− I2(x+ h) = 0. (13)

This constraint still accounts for the brightness constancy assumption with the advantage that
h can have arbitrary large values. A linearization of this equation is equivalent to the optical flow
constraint equation (3). Substituting this in the energy model yields the following functional:

J(h) =

∫

Ω

(I1(x)− I2(x+ h))2 + α2
(

|∇u|2 + |∇v|2
)

dx. (14)
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This model is essentially the same as (5) with the difference that the attachment term is non-
linear. It provides a behavior similar to the original continuous formulation of Horn–Schunck: the
solutions are expected to be very smooth, provided that the regularization term is unchanged. The
minimization of the energy functional yields the following Euler-Lagrange equations:

0 =− (I1(x)− I2(x+ h)) I2x(x+ h)− α2div (∇u) ,

0 =− (I1(x)− I2(x+ h)) I2y(x+ h)− α2div (∇v) . (15)

These equations are nonlinear in h, because of the warping I2(x + h). We can use first order
Taylor expansions to linearize it,

I2(x+ hn+1) = I2(x+ hn) +∇I2(x+ hn)(hn+1 − hn), (16)

where hn is close to hn+1. Note that, if hn = 0, and we combine equations (13) and (16), then the
resulting formula boils down to the optical flow constraint equation (3). The main difference with
respect to the original continuous model is that the temporal derivative is replaced by the difference
between the two images. A problem that arises with this linearization is how to determine the value
of hn.

This compels us to introduce two mechanisms: on the one hand, we make use of a multi-scale
approach in order to reduce the distance between the objects in the images, so that hn is not far from
hn+1; on the other hand, in each scale, hn is iteratively refined to assure the convergence to hn+1.
This last mechanism can be implemented using the motion increment, dh, from hn to hn+1 [14, 7, 16],
or directly updating the value of hn in each iteration [1]. In this work, we follow the latter strategy.

To obtain a linear system of equations, we substitute the nonlinear terms in the Euler-Lagrange
equations by their Taylor expansions:

0 =
(

I1(x)− I2(x+ hn)−∇I2(x+ hn)(hn+1 − hn)
)

I2x(x+ hn) + α2div (∇un) ,

0 =
(

I1(x)− I2(x+ hn)−∇I2(x+ hn)(hn+1 − hn)
)

I2y(x+ hn) + α2div (∇vn) . (17)

The proposed algorithm consists in solving for hn+1 this linear system of equations iteratively
many times at each scale.

3.1 Pyramidal Structure

In order to estimate large displacements, we embed the optical flow method in a multi-scale strat-
egy. The idea behind a multi-scale approach is to create a coarse-to-fine structure that enables the
estimation of the flow field at coarser scales and then to refine the solution at finer scales. There
are two basic approaches, which theoretically amount to the same thing: the first one is to create a
pyramid of downsampled images and the second one is to use a linear scale-space of images at the
same resolution [1]. Both approaches provide similar results, but the former has the advantage of
working with smaller images, improving the run time of the algorithm.

Our algorithm implements a pyramid of downsampled images. The pyramid is created by reducing
the images by a factor η ∈ (0, 1). Before downsampling, the images are smoothed with a Gaussian
kernel of a standard deviation that depends on η. For a set of scales s = {0, 1, . . . , Nscales − 1}, the
pyramid of images is built as

Is(ηx) := Gσ ∗ I
s−1(x). (18)

After the convolution, the images are sampled using bicubic interpolation. The value of σ depends
on η and is calculated as

σ(η) := σ0

√

η−2 − 1, with σ0 := 0.6. (19)

156



Horn–Schunck Optical Flow with a Multi-Scale Strategy

Intuitively, when η is close to 1 (no downsampling), σ approaches 0, so the image does not
change much; and when η is close to 0 (abrupt downsampling), σ is large, so the image becomes
very smoothed. The value of σ0 was found empirically from several values of η and different image
sequences. Then, starting at the coarsest scale, the system of equations is solved in each scale to get
successive approximations to the optical flow. Every intermediate solution is used as the initialization
in the following scale. To transfer the values from a coarser scale, the flow field is updated as

hs−1(x) :=
1

η
hs(ηx). (20)

The motion to be detected must be small at the coarsest scale. Thus, it is necessary to create as
many scales so that (1/η)Nscales−1 is larger than the magnitude of the largest expected displacement.
In this respect, one drawback of the pyramidal approach is that, typically, the method cannot estimate
the motion of small objects undergoing large displacements, since these may disappear in the coarsest
scales.

3.2 Numerical Scheme

In each scale, the Euler-Lagrange equations are solved using a numerical scheme based on the SOR
method (Successive Over-Relaxation). This means that we need to introduce another fixed point
iteration level, inner iterations r, for the convergence of the SOR method. This is embedded into the
outer iterations, n, of the Taylor expansions. The Laplacian is approximated with finite differences
as

div
(

∇un,r+1
)

≈
1

6
(un,r+1

i−1,j + un,r+1
i+1,j + un,r+1

i,j−1 + un,r+1
i,j+1 )

+
1

12
(un,r+1

i−1,j−1 + un,r+1
i+1,j−1 + un,r+1

i−1,j+1 + un,r+1
i+1,j+1)− un,r+1

i,j ,

div
(

∇vn,r+1
)

≈
1

6
(vn,r+1

i−1,j + vn,r+1
i+1,j + vn,r+1

i,j−1 + vn,r+1
i,j+1 )

+
1

12
(vn,r+1

i−1,j−1 + vn,r+1
i+1,j−1 + vn,r+1

i−1,j+1 + vn,r+1
i+1,j+1)− vn,r+1

i,j . (21)

First order derivatives of the images are computed by means of central differences. In the classical
method, derivatives are computed using forward differences (see equation (9)), which may lead to a
de-localisation of the derivatives. Henceforth, we use the following notation:

I1 := I1(x),

I2 := I2(x+ hn),

I2x := I2x(x+ hn),

I2y := I2y(x+ hn). (22)

Note that hn remains fixed during the inner iterations. The numerical scheme is given by

0 =
(

I1 − I2 −∇I2(h
n,r+1 − hn)

)

I2x + α2div
(

∇un,r+1
)

,

0 =
(

I1 − I2 −∇I2(h
n,r+1 − hn)

)

I2y + α2div
(

∇vn,r+1
)

. (23)

Then, grouping terms and expressing the above equations with respect to the flow field at iteration
(n, r + 1) we obtain the following fixed-point iterations:

un,r+1
i,j :=(1− w)un,r

i,j + w

((

I1 − I2 + I2xu
n
i,j − I2y(v

n,r
i,j − vni,j)

)

I2x + α2A(un,r+1
i±1,j±1)

)

I22x + α2
,

vn,r+1
i,j :=(1− w)vn,ri,j + w

((

I1 − I2 − I2x(u
n,r+1
i,j − un

i,j) + I2yv
n
i,j

)

I2y + α2A(vn,r+1
i±1,j±1)

)

I22y + α2
. (24)
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where w is the relaxation parameter of the SOR method, with 0 < w < 2 (we choose 1.9 by default,
as this value has been found to be a stable choice in our experiments). In each scale of the pyramid,
the SOR scheme, corresponding to index r, is iterated until the flow converges to a steady-state
solution or a maximum number of iterations is reached. Estimated values in instant r + 1 are used
whenever they are available. This allows us to use a single array to store the optical flow. The
index n is used for the outer iterations and is related with the Taylor expansions. Thus, we have two
nested iterations, one for the convergence of the numerical scheme and another for the successive
refinements of the Taylor linearization. Once the SOR scheme has converged, we go to the next outer
iteration n+ 1.

The value of A(un,r+1
i±1,j±1) is computed from the neighbors of ui,j as

A(un,r+1
i±1,j±1) :=

1

6
(un,r+1

i−1,j +un,r+1
i+1,j +un,r+1

i,j−1 +un,r+1
i,j+1 )+

1

12
(un,r+1

i−1,j−1+un,r+1
i+1,j−1+un,r+1

i−1,j+1+un,r+1
i+1,j+1). (25)

At the coarsest scale, hNscales−1 can be initialized to (0, 0), provided that the motion field is very
small. There are some additional numerical issues to be taken into account:

• To warp the image I2 by a flow field h, I2(x+ h) is evaluated using bicubic interpolation.

• To upscale a vector field h by a factor of η, bicubic interpolation is used on each component of
the motion field.

• The original images are normalized between 0 and 255 together, so that the value of α is
independent of the brightness shift of the images.

4 A Generalized Formulation for Numerical Schemes

A common approach for solving variational problems consists of three steps:

1. The Euler-Lagrange equations are derived analytically.

2. If the equations are nonlinear, they are linearized around a reasonable starting point (or around
zero).

3. Finally, the linear equations are discretized and solved numerically using a linear algebra library.

There are several variations of this scheme. For example, the energy functional can be discretized
directly, so the analytical computation of the Euler-Lagrange equations is skipped. Sometimes the
Euler-Lagrange equations are computed and directly discretized, thereby skipping the linearization
step.

In the end always a large linear system of equations is constructed which can be solved by
any appropriate method (e.g. Gauss-Elimination, Jacobi, SOR, Conjugate Gradients, GMRES,
Multigrid, Algebraic Multigrid, etc.). This allows us to generalize the formulation of our discretized
and linearized variational problems. This has the following benefits:

1. It clearly separates mathematical solution from realization.

2. Any numerical method can be employed, easing experimentation.

3. Highly optimized numerical libraries can be developed and debugged independently.

There are many libraries for solving linear systems efficiently [4, 3]. In this section we will explain
a generalized formulation for numerical schemes based on the above described examples of optical
flow.
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4.1 Stencil Notation

Here, we assume that the Euler-Lagrange equations have been computed (equation (15)) and lin-
earized (equation (17)) at a given pyramid level. As a first step, we group the unknowns un+1, vn+1 in
each linear term (data term and regularizer) of the current iteration in each equation. We also move
constant terms to right hand side and unknowns to the left hand side. This yields the discretized
version of the previously linearized Euler Lagrange equations:

cx(x)(u
n+1, vn+1)T − α2(un+1

xx + un+1
yy ) =bx(x),

cy(x)(u
n+1, vn+1)T − α2(vn+1

xx + vn+1
yy ) =by(x). (26)

Here, we expanded the term div(∇u) = div((ux, uy)) to uxx+uyy, denoting the second derivatives
of u. For abbreviation, the terms constant with respect to the unknowns are summarized in c and b
respectively, defined as:

bd∈{x,y}(x) := I2d(x+ hn)(I1(x)− I2(x+ hn)) + I2d(x+ hn)∇I2(x+ hn)hn,

cd∈{x,y}(x) := I2d(x+ hn)∇I2(x+ hn).

The next step is to discretize the continuous derivatives in the linear equations. A straightforward
approach is to use forward differences on the pixel grid. For example, equation (21) is a smoothed
discrete version of un+1

xx + un+1
yy and vn+1

xx + vn+1
yy at a given pixel location (i, j).

Applying this discretization to a set of unknowns at a given pixel location can be understood as a
scalar product between a lexicographically vectorized (from top left to bottom right) unknown vector
ûi,j and a weight vector wui,j

. For example, we can rewrite equation (21) (skipping the iteration
indices) as:

div (∇u) ≈wT
ui,j

ûi,j = (
1

12
,
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,
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,
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6
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,
1

12
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,
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12
)

(ui−1,j−1, ui,j−1, ui+1,j−1, ui−1,j, ui,j, ui+1,j, ui−1,j+1, ui,j+1, ui+1,j+1)
T ,

div (∇v) ≈wT
vi,j

v̂i,j = (
1
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,
1

6
,
1
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,
1

6
,−1,

1
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,
1

12
,
1

6
,
1

12
)

(vi−1,j−1, vi,j−1, vi+1,j−1, vi−1,j, vi,j, vi+1,j, vi−1,j+1, vi,j+1, vi+1,j+1)
T . (27)

Since the weight vectors wui,j
are always centered around pixel location (i, j), we can write them in

image coordinates as:

Sui,j
=





1
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1
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1
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1
6
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12





vi,j

(28)

We call these discrete masks stencils. Each pixel location consists of one stencil per unknown
(two stencils per pixel for our example). They describe the relation between the current unknown
location with respect to neighboring unknowns. Subscripts of S define to which unknown and which
location in the image a stencil corresponds to. The reference location (i, j) is encoded by the center
of the stencil. In case it has an even number of rows or columns, the center has to be defined.

The discretization of the derivatives can also be achieved with more accurate methods ensuring
e.g. rotational invariance of the discrete slope [19]. Another option is to make use of the closely
related research on image derivative filters [8, 18]. More sophisticated approaches include the use
of grid structures different from the pixel grid (which is not discussed here), going as far as using
irregular grids and solving the system with finite element methods [6].
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Now we can rewrite the full discretized Euler Lagrange equation (26) in stencil notation:




0 0 0
0 −I2x(x+ hn)2 0
0 0 0





ui,j

+





0 0 0
0 −I2x(x+ hn)I2y(x+ hn) 0
0 0 0





vi,j

+ α2Sui,j
= bx(x)





0 0 0
0 −I2y(x+ hn)I2x(x+ hn) 0
0 0 0





ui,j

+





0 0 0
0 −I2y(x+ hn)2 0
0 0 0





vi,j

+ α2Svi,j = by(x) (29)

This notation can directly be transfered to a data structure for any set of Euler-Lagrange equations
to be solved.

4.2 Matrix Notation

For each unknown (in our case ui,j and vi,j) at each location (i, j) we can now define a stencil instance
based on equation (26), which corresponds to one equation in our large system of linear equations.
The number of unknowns of this system is the number of unknowns at each pixel location times
the number of pixel locations (one flow vector per pixel). For each equation one option is to group
only those unknowns which have non-zero weights as seen in equation (27), yielding a scalar product
between weight and unknown vector. Yet, our large linear system contains many more unknowns,
each of which is touched by at least one stencil, resulting in non-zero weights. We create this full
unknown vector û by lexicographically rearranging the two flow component images u(x) and v(x) to
one large vector starting with u0,0. This rewriting is defined by a bijection, so each vector element
ûk can trivially be mapped to a flow vector component ui,j or vi,j.

Now, at each pixel location (i, j) we compute a row weight vectorw(i, j) according to equation (29)
by transferring the stencil values to the corresponding unknown vector indices k in û. Those weights
not referring to any unknowns (bx(x) and by(x)) have already been moved to the right hand side
(rhs) of the linear equation. All weight vectors are stacked on top of each other, yielding the linear
system matrix:

A =







w0,0

w1,0
...






. (30)

All rhs values are moved into a vector b̂ of the same dimension and order as û. This yields a sparse
system of linear equations, Aû = b̂, which can be solved with any standard linear algebra library.
To better understand the data structure we observe the following properties:

• In case no unknown derivatives (such as ux or uxx) exist in the Euler Lagrange equations, only
the main diagonal would contain weights because they refer to the stencil centers (i, j). This
accounts for a trivial solution by diagonal matrix inversion and is only the case in purely local
methods.

• As the stencils are centered around the pixel locations and û is ordered lexicographically,
weights left and right of (i, j) are located next to each other in the weight vector as well.

• Hence, each line in a given stencil for a given unknown creates a small cluster of nonzero
elements in the weight vector.

• Stacking all equations to create A will therefore yield a sparse, banded matrix, which can be
efficiently stored in memory by adequate data structures.
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• The creation of A can be understood (and rewritten) as a convolution of the stencils with the
two-dimensional unknown image.

4.3 Boundary Conditions with Ghost Pixels

In the case of the commonly used Neumann boundary conditions it is assumed that the derivative
with respect to the unknowns at domain boundaries are zero. For Dirichlet conditions the derivatives
are manually set constants. Two ways exist to deal with such boundary conditions during system
matrix construction. One option is to modify the stencil weights whenever a stencil would touch
unknowns outside the image domain (e.g. applying the stencil at location (0, 0) would touch for
example (0,−1) which does not exist). This approach is error prone as it results in code creating
specific stencils at each of the four image boundaries, corners and inside regions of the image.

Alternatively, the concept of ghost pixels can be used. The idea is simple: we add one equation
(as well as a pair of associated dummy unknowns) for each boundary pixel location. The stencil for
these equations are all the first order derivative for the respective unknowns. This approach takes
slightly more memory but can be automatically added to arbitrary variational problems.

We have not implemented this more general numerical scheme using stencil notation and ghost
pixels within this paper. A complete, tested open source implementation of this framework including
examples for several other optical flow methods is discussed by Gottfried et. al [11].

5 Explanation of the Parameters

In this subsection we explain the parameters of the method and suggest reasonable default values.
The algorithm depends on five parameters: the regularization weight (α), the stopping criterion
threshold (ε), the downsampling factor (η), the number of scales (Nscales) and the number of outer
iterations(Nwarps).

• α is the regularization parameter. It determines the smoothness of the output. The bigger
this parameter is, the smoother the solutions we obtain. In the experiments, we observe that
a default value can be set to 15. This parameter has units of gray-level. It can be interpreted
as the expected standard deviation of the Gaussian noise present in the original images.

• ε is the stopping criterion threshold used in the numerical scheme, which is a trade-off between
precision and running time. A small value will yield more accurate solutions at the expense of
a slower convergence. Its default value can be set to 0.0001, which, in general, provides good
convergence rates with a low running time.

• η is the downsampling factor. It is used to downscale the original images in order to create
the pyramidal structure. Its value must be in the interval (0, 1). With η = 0.5, the images
are reduced to half their size in each dimension from one scale to the following. Higher values
may slightly improve the results but more scales are necessary to attain the same size of
displacements. In our experiments, a default value of 0.65 seems to provide a good performance.

• Nscales is used to create the pyramid of images. If the flow field is very small (about one
pixel), it can be set to 1. Otherwise, it should be set so that (1/η)N−1 is larger than the
expected size of the largest displacement. A value of Nscales = 5 with η = 0.5 allows the
method to estimate motions up to 16 pixels (if η = 0.95, then Nscales must be set to 56 to
get the same displacements). Nscales can be calculated with the following formula: Nscales :=
−log(max motion)/log(η)+1. In the experiments, its value is computed automatically so that
the initial scale corresponds to an image of size about 16.
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• Nwarps represents the number of outer iterations, or warps. This is a parameter that assures the
stability of the method. It also affects the running time, so it is a compromise between speed
and accuracy. In the experiments, we found that Nwarps = 5 provides a good performance.

Parameter Description Default value

α regularization parameter 15
ε stopping threshold 0.0001
η downsampling factor 0.65
Nscales number of scales Automatic
Nwarps number of outer iterations 5

6 Algorithm

6.1 Classical Horn–Schunck Method

The original Horn and Schunck method can be implemented by Algorithm 1.

Algorithm 1: Horn–Schunck optical flow

Input: I, α, ε
Output: h = (u, v)
Compute Ix, Iy, It1

u← 02

v ← 03

n← 04

while n < Nmaxiter and stopping criterion > ε do5

Compute ū, v̄ using equation (10)6

u← ū− Ix
Ixū+ Iyv̄ + It
α2 + I2x + I2y7

v ← v̄ − Iy
Ixū+ Iyv̄ + It
α2 + I2x + I2y8

Compute stopping criterion9

n← n+ 110

end11

The stopping criterion is calculated with the formula given in equation (12), and depends on
consecutive approximations, hn and hn+1.

6.2 Pyramidal Horn–Schunck Method

Typically, Algorithm 1 is suitable for the detection of small displacements. To detect large dis-
placements, we follow the multi-scale approach explained above. For this, we have implemented a
procedure that calculates the flow field in each scale and an algorithm that creates and handles the
pyramidal structure. The procedure updates iteratively the vector field h from the previous scale
approximation. The initial value for h is given by the enclosing multiscale procedure and it is zero at
the coarsest level. The procedure that calculates the optical flow in each scale is given in Algorithm 2.
The pyramidal structure is implemented in Algorithm 3. These algorithms are implemented using
float precision numbers.
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Procedure horn schunck optic flow(I1, I2,h, α, ε,Nmaxiter, Nwarps)

Compute I2x , I2y1

for n← 1 to Nwarps do2

Compute I2(x+ h), I2x(x+ h), I2y(x+ h) using bicubic interpolation3

un ← u4

vn ← v5

r ← 06

while r < Nmaxiter and stopping criterion > ε do7

Compute A(u),A(v) using equation (25)8

u← (1− w)u+ w
((I1−I2+I2xu

n−I2y (v−vn))I2x+α2A(u))
I22x+α29

v ← (1− w)v + w
((I1−I2−I2x (u−un)+I2yv

n)I2y+α2A(v))
I22y+α210

Compute the stopping criterion11

r ← r + 112

end13

end14

7 Examples

Figure 4: Color wheel used for representing the flow fields.

Let us start by showing the effect of the parameters with some simple examples. The simplest
possible example is a video sequence of the form

I(x, y, t) = ax+ by + ct, (31)

that is, the video is described globally by an affine function. In that case, the basic method gives an
accurate result in one iteration for α=0. This is due to the fact that an affine function is differentiated
accurately by any finite difference scheme, and the first iteration in that case amounts to

h =
−c

α2 + a2 + b2
(a, b), (32)

which, for α = 0 gives a motion in the direction of the ramp with the correct magnitude. When α
is smaller than the gradient of I, the first iteration provides already a good approximation of the
correct motion. In the experiment shown on figure 5, a correct displacement of 70 pixels is recovered
accurately on the first iteration.

A slightly more realistic setting is a smooth blob that moves 3 pixels to the right (figure 6). In that
case, the first iteration of the method gives a vector field that satisfies the optical flow constraint at
each point, but is not globally coherent due to the aperture problem. Successive iterations propagate
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Algorithm 3: Pyramidal Horn–Schunck optical flow

Input: I1, I2, α, ε, η,Nmaxiter, Nwarps, Nscales

Output: h
Normalize I1, I2 between 0 and 2551

Convolve I1, I2 with a Gaussian of σ := 0.82

for s← 0 to Nscales − 1 do3

Downscale images I1, I2 by η4

end5

hNscales−1 ← (0, 0)6

for s← Nscales − 1 to 0 step −1 do7

horn schunck optic flow(I1, I2,h
s, α, ε,Nmaxiter, Nwarps)8

if s > 0 then9

hs−1(x)← 1
η
hs(ηx)10

end11

end12

Figure 5: Ramp sequence. Left, the first image; Middle, the second image; Right, the optical flow.

the information towards the rest of the image until a constant vector field is achieved. Notice that
this constant vector field is effectively the minimum of the energy functional in that case, because
its energy vanishes.

Figure 6: Smooth blob moving 3 pixels to the right.

First, let us study the effect of the parameter α on the first iteration, depicted on figure 7. It only
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has an effect on regions of the input image where the gradient is smaller than α. In those regions, the
data term is not used (so, in the first iteration, the produced field is forced to vanish). As explained
in the original article by Horn and Schunck [12], the value of this parameter can be interpreted as the
expected error in the image gradient. For this synthetic experiment, the only error is the numeric
noise (of size about 10−15) due to the Fourier transforms which were used to compute the smoothing
in the frequency domain. This noise becomes clearly visible at α = 0.

Figure 7: Optical flows obtained for the blob sequence for Niter = 1 and different values of α: left
flow with α = 2.56; middle flow with α = 0.256; and right flow with α = 0.

The images in figure 8 show how the iterations propagate the correct flow information isotropically
all over the image. The black lines on these images are the level lines ‖∇h‖ = c for c = 1, 2, 3 and
the iterations run until 300.000.

Figure 8: Evolution of the flow field for increasing number of iterations (Niter).

These experiments show an interesting feature of the method: if the image and the required flow
are smooth enough, the correct solution can be recovered, regardless of the magnitude of the flow.
The smoothness of the image can be enforced by convolving it with a Gaussian.

To study the effect of the parameters, we run the algorithm for a range of values of each pa-
rameter, keeping the values of the others at their default values. We use three illustrative sequences
(figure 9): Baboon, where the flow is smooth and small, (a rotation); Book, where the flow has large
displacements and occlusions; and Urban2, from the Middlebury benchmark database.
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Baboon sequence Ground truth Optical flow

Book sequence Ground truth Optical flow

Urban2 sequence Ground truth Optical flow

Figure 9: Results for the Baboon, Book and Urban2 sequences. The level lines in the Baboon flows,
represent the flows whose magnitude is equal to one.
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The first graph in figure 10 shows that the iterations generally converge for ε around 0.001. For
smaller values, the running time increases without any improvement on the result. In these graphics,
we use the average end-point (EPE) and average angular (AAE) errors [2]. The second graphic in
figure 10 shows that the best value of the regularization parameter α depends on the input data.
For example, to recover a smooth motion it is good to set α = 20, and to find a motion with many
occlusions it is best to set α around 5.

Figure 10: Effect of the ε and α parameters. Notice that the optimal value for the parameter α
differs from image to image.

In the first column of figure 11, we see the effect of the scale step parameter. A conclusion that
can be drawn is that when the scale step is small enough (near 0.8), the optimizing effect of the warps
is less apparent. In the second column of the same figure, we observe that increasing the number of
warps per scale always improves the result, but there are diminishing returns due to the dramatic
rise of running times.

7.1 Middlebury Database

This subsection shows several tests with the sequences in the Middlebury benchmark database [2].
This database contains two types of data: those for which the ground truths are made public (called
“Test sequences”), and those for which the ground truths are not public (“Evaluation sequences”).
Other benchmarks [5, 15, 9] are not described in this article but can be tested through the demo
system.

7.1.1 Test Sequences

For the test sequences, we have run the algorithm with the same parameter set: α = 15, ε = 0.0001,
η = 0.65 and 5 warpings. We have also computed the optical flows adapting the value of α in order
to find a better result.

Figure 12 shows the 10th frame of the sequence, the ground truth, the solution with fixed param-
eters and the best solution we have found. These sequences are composed of more than two frames,
but the ground truth is only available for the 10th frame.

In table 1 we show the EPE and AAE for the Middlebury test sequences when fixed parameters
are used, which correspond to the optical flows in the third column of figure 12. In the fourth column
of the figure, we show the best optical flows found and its corresponding α. The numerical results
are shown in table 2.
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Figure 11: Effect of the scale step parameter (left column) and the number of warps (right column)
for the Baboon, Book and Urban2 sequences.

Table 1: EPE and AAE for default parameters using the Middlebury test sequences.
Dimetrodon Grove2 Grove3 Hydrangea Rubberwhale Urban2 Urban3 Venus

EPE 0.151 0.219 0.847 0.327 0.241 0.561 1.071 0.451
AAE 2.768o 3.105o 7.586o 3.427o 7.913o 5.086o 10.614o 7.594o
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Frame 10 Ground truth Optical flow Best optical flow

Dimetrodon
α = 13

Grove2
α = 15

Grove3
α = 14

Hydrangea
α = 17

RubberWhale
α = 11

Urban2
α = 15

Urban3
α = 9

Venus
α = 9

Figure 12: Middlebury test sequences.

Table 2: EPE and AAE for the best optical flows using the Middlebury test sequences.
Dimetrodon Grove2 Grove3 Hydrangea Rubberwhale Urban2 Urban3 Venus

EPE 0.150 0.219 0.842 0.327 0.235 0.561 0.941 0.407
AAE 2.767o 3.105o 7.608o 3.364o 7.684o 5.086o 8.830o 6.723o
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7.1.2 Evaluation Sequences

Finally, in figure 13 we show several examples using the Middlebury evaluation sequences. We have
used the following parameter set: α = 15, ε = 0.0001, η = 0.65 and 5 warpings.

Army Mequon Schefflera Wooden

Grove Urban Yosemite Teddy

Figure 13: Middlebury evaluation sequences.
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