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Abstract

In this work, we describe an implementation of the variational method proposed by Brox et
al. in 2004, which yields accurate optical flows with low running times. It has several benefits
with respect to the method of Horn and Schunck: it is more robust to the presence of outliers,
produces piecewise-smooth flow fields and can cope with constant brightness changes. This
method relies on the brightness and gradient constancy assumptions, using the information of
the image intensities and the image gradients to find correspondences. It also generalizes the
use of continuous L1 functionals, which help mitigate the effect of outliers and create a Total
Variation (TV) regularization. Additionally, it introduces a simple temporal regularization
scheme that enforces a continuous temporal coherence of the flow fields.

Source Code

The source code, the code documentation, and the online demo are accessible at the IPOL web
page of this article1. In this page an implementation is available for download. This file contains
two directories: one for the spatial method and another for the temporal method. The spatial
method is suitable for general image sequences, while the temporal method should be used when
the flow fields are known to be very continuous.

Keywords: optical flow, motion estimation, variational techniques, PDE

1 Introduction

The estimation of accurate motion fields is an important challenge in image processing and computer
vision. Among the most accurate methods in the literature, variational approaches have proven an
outstanding performance with respect to other strategies. Starting from the first variational model
of Horn and Schunck [5], we find an extensive literature on such methods.

Brox et al. [3] proposed a technique that is based on differentiable L1 functionals. This kind of
functionals allows to create piecewise-smooth flow fields. A more efficient TV-L1 optical flow method

1https://doi.org/10.5201/ipol.2013.21
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was presented in Zach et al. [11], which has also been implemented on an IPOL article [9]. The
benefit of the Brox et al. method is that it keeps a better spatial coherence between both unknowns
of the optical flow, at the expense of creating rounded effects at flow discontinuities. The Zach et
al. method creates sharper discontinuities, but it strongly suffers from the staircase effect of pure
TV schemes. Rounded effects at motion discontinuities can be mitigated with the use of decreasing
functions, like in the work of Wedel et al. [10]. A different alternative is to use image-based anisotropic
schemes, like in the work of Álvarez et al. [1], that allows respecting the image discontinuities.

In this work, we implement the spatial and temporal methods as in the original proposal. Both
methods are very similar, with the main difference being that the temporal method includes a
continuous smoothing scheme in the temporal dimension. This is suitable when the optical flow
functions are smooth. Nevertheless, the flow discontinuities are typically degraded by the temporal
regularizer. In the presence of large displacements, it is better to use a nonlinear temporal scheme,
like in Salgado and Sánchez [8].

Given a sequence of images, I : Ω ⊂ R
3 → R, of gray level values in space and time, x =

(x, y, t)T ∈ Ω, the optical flow is defined as a dense mapping, w = (u(x), v(x), 1)T , between the
pixels of every two consecutive images. The scalar fields u(x) and v(x) are the x and y displacements
in the 3D volume, respectively. Each frame is considered to be at a distance 1 in time from the
previous and following frames.

The spatial gradient of the image is given by ∇I = (Ix, Iy)
T , with Ix, Iy the first order derivatives

in x and y. The gradient of the optical flow is defined as

∇u =

{

(ux, uy)
T ,

(ux, uy, ut)
T .

(1)

The first spatial gradient is used in the Spatial method, where the optical flow is computed between
two frames. The second spatio-temporal gradient is used in the Temporal method. Since the abstract
framework is identical in both cases, we keep the same notation for both methods. This distinction
appears later in the numerical scheme (section 2).

We suppose that the pixel intensities remain constant along the trajectories of the moving par-
ticles. This is normally referred to as the brightness constancy assumption, which in a continuous
setting yields the optical flow constraint equation, proposed by Horn and Schunck [5] (see also the
related IPOL implementation [6]). In general, we suppose that our problem is not continuous, so
that the brightness constancy assumption can be written in its nonlinear form as

I(x+w)− I(x) = 0. (2)

The following energy model is a slight variation of the one proposed by Brox et al. in 2004 [3]:

E(w) =

∫

Ω

Ψ
(

(I(x+w)− I(x))2
)

dx+ γ

∫

Ω

Ψ
(

|∇I(x+w)−∇I(x)|2
)

dx

+ α

∫

Ω

Ψ
(

|∇u|2 + |∇v|2
)

dx. (3)

with Ψ(s2) =
√
s2 + ǫ2 and ǫ := 0.001 a small constant. In the original proposal [3], the brightness

and gradient constancy terms (first two terms) were included inside the same Ψ function. As proposed
by Bruhn and Weickert [4], the separation of these two assumptions, like in equation (3), is better
justified. In this sense, our model is more similar to the one by Bruhn and Weickert [4].

The last term corresponds to the regularizing strategy, which is a differentiable approximation of
the TV scheme. The method of Zach et al. [11], or Wedel et al. [10], uses a pure TV scheme and
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separates both components of the optical flow. Although both approaches rely on L1 functionals,
they provide very different results, as can be seen in the IPOL article of Sánchez et al. [9].

The minimum of the previous energy model can be found by solving the associated Euler-Lagrange
equations, given by

0 =Ψ′
D · (I(x+w)− I(x)) · Ix(x+w)

+ γΨ′
G · ((Ix(x+w)− Ix(x)) · Ixx(x+w) + (Iy(x+w)− Iy(x)) · Ixy(x+w))

− α div (Ψ′
S · ∇u) ,

0 =Ψ′
D · (I(x+w)− I(x)) · Iy(x+w)

+ γΨ′
G · ((Ix(x+w)− Ix(x)) · Ixy(x+w) + (Iy(x+w)− Iy(x)) · Iyy(x+w))

− α div(Ψ′
S · ∇v), (4)

with Ψ′(s2) = 1

2
√
s2+ǫ2

. In order to simplify the equations, we use the following notation:

Ψ′
D :=Ψ′ ((I(x+w)− I(x))2

)

,

Ψ′
G :=Ψ′ (|∇I(x+w)−∇I(x)|2

)

,

Ψ′
S :=Ψ′ (|∇u|2 + |∇v|2

)

. (5)

Equation (4) cannot be solved easily because it is nonlinear in expressions like I(x +w). To avoid
these nonlinearities, we use first order Taylor expansions. We introduce an index, k, so that our
current unknown, wk+1, depends on a previous constant value, wk.

I(x+wk+1) ≈I(x+wk) + Ix(x+wk)duk + Iy(x+wk)dvk

Ix(x+wk+1) ≈Ix(x+wk) + Ixx(x+wk)duk + Ixy(x+wk)dvk

Iy(x+wk+1) ≈Iy(x+wk) + Ixy(x+wk)duk + Iyy(x+wk)dvk, (6)

with wk = (uk, vk)T , duk = uk+1−uk and dvk = vk+1−vk. We assume that wk is a close approxima-
tion to our unknown wk+1. The original method, and our implementation, works directly with the
motion increments (duk, dvk). The optical flow is incrementally updated from the motion increment
as uk+1 = uk + duk, vk+1 = vk + dvk. This is the strategy followed in other works like, for instance,
in Mémin and Pérez [7]. A different alternative is to compute the full optical flow directly, like in
the work by Álvarez et al. [1].

There still remains another nonlinearity due to the Ψ′ functions. Thus, our numerical scheme
should be enclosed in two fixed point iterations: the outer iterations, k, related with the stability
of the Taylor expansions; and the inner iterations, l, that account for the nonlinearities of the Ψ′

functions. Therefore, the system of equations reads as

0 =(Ψ′
D)

k,l ·
(

I(y) + Ix(y)du
k,l+1 + Iy(y)dv

k,l+1 − I(x)
)

· Ix(y)
+ γ (Ψ′

G)
k,l ·

((

Ix(y) + Ixx(y)du
k,l+1 + Ixy(y)dv

k,l+1 − Ix(x)
)

· Ixx(y)
+

(

Iy(y) + Ixy(y)du
k,l+1 + Iyy(y)dv

k,l+1 − Iy(x)
)

· Ixy(yk,l)
)

− α div
(

(Ψ′
S)

k,l · ∇(uk,l + duk,l+1)
)

0 =(Ψ′
D)

k,l ·
(

I(y) + Ix(y)du
k,l+1 + Iy(y)dv

k,l+1 − I(x)
)

· Ix(y)
+ γ (Ψ′

G)
k,l ·

((

Ix(y) + Ixx(y)du
k,l+1 + Ixy(y)dv

k,l+1 − Ix(x)
)

· Ixx(y)
+

(

Iy(y) + Ixy(y)du
k,l+1 + Iyy(y)dv

k,l+1 − Iy(x)
)

· Ixy(yk,l)
)

− α div
(

(Ψ′
S)

k,l · ∇(vk,l + dvk,l+1)
)

, (7)

with y = x+wk,l.
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2 Numerical Scheme

The system of equations (7) can be efficiently solved using the SOR method. The unknowns duk,l+1

and dvk,l+1, in pixel (i, j, k), are expressed in terms of the remaining terms, and their values are
iteratively updated until the method converges to a steady state solution. In this sense, we introduce
an additional fixed point iteration scheme, s, for the SOR method.

Partial derivatives are approximated using central differences. The discretization of the di-
vergence is separated in three variables: div

(

(Ψ′
S)

k,l · ∇(uk,l + duk,l+1)
)

= div
(

(Ψ′
S)

k,l · ∇uk,l
)

+

div
(

(Ψ′
S)

k,l · ∇duk,l+1
)

≈ div u + (div du − div d · duk,l+1

i,j,k ), where div u discretizes the first diver-
gence term, div d and div du correspond to the second term. In the second term, div du stands for
the values corresponding to the neighbors of du, and div d stands for the coefficients accompanying
du at the current pixel, duk,l+1

i,j,k . These variables are given by the following expressions:

div u :=
(Ψ′

S)i+1,j,k + (Ψ′
S)

k,l
i,j,k

2

(

uk,l
i+1,j,k − uk,l

i,j,k

)

+
(Ψ′

S)i−1,j,k + (Ψ′
S)

k,l
i,j,k

2

(

uk,l
i−1,j,k − uk,l

i,j,k

)

+

(Ψ′
S)i,j+1,k + (Ψ′

S)
k,l
i,j,k

2

(

uk,l
i,j+1,k − uk,l

i,j,k

)

+
(Ψ′

S)i,j−1,k + (Ψ′
S)

k,l
i,j,k

2

(

uk,l
i,j−1,k − uk,l

i,j,k

)

+

(Ψ ′
S )i ,j ,k+1 + (Ψ ′

S )
k ,l
i ,j ,k

2

(

uk ,l
i ,j ,k+1 − uk ,l

i ,j ,k

)

+
(Ψ ′

S )i ,j ,k−1 + (Ψ ′
S )

k ,l
i ,j ,k

2

(

uk ,l
i ,j ,k−1 − uk ,l

i ,j ,k

)

. (8)

div du :=
(Ψ′

S)i+1,j,k + (Ψ′
S)

k,l
i,j,k

2
duk,l+1

i+1,j,k +
(Ψ′

S)i−1,j,k + (Ψ′
S)

k,l
i,j,k

2
duk,l+1

i−1,j,k+

(Ψ′
S)i,j+1,k + (Ψ′

S)
k,l
i,j,k

2
duk,l+1

i,j+1,k +
(Ψ′

S)i,j−1,k + (Ψ′
S)

k,l
i,j,k

2
duk,l+1

i,j−1,k+

(Ψ ′
S )i ,j ,k+1 + (Ψ ′

S )
k ,l
i ,j ,k

2
duk ,l+1

i ,j ,k+1 +
(Ψ ′

S )i ,j ,k−1 + (Ψ ′
S )

k ,l
i ,j ,k

2
duk ,l+1

i ,j ,k−1 . (9)

div d :=
(Ψ′

S)i+1,j,k + (Ψ′
S)

k,l
i,j,k

2
+

(Ψ′
S)i−1,j,k + (Ψ′

S)
k,l
i,j,k

2
+

(Ψ′
S)i,j+1,k + (Ψ′

S)
k,l
i,j,k

2
+

(Ψ′
S)i,j−1,k + (Ψ′

S)
k,l
i,j,k

2
+

(Ψ ′
S )i ,j ,k+1 + (Ψ ′

S )
k ,l
i ,j ,k

2
+

(Ψ ′
S )i ,j ,k−1 + (Ψ ′

S )
k ,l
i ,j ,k

2
. (10)

These expressions are the same for the other component of the optical flow, changing u by v. The
last two terms of equations (8), (9) and (10), in italics, correspond to the temporal regularization of
the optical flow. This is implemented in the Temporal method and removed in the Spatial one. The
finite difference scheme in the temporal method is computed using information from the previous,
k − 1, and following, k + 1, frames. If we define y = x+wk,l and separate the parts of the equation
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that remain constant during the SOR iterations, we may define the following variables:

Au :=− (Ψ′
D)

k,l (I(y)− I(x)) Ix(y) + α div u,

− γ (Ψ′
G)

k,l ((Ix(y)− Ix(x)) Ixx(y) + (Iy(y)− Iy(x)) Ixy(y)) ,

Av :=− (Ψ′
D)

k,l (I(y)− I(x)) Iy(y) + α div v

− γ (Ψ′
G)

k,l ((Ix(y)− Ix(x)) Ixy(y) + (Iy(y)− Iy(x)) Iyy(y)) ,

Du :=(Ψ′
D)

k,lI2x(y) + γ (Ψ′
G)

k,l
(

I2xx(y) + I2xy(y)
)

+ α div d,

Dv :=(Ψ′
D)

k,lI2y (y) + γ (Ψ′
G)

k,l
(

I2yy(y) + I2xy(y)
)

+ α div d,

D :=(Ψ′
D)

k,lIx(y)Iy(y) + γ (Ψ′
G)

k,l (Ixx(y) + Iyy(y)) Ixy(y). (11)

In order to compute expressions like I(x+wk,l), we use bicubic interpolation. Putting all together,
we arrive to the SOR scheme, which is given by

duk,l,s+1 :=
(1− w) duk,l,s + w

(

Au−D · dvk,l,s+1 + α div du
)

Du
,

dvk,l,s+1 :=
(1− w) dvk,l,s + w

(

Av −D · duk,l,s+1 + α div dv
)

Dv
, (12)

with w ∈ (0, 2) the SOR relaxation parameter. In our implementation, we choose w = 1.9 by default.
This numerical approximation is calculated until the method converges to a steady state solution

or it exceeds a maximum number of iterations. The stopping criterion is

1

N

∑

i,j,k

(

dus+1

i.j,k − dus
i.j,k

)2
+
(

dvs+1

i.j,k − dvsi.j,k
)2

< ε2, (13)

with N the number of pixels in all frames and ε the stopping criterion threshold. The iterative
process stops when condition (13) is true or a maximum number of iterations is reached. This is
different from the original article [3], where a fixed number of SOR iterations is used. Once it has
converged, we go to the next inner iteration, l + 1, and restart the variables in (11).

In our implementation, we make use of the OpenMP library to enable multiple threads during
the computations. This allows us to take advantage of multiple cores, accelerating the run time of
the algorithm. Nevertheless, due to the nature of the SOR scheme, it is probable that the results are
slightly different, even when the process is launched with the same number of processors.

3 Pyramidal Structure

In order to estimate large displacements, we embed the optical flow method in a pyramidal structure.
We follow the same strategy presented in a previous IPOL article [6] and reproduce here the basic
ideas.

Our algorithm creates a pyramid of down-sampled images. The pyramid is created by reducing
the images by a factor η ∈ (0, 1). Before downsampling, the images are smoothed with a Gaussian
kernel of a standard deviation that depends on η. For a set of scales s = 0, 1, . . . , Nscales − 1, the
pyramid of images is built as

Is(ηx) := Gσ ∗ Is−1(x). (14)

After the convolution, the images are sampled using bicubic interpolation. The value of σ depends
on η and is calculated as

σ(η) := σ0

√

η−2 − 1, with σ0 := 0.6. (15)
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Then, starting at the coarsest scale, the system of equations is solved in each scale to get succes-
sive approximations of the optical flow. Every intermediate solution is used as initialization in the
following scale. To transfer the values from a coarser scale, the flow field is updated as

us−1(x) :=
1

η
us(ηx)

vs−1(x) :=
1

η
vs(ηx) (16)

4 Parameters of the Method

This method depends on the parameters given in table 1. These parameters are: α and γ, which
define the smoothness and the preservation of gradient structures in the optical flow, respectively;
the parameters for the pyramidal scheme, Nscales and η, that stand for the number of scales and the
downsampling factor; and the parameters for the numerical scheme, composed of the inner and outer
iterations, and the stopping criterion threshold (ε).

Table 1: Parameters of the method
Parameter Explanation

α Regularization parameter. It determines the smoothness of the output.
The bigger this parameter is, the smoother the solutions we obtain.

γ Parameter associated with the gradient constancy term in equation (3).
Nscales Number of scales in the pyramidal structure. If the flow field is very

small (about one pixel), it can be set to 1. Otherwise, it should be set
so that (1/η)N−1 is larger than the expected size of the largest displace-
ment (see the previous article by Meinhardt-Llopis and Sánchez [6] for
more details).

η Downsampling factor. It is used to downscale the original images in
order to create the pyramidal structure. Its value must be in the
interval (0, 1). With η = 0.5, the images are reduced to half their size
in each dimension from one scale to the following.

ε Stopping criterion threshold. It is the threshold used to stop the SOR
iterations, given in equation (13).

inner iterations Number of inner iterations in the numerical scheme. It corresponds to
index l in equation (12).

outer iterations Number of outer iterations in the numerical scheme. It corresponds to
index k in equation (12).

5 Algorithm

Next, we describe the algorithm that implements the numerical scheme in equation (12). The algo-
rithm takes a set of gray level images as input data and computes the optical flows between every
pair of consecutive images. The number of calculated optical flows is one less than the number of
input images. We separate the algorithm in two modules: one procedure that computes the optical
flows in each scale, and the main algorithm that is in charge of handling the pyramidal structure.

In the procedure, MAXITER is the maximum number of iterations allowed for the convergence
of the SOR method. Its value is constant and is high enough to let the method converge. In the
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Procedure brox optic flow(I, u, v, α, γ, ε, inner iterations, outer iterations)

Compute Ix, Iy1

Compute Ixx, Iyy, Ixy2

for no← 0 to outer iterations− 1 do3

Compute I(x+w), Ix(x+w), Iy(x+w) using bicubic interpolation4

Compute Ixx(x+w), Ixy(x+w), Iyy(x+w) using bicubic interpolation5

Compute ux, uy, vx, vy6

Compute Ψ′
S using equation (5)7

Compute div u, div v, div d using equations (8) and (10)8

du← 09

dv ← 010

for ni← 0 to inner iterations− 1 do11

Compute Ψ′
D,Ψ

′
G using equation (5)12

Compute Au,Av,Du,Dv,D using equation (11)13

while error > ε and nsor < MAXITER do14

du← (1− ω) du+ ω (Au−Ddv + α div du) /Du15

dv ← (1− ω) dv + ω (Av −Ddu+ α div dv) /Dv16

Compute error with equation (13)17

nsor ← nsor + 118

end19

end20

u← u+ du21

v ← v + dv22

end23

Algorithm 2: Pyramidal structure management

Input: I, u, v, α, γ,Nscales, η, ε, inner iterations, outer iterations
Output: u, v
Normalize images between 0 and 2551

Convolve the images with a Gaussian of σ = 0.82

Create the pyramid of images Is using η (with s = 0, . . . , Nscales − 1)3

for s← Nscales − 1 to 0 do4

brox optic flow(I, us, vs, α, γ, inner iterations, outer iterations)5

if s > 0 then6

us−1(x) := 1

η
us(ηx)7

vs−1(x) := 1

η
vs(ηx)8

end9

end10
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source code, the SOR loop is unrolled in order to avoid boundary tests when computing div(duk+1)
and div(dvk+1). This means that the first and last columns and rows, and the four corners of the
images, are computed separately.

The procedure for the spatial and temporal methods is basically the same, except for the com-
putation of the divergence terms. They differ in the calculation of variables Ψ′

S, div u, div v and
div d.

In theory, as we have seen before, the method needs three levels of iterations. Nevertheless, we
have found in the experiments that the inner iterations can be integrated in the outer iterations
without a loss of precision. For this reason we have decided to estimate the values of Ψ′

S, div u,
div v and div d inside the outer iterations. We prefer this option in order to avoid the estimation
of ∇du. The other computations, at the beginning of the inner loop, may also be integrated in the
outer loop.

The main process is given in algorithm 2. In order to turn the method more stable to the input
parameters, it first normalizes the images between 0 and 255; it convolves the finest scale images
with a small Gaussian kernel; then, it creates the pyramidal structure for the whole sequence; and,
finally, it goes over the set of scales computing the optical flows at different resolutions.

6 Experimental Analysis

In this section, we examine the behavior of the method for some standard image sequences. We have
used the Yosemite and Yosemite with Clouds sequences, which have also been analyzed by Brox et al.
in 2004 [3]. On the other hand, we use the RubberWhale and Urban2 sequences from the Middlebury
benchmark database2 [2]. The results are shown in figure 2 (the color scheme used to represent the
orientation and magnitude of optical flows is displayed in figure 1). In these experiments, α and
γ are adapted to get the best results for each sequence. The values for the remaining parameters
are: η = 0.75, ε = 0.0001, inner iterations = 1, outer iterations = 38, and Nscales is automatically
calculated so that the coarsest scale works with images around 16× 16 pixels.

Figure 1: Color scheme used to represent the orientation and magnitude of optical flows.

In general, the method respects the motion discontinuities and creates piecewise continuous flow
fields. This is due to the L1 functionals and the TV regularization scheme. In the Yosemite with
Clouds sequence, the sky motion is translational (2 pixels to the right). Although there are illumi-
nation changes in the clouds, the solution obtained by the method is very accurate. This is due to
the gradient constancy term. Note that γ is larger than in Yosemite. This shows that the method
can correctly handle constant brightness shifts, provided that the gradient does not vary.

Tables 2 and 3 show the Average Angular Error (AAE) and Average End-point Error (EPE)
for the Spatial and Temporal methods, respectively. The AAE and EPE are calculated as in the

2http://vision.middlebury.edu/flow/
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Sequence Ground truth Spatial Temporal

Yosemite

Yosemite with Clouds

RubberWhale

Urban2

Figure 2: Results for the Yosemite, Yosemite with Clouds, RubberWhale and Urban2 sequences.
First column shows frame 6 for Yosemite and Yosemite with Clouds, and frame 10 for RubberWhale
and Urban2. Second column shows the corresponding ground truth optical flows. Third and fourth
columns show the results for the Spatial and Temporal methods, respectively.

α = 2 α = 7 α = 15 α = 30

Figure 3: Results for the Urban2 sequence using the temporal method.
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Middlebury benchmarks [2]. We observe that the results are similar to the results presented in the
original article [3] for the Yosemite sequences. In these cases, the temporal method provides better
results than the spatial method. The flow in these sequences is very continuous, so it clearly benefits
from the spatio-temporal continuous regularization term.

Table 2: AAE and EPE for the Spatial method (third column of figure 2).
Sequence α γ AAE EPE
Yosemite 50 2 1.587o 0.075
Yosemite with Clouds 145 15 2.367o 0.101
RubberWhale 185 60 3.467o 0.103
Urban2 30 2 2.803o 0.395

Table 3: AAE and EPE for the Temporal method (fourth column of figure 2).
Sequence α γ AAE EPE
Yosemite 27 2 1.297o 0.061
Yosemite with Clouds 93 15 1.927o 0.079
RubberWhale 91 60 4.798o 0.152
Urban2 2 2 5.823o 0.560

On the other hand, we observe that the results for RubberWhale and Urban2, in the temporal
method, are worse than in the spatial method. Although the RubberWhale sequence presents piece-
wise continuous motion fields, it contains many flow discontinuities and different motion directions.
In the case of Urban2, the maximum motion is about 22, so the continuous temporal regularization
strongly deteriorates the results. Figure 3 shows different results for Urban2, using different α values
with the temporal method. We observe that the temporal method strongly deteriorates the discon-
tinuities of the optical flows. This shows the negative effect of the continuous temporal smoothing
scheme: it is necessary to use a very small α to obtain results similar to the spatial method. In these
cases, it is better to use a nonlinear temporal smoothing scheme, like in [8].

Next, we evaluate the evolution of the AAE and EPE with respect to α. We compare the spatial
and temporal methods in figure 4, using the same parameters as in tables 2 and 3, and let α vary. In
the Yosemite sequences (top row), the temporal method improves the results of the spatial method:
the AAE and EPE attain smaller errors for smaller values of α. This comes from the fact that the
regularization is more important with the temporal scheme, thus a smaller value of α is needed for
the same type of smoothing. We also note that the temporal results degrade faster for increasing
values of α. It crosses the spatial curve and then diverges. This may occur because the temporal
regularization tends to spoil faster the flow discontinuities.

Another interesting behavior to note about the best AAE and best EPE is that they are obtained
at different values of α for the same sequence. The best AAE is obtained with a larger α. This is
justified because a larger α creates smoother flows, which may be better aligned with the directions
of the ground truth, but with smaller magnitudes. In the RubberWhale and Urban2 sequences
(bottom row of figure 4), we observe that the temporal method always provides worse results than
the spatial method. In these sequences the presence of flow discontinuities and large displacements is
more important, therefore the continuous temporal scheme is not suitable in these cases. Note that
the temporal curve for Urban2 depicts a strong deterioration for increasing values of α.

In figure 5, we compare the spatial and temporal methods frame by frame. Both graphics depict
the AAE and EPE in every frame for the Yosemite with Clouds sequence. Most of the optical flow
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Figure 4: First row, the AAE and EPE for Yosemite and Yosemite with Clouds sequences; second
row, the AAE and EPE for RubberWhale and Urban2.
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Yosemite with Clouds sequence in every frame.
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errors in the temporal method remain below the spatial errors. When α is big, α = 350, the errors
in the temporal method exceed the spatial ones.

We now study the behavior of the method with respect to the η parameter. Using the best α
and γ values from tables 2 and 3, we show the error evolution with respect to different values of η.
This is shown in table 4. Note that increasing the value of η and Nscales, the AAE and EPE do not
significantly improve.

Table 4: AAE and EPE results for different values of η and Nscales

Spatial Temporal

Sequence η Nscales AAE EPE AAE EPE

Yosemite

0.1 2 1.602o 0.076 1.314o 0.062
0.25 2 1.605o 0.076 1.310o 0.062
0.5 4 1.594o 0.075 1.303o 0.061
0.65 7 1.589o 0.075 1.300o 0.061
0.75 10 1.586o 0.075 1.297o 0.061
0.85 17 1.586o 0.075 1.297o 0.061
0.95 54 1.586o 0.075 1.297o 0.061

Yosemite with Clouds

0.1 2 2.461o 0.101 2.182o 0.091
0.25 2 2.382o 0.099 2.017o 0.083
0.5 4 2.372o 0.101 1.944o 0.080
0.65 5 2.359o 0.100 1.933o 0.079
0.75 10 2.367o 0.100 1.927o 0.079
0.85 17 2.379o 0.101 1.922o 0.079
0.95 54 2.393o 0.103 1.931o 0.079

RubberWhale

0.1 2 3.779o 0.117 5.725o 0.185
0.25 3 3.616o 0.109 5.091o 0.162
0.5 5 3.491o 0.104 4.919o 0.155
0.65 8 3.491o 0.104 4.847o 0.153
0.75 12 3.467o 0.103 4.798o 0.152
0.85 20 3.458o 0.103 4.831o 0.154
0.95 63 3.426o 0.102 4.840o 0.159

Urban2

0.1 2 3.316o 0.570 7.592o 0.910
0.25 3 2.873o 0.426 6.110o 0.698
0.5 5 2.836o 0.408 5.787o 0.614
0.65 8 2.823o 0.392 5.931o 0.603
0.75 12 2.803o 0.395 5.823o 0.560
0.85 21 2.790o 0.385 6.043o 0.626
0.95 67 2.784o 0.377 6.170o 0.623

The Yosemite sequences are hardly improved with η. Even for values of η = 0.1 the results are
satisfactory. This means that only using two scales, and let the coarsest scale start with a very small
image size, the method can find a very good solution. This is different to the results presented in
the original article [3], where the best solutions were obtained for η = 0.95, with a large number
of scales and a lot of inner and outer iterations. In that work, the differences with respect to the
downsampling factor were important. The RubberWhale and Urban2 sequences present a similar
behavior, but the results are more noticeable for η = 0.1 and η = 0.25.

In figures 6, 7 and 8, we show the evolution of AAE with respect to α and γ. Note that the graphic
is very stable for a large range of values, especially for Yosemite with Clouds and RubberWhale. We
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do not include Yosemite’s graphic because it is very similar to Yosemite with Clouds. The red curve
shows the best error values for every pair (α, γ). This curve approximates a straight line in the α−γ
plane. For instance, in the Yosemite sequence the relation is α ≃ 20γ, in Yosemite with Clouds
is α ≃ 10γ, in RubberWhale α ≃ 3γ and in Urban2 α ≃ 11γ. If we increase the values of these
parameters respecting these relations, the errors still remain low.
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Figure 6: Yosemite with Clouds. Evolution of AAE with respect to α and γ.
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Figure 7: RubberWhale. Evolution of AAE with respect to α and γ.

Finally, a green dot represents the minimum AAE in these graphics. It is interesting to note
that in the RubberWhale sequence we get slightly better results for even higher values of α and γ,
although the improvements are hardly appreciable.

In figures 9, 10 and 11 we show the AAE evolution with respect to the inner iterations and
outer iterations parameters. These graphics show that the method is very stable and converges very

264



Robust Optical Flow Estimation

 30

 60

 90

 120

 150

 180

 210

 240

 270

 300  3  6  9  12  15  18  21  24  27  30  33  36  39  42  45  48

 0

 10

 20

 30

 40

 50

 60

A
v
e
ra

g
e
 A

n
g
u
la

r 
E

rr
o
r

 AAE Evolution (Urban2) 

AAE   

α

γ

A
v
e
ra

g
e
 A

n
g
u
la

r 
E

rr
o
r

Minimum AAE Curve   

   Minimum AAE  ●   

Figure 8: Urban2. Evolution of AAE with respect to α and γ.

quickly to the final solution. We also show several color points for the minimum AAE and the values
with an error below 0.5%, 1% and 3% with respect to the minimum. The last three values were
calculated for the smallest inner iterations × outer iterations relation, i.e., the minimum number
of total iterations.
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Figure 9: Yosemite with Clouds. Evolution of AAE with respect to inner iterations and
outer iterations.

After these graphics, we may conclude that the outer iterations parameter is more relevant in
the convergence of the method. Normally, for inner iterations = 1 we obtain very good accuracies;
therefore, we may suppose that the inner iterations in these experiments can be integrated in the
outer iterations without a loss of precision.
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Figure 10: RubberWhale. Evolution of AAE with respect to inner iterations and outer iterations.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50  3  6  9  12  15  18  21  24  27  30  33  36  39  42  45  48

 2

 2.5

 3

 3.5

 4

 4.5

 5

A
v
e
ra

g
e
 A

n
g
u
la

r 
E

rr
o
r

 AAE Convergence (Urban2) 

AAE   

Inner Iterations

Outer Iterations

A
v
e
ra

g
e
 A

n
g
u
la

r 
E

rr
o
r

 AAE Convergence (Urban2) 

Error < 3%  ● 

 AAE Convergence (Urban2) 

Error < 1%  ● 

 AAE Convergence (Urban2) 

Error < 0.5%  ● 

 AAE Convergence (Urban2) 

   Minimum AAE  ●   

Figure 11: Urban2. Evolution of AAE with respect to inner iterations and outer iterations.
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7 Examples

In this section, we show the results for the sequences in the Middlebury benchmark database [2].
Figure 12 depicts the results for all the tests sequences in the database, except Dimetrodon and
Venus for the temporal method. This is because there are not enough images to use the method
properly. Table 5 show the AAE and EPE obtained for α = 18 and γ = 7 in the spatial method,
and α = 2.5, γ = 2 in the temporal method. In both cases, we have set the following parameters:
η = 0.75, ε = 0.0001, inner iterations = 1 and outer iterations = 15. Nscales is automatically
calculated so that the coarsest scale works with images around 16 x 16 pixels.

Table 5: AAE and EPE for the Middlebury test sequences.
Error Grove2 Grove3 Hydrangea RubberWhale Urban2 Urban3 Dimetrodon Venus

Spat. AAE 2.455o 6.481o 2.442o 3.696o 2.561o 4.804o 1.663o 4.599o

Spat. EPE 0.174 0.693 0.200 0.111 0.368 0.544 0.086 0.292

Temp. AAE 2.569o 7.031o 4.468o 5.435o 5.90o3 6.681o - -
Temp. EPE 0.184 0.796 0.346 0.168 0.628 0.784 - -

Finally, in figure 13 we show the results for the evaluation sequences using the same parameter
configuration (spatial method).

8 Video

This is an example of applying the spatial optical flow method, frame by frame, to a video: Karl-
Wilhelm-Straβe3 (21,1 MB). The original video of this traffic sequence can be found at the Institut
für Algorithmen und Kognitive Systeme4 web pages.
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Sequence Ground truth Spatial method Temporal method

Figure 12: Results for the Middlebury test sequences.
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Sequence Optical flow Sequence Optical flow

Figure 13: Results for the Middlebury evaluation sequences.
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[1] Luis Álvarez, Joachim Weickert, and Javier Sánchez. Reliable estimation of dense optical flow
fields with large displacements. International Journal of Computer Vision, 39(1):41–56, 2000.
http://dx.doi.org/10.1023/A:1008170101536.

[2] Simon Baker, Daniel Scharstein, J. P. Lewis, Stefan Roth, Michael J. Black, and Richard Szeliski.
A database and evaluation methodology for optical flow. In International Conference on Com-
puter Vision, pages 1–8, 2007. http://dx.doi.org/10.1109/ICCV.2007.4408903.

[3] Thomas Brox, Andrés Bruhn, Nils Papenberg, and Joachim Weickert. High accuracy optical
flow estimation based on a theory for warping. In T. Pajdla and J. Matas, editors, European
Conference on Computer Vision (ECCV), volume 3024 of Lecture Notes in Computer Science,
pages 25–36, Prague, Czech Republic, May 2004. Springer. http://dx.doi.org/10.1007/

978-3-540-24673-2_3.

[4] Andrés Bruhn and Joachim Weickert. Towards ultimate motion estimation: Combining highest
accuracy with real-time performance. In International Conference on Computer Vision (ICCV),
volume 1, pages 749–755, Washington, DC, USA, October 2005. IEEE Computer Society. http:
//dx.doi.org/10.1109/ICCV.2005.240.

[5] Berthold K. P. Horn and Brian G. Schunck. Determining optical flow. Artificial Intelligence,
17:185–203, 1981. http://dx.doi.org/10.1016/0004-3702(81)90024-2.
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