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Abstract

Gaussian mixture is a powerful tool for modeling the patch prior. In this work, a probabilistic
view of an existing algorithm piecewise linear estimation (PLE) for image inpainting is presented
which leads to several theoretical and numerical improvements based on an effective use of
Gaussian mixture.

Source Code

An ANSI C++ implementation of the algorithm has been peer reviewed and is accessible at the
IPOL web page of this article1.

Keywords: inpainting, expectation-maximization

1 Introduction

Inpainting is an interpolation technique developed for repairing a masked image by using information
present in the visible parts of the same image.

Historically, one of the first acclaimed works in the field is a paper by Masnou et al. [12] in which
the authors propose to connect level lines by minimizing a curvature functional due to their link made
clear by the coarea formula. Later a total variation framework [13] is introduced along a similar line
whose success can be explained by its insightful choice of functional space to avoid the blur that could
be created by a more regular space such as H1 under an otherwise identical optimization scheme.
The subject has since gained some popularity and inspires a paper by Bertalmio et al. [2] where a
high order PDE is used to propagate structural information to fill in relatively small gaps. To infer
missing textural content, a similarity driven algorithm [9] is devised. The same idea of exploiting
redundancy whenever possible has spawned an effective image processing paradigm [4, 6]. Building
on these developments on structure and texture inpainting, some efforts [11, 3] have been made to
unite these two by performing one preliminary step to separate two types of content before carrying
out their respective dedicated procedure.
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Another direction of research initiated by Aharon, Elad et al. [1, 10] targets an overcomplete
dictionary for sparse representation of image patches. The orientation based K-LLD for image
denoising [5] is another example. In a paper by Yu et al. [15] a similar algorithm, called PLE, was
designed but intended to solve generic image related inverse problems. In a recent development [16],
a Gaussian mixture modeling for patch prior is put forth with a new optimization scheme, which
produces impressive results.

In this contribution, motivated in part by the works of Chatterjee et al. [5], Yu et al. [15],
and Zoran et al. [16], we present E-PLE, or Enhanced PLE. Using a specialized Gaussian mixture
initialized with real-world images, we adapt expectation maximization (EM) algorithm [7] to this
particular setting and show its improved performance at inpainting.

Section 2 summarizes PLE. An account of E-PLE is provided in section 3. Section 4 presents the
new algorithm outline, followed by several comparative empirical studies in section 5. The appendix
is devoted to the EM algorithm.

2 PLE

In this section, PLE [15] is described to highlight its difference with E-PLE. PLE starts with building
a number of directional models using synthetic samples and it retains all the eigenvectors from the
estimated covariance matrices. Then one additional model is constructed using DCT as its basis to
account for textural patches. Contrary to E-PLE, the model means and their covariance eigenvalues
are arbitrarily fixed (see algorithm 1).

Algorithm 1 PLE initialization
Parameter: Number of Gaussian models K, patch dimension κ× κ.
for k = 0 to K − 2 do

Create and sample synthetic images

1. Create a binary image B of size 100×100 taking value in {0, 255} with two sets {(r, u) : B(r, u) =
0} and {(r, u) : B(r, u) = 255} separated by a straight line inclined at k

K−1π passing through
the center of the image.

2. Blur B with Gaussian kernels of different standard deviations (σb)1≤b≤4: σb = 2b for all b.

3. Draw a large number of κ× κ patches from these blurred images to form the patch set Pk.

Compute the statistics

1. Estimate the model mean and covariance:

µk =
1

|Pk|
∑
P∈Pk

P, Σk =
1

|Pk|
∑
P∈Pk

(P − µk)(P − µk)T .

2. Define the k-th directional basis Vk using the spectral decomposition Σk = VkΛkV
T
k .

3. Set µk = 0. Replace the first leading eigenvector in Vk by a normalized DC component and apply
Gram-Schmitt to orthogonalize the remaining vectors.2

end for
To this setup add a textural model whose basis is formed by DCT (with ascending component frequencies).
Set its model mean to zero.
Take a sequence of κ2 positive numbers of exponential decay (a working example: m ∈ [0, κ2 − 1] ∩ Z 7→
220.5−0.5m) and make them the eigenvalues of all K Gaussian models just built.
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Assume that there are K models in all. For each patch to restore, PLE produces K estimates
under individual model assumption and keeps the one with the highest conditional probability to
have both the observation and its estimate. This patch is assigned in the meantime to the same
model.

Finally, all the models are updated with their assigned estimates. The last two steps, called
estimation and maximization by the paper, are then repeated several times before the algorithm
terminates (see algorithm 2).

Algorithm 2 PLE

Input: A masked gray image Ũ , its mask M .
Parameter: Number of PLE iterations S
Run algorithm 1. Extract all κ× κ patches from Ũ and their associated masks from M , the collection of
which is denoted by P̃ and M. With |P̃| = |M|, the i-th observed patch and its mask are P̃i and Mi.
for t = 1 to S do

Estimation:

1. Filter the patch under K model assumptions:

∀(i, k), P̂
(k)
i = argmax

P
p(P |P̃i,µk,t−1,Σk,t−1)

= argmax
P

p(P, P̃i|µk,t−1,Σk,t−1)

= argmin
P

(‖MiP − P̃i‖2

σ2
+ (P − µk)TΣ−1

k,t−1(P − µk)
)
.

2. Select a model for each patch:

ki = argmax
0≤k≤K−1

p(P̂
(k)
i , P̃i|µk,t−1,Σk,t−1) (1)

= argmin
0≤k≤K−1

(‖MiP̂
(k)
i − P̃i‖2

σ2
+ (P̂

(k)
i − µk)TΣ−1

k,t−1(P̂
(k)
i − µk) + ln det Σk,t−1

)
which leads to its estimate P̂i = P̂

(ki)
i and assignment to the ki-th model.3

Maximization: Denote Qk the set of estimated patches attributed to the k-th model.
for k = 0 to K − 1 do

Estimate the model mean and covariance:

µk,t =
1

|Qk|
∑
P∈Qk

P, Σk,t =
1

|Qk|
∑
P∈Qk

(P − µk,t)(P − µk,t)T + εI

where ε is a small positive number to ensure the definiteness of Σk,t.
end for

end for
Assign equal weights to all restored patches and recover the image.

2The implemented PLE leaves out both component substitution and basis orthogonalization because they can cause
numerical instability as it is difficult to tell whether a set of vectors are collinear with the computer’s limited precision.
With DC components removed from the directional bases, PLE could discriminate better.

3It would be more natural to incorporate at this stage what we know from the observations. Experiments confirmed
that the algorithm yielded better results if the estimated pixels were replaced with the visible ones wherever possible.
Hence, we implemented PLE with this additional step.
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The Gaussian model used by PLE lacks the mixing weights w· for it to be a mixture

p(P ) =
N∑
k=1

wkN (P | µk,Σk). (2)

And its synthetic image sampling cannot produce an estimate of that. Thus algorithm 2 is not an
EM, a class of algorithms known to increase the likelihood of a mixture over iterations [7]. The
absence of the mixing weights to knit the models also implies that the patch assignment step (1) is
not statistically founded.

3 E-PLE

3.1 Masked Patch Classification with EM

To set up the Gaussian mixture for E-PLE, we follow the work by Wang et al. [14] and feed it with
real-world data (see algorithm 3) so as to shorten the algorithm’s learning phase, which is carried
out by a version of EM developed for our partially observed data (see appendix). A patch P̃ is then
classified using

k∗ = argmax
k

p(P̃ is generated by model k | P̃ )

= argmax
k

wkp(P̃ | µk,F k). (3)

which can be shown to minimize Bayes risk [8]. The resulting patch-model association is called a
patch map. Figure 1 illustrates such a classification example.

3.2 Adaptive Filtering

If a patch P̃ is found with (3) to be best described by the k-th model

P̃ = F kc+ µk + σN

where F k, c, µk, σ and N denote its factor loading matrix, random coefficient, model mean, noise
standard deviation and a standard Gaussian random vector independent of c, Tikhonov regularization
can be applied to construct an estimator. Assume without loss of generality that the column vectors
(F

(m)
k )1≤m≤lk of F k are the orthogonal leading eigenvectors of the covariance matrix F kF

T
k . Then

the following Wiener filtering scheme with an adjustable parameter ξ controlling the degree of data
fit

P̂ = argmin
∃β,P=F kβ+µk

lk∑
m=1

‖F (m)
k ‖

−2
〈
P − µk, ‖F

(m)
k ‖

−1F
(m)
k

〉2
+ ξ‖MP − P̃‖2

= argmin
∃β,P=F kβ+µk

lk∑
m=1

〈
P − µk, ‖F

(m)
k ‖

−2F
(m)
k

〉2
+ ξ‖M(P − µk − P̃ + µk)‖2

defines a ξ-indexed mapping P̃ ∈ Rκ2 7→ P̂ ∈ Rκ2 . A much neater formulation of the same problem
can be obtained with some additional auxiliary variables

β = [β1, · · · , βlk ]T , βm =
〈
P − µk, ‖F

(m)
k ‖

−2F
(m)
k

〉
β̃ = [β̃1, · · · , β̃lk ]T , β̃m =

〈
P̃ − µk, ‖F

(m)
k ‖

−2F
(m)
k

〉
.

274



E-PLE : an Algorithm for Image Inpainting

(a) (b)

(c) (d)

(e) (f)

Figure 1: Masked patch classification with EM. (a) original image (b) masked image (c) initial mixing
weights (d) mixing weights after three EM iterations (e) patch map formed after one EM iteration
(f) patch map formed after three EM iterations. The flat patches are painted white.

Now it follows: P̂ = F kβ∗ + µk, β∗ = argminβ ‖β‖2 + ξ‖MF k(β − β̃)−MRP̃‖2

with the residual: RP̃ = P̃ − µk − F kβ̃.
The solution to this quadratic minimization problem is straightforward

β∗ = ξ(Ilk + ξF T
kMF k)

−1F T
kM(P̃ − µk).

Hence the linear estimator

P̂ = ξF k(Ilk + ξF T
kMF k)

−1F T
kM(P̃ − µk) + µk. (4)

Thanks to the presence of the identity Ilk , the matrix inversion is well defined. In addition, in view
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of the linear filter’s symmetric form, the factor orthogonalization in F k, otherwise required to meet
the assumption of the analysis, can be effectively avoided.

4 Algorithm Outline

A recap of E-PLE (algorithms 3 and 4) working on a masked gray image. First, a Gaussian factor
mixture is set up using natural images. Next, EM is called upon to infer its parameters from the
image to inpaint. Finally, patch map (3) guided linear filters (4) are used to restore patches and
hence the image.

For a color image, three color channels can be restored separately before forming the final result.
One way to speed up the algorithm in this case however is to make EM only run on one channel
and use the resulting patch map to guide the other two. It is the adopted approach in the current
implementation.

Algorithm 3 E-PLE Gaussian mixture initialization
Input: Z noiseless natural gray images.
Parameter: Number of mixture components K, patch dimension κ× κ.
For all 0 ≤ k ≤ K − 1, set Nk, the number of samples obtained for the k-th model, to 0.
Collect samples:
while min0≤k≤K−1Nk < 5000 do

Randomly picks one among Z images and sample a κ× κ patch P from it.
Calculate the eigenvalues (λb, λs) of

∑
(r,u)∈Dom(P )∇P (r, u)(∇P (r, u))T together with its eigenvector v

associated with λb (λb ≥ λs) where ∇P (r, u) represents the discrete gradient of P at (r, u).
if λb/λs < torient then

if λb < tflat then
Assign P to the flat model: NK−1 ← NK−1 + 1.

else
Assign P to the multi-oriented model: NK−2 ← NK−2 + 1.

end if
else

Determine the orientation θ = ψ(arctan y
x) with v = (x, y)T and ψ(a) = a1a≥0 + (π + a)1a<0.

Assign P to the k-th mono-oriented model if θ ∈ [ k
K−2π,

k+1
K−2π): Nk ← Nk + 1.

end if
end while
Compute the statistics:
for k = 0 to K − 1 do

Estimate the model prior: wk = Nk∑K−1
j=0 Nj

.

Estimate the model mean and covariance: denote Pk the set of patches attributed to the k-th model

µk =
1

|Pk|
∑
P∈Pk

P, Σk =
1

|Pk|
∑
P∈Pk

(P − µk)(P − µk)T .

Estimate the factor loading matrix: denote lk the number of factors required by the k-th model. The
spectral decomposition Σk = V ΛV T with V = [φ1, · · · , φκ2 ] and Λ = diag(λ1, · · · , λκ2) gives

F k = [ (λ1 − σ2)1/2φ1, · · · , (λlk − σ
2)1/2φlk ], where σ2 =

1

κ2 − lk

κ2∑
m=lk+1

λm.

end for
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Algorithm 4 E-PLE

Input: A masked gray image Ũ , its mask M .
Parameter: Number of PLE iterations S.
Run algorithm 3. Extract all 8× 8 patches from Ũ and their masks from M , the collection of which are
denoted by P̃ and M. With |P̃| = |M| = N , observation i and its mask are denoted by P̃i and Mi.
for t = 1 to S do

Expectation:

1. Compute the mean and covariance of the coefficient posteriors: ∀1 ≤ i ≤ N, 0 ≤ si ≤ K − 1,

Σci|si =
(F T

si,t−1MiF si,t−1

σ2
t−1

+ I
)−1

, µci|si = Σci|si
F T
si,t−1(P̃i −Miµsi,t−1)

σ2
t−1

.

The parameter set Θt−1 is made up of (wk,t−1,F k,t−1,µk,t−1)0≤k≤K−1 and σt−1 for 1 ≤ t ≤ S.
The couple (Σci|si ,µci|si)1≤i≤N evolves over time, but for notational convenience, their time index
is omitted should no confusion arise.

2. Compute model responsibilities for all patches: ∀1 ≤ i ≤ N, 0 ≤ si ≤ K − 1,

Pt(si|P̃i) ∝ wsi exp
(1

2
ln det Σci|si +

µTci|siΣ
−1
ci|siµci|si

2
−
‖Miµsi − P̃i‖

2

2σ2

)
.

under the constraint
∑K−1

k=0 Pt(si = k|P̃i) = 1.

Maximization:

1. Update model priors: ∀0 ≤ k ≤ K − 1, wk,t = 1
N

∑N
i=1 Pt(si = k|P̃i).

2. Update noise variance:

σ2
t =

∑N
i=1

∑K−1
k=0 Pt(si = k|P̃i)

∫
dcipi(ci|si = k)‖P̃i −MiF̃ si,t−1c̃i‖2∑N
i=1 |Mi|

where |Mi| means the number of non-zero entries in Mi. See (5) for the integral.

3. Update model factors and means: solve the linear equation one row at a time

N∑
i=1

MiF̃ si,tPt(si|P̃i)

(
Σci|si + µci|siµ

T
ci|si µci|si

µTci|si 1

)
=

N∑
i=1

MiPt(si|P̃i)P̃i
(
µTci|si 1

)
where F̃ si,t := [F si,t,µsi,t].

end for
Create the patch map: with the parameter set ΘS , define the patch to model mapping

f : P̃i ∈ P̃ 7→ argmax
0≤k≤K−1

PΘS
(si = k|P̃i).

Filter: ∀P̃i ∈ P̃, take the model ki = f(P̃i) and fill in P̃i’s missing pixel values with the estimates from

P̂i = F ki,Sβi + µki,S with βi = ξ(Ilk + ξF T
ki,S

MiF ki,S)−1F T
ki,S

Mi(P̃i − µki,S).

Assemble: assign equal weights to all restored patches and recover the image in the usual way.
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If an image has a hole larger than the inpainting patch size, only the missing pixels bordering the
hole can be estimated by the algorithm while the rest needs to be inferred differently: certainly the
aforementioned techniques [12, 2, 9] can be applied here. Since this article is mainly concerned with
inpainting images with sporadically missing pixels caused by masks as those shown in the examples,
we assume that the sizes of masked parts, though occasionally bigger than 8×8, remain on a somehow
manageable scale, which leads to a much simpler inpainting algorithm (algorithm 5).

Algorithm 5 E-PLE for inpainting arbitrary masked images

Input: A masked gray image Ũ , its mask M .
Parameter: Number of PLE iterations S.

1. Iterate algorithm 4 without Filter and Assemble.

2. For those partially masked patches, replace the missing pixels with their estimates and update their
associated masks so that those pixels are marked as visible.

3. Aggregate the newly estimated patches to form an inpainted image. Do the same to the masks so
as to know if there are pixels left unfilled.

4. if some pixels remain masked then
Reduce the newly inpainted image and its mask to patches and assume that all the partially
masked patches belong to the textural model. Go back to Step 2.

5. end if

5 Numerical Results

Figure 2 displays the original images used in our experiments. and table 1 compares the results of
different inpainting algorithms in terms of RMSE.

(a) (b) (c) (d)

Figure 2: The images for the empirical studies. (a) parrot (b) shapes (c) barbara (d) frog

Comments:

1. To ensure fairness in comparison, all the algorithms used the same masked images. A random
mask has a certain fixed probability for each pixel to become invisible. Both PLE and E-PLE
iterate six times. And EPLL refers to the algorithm developed by Zoran et al. [16].
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Table 1: Algorithms Comparison in RMSE
text barbara frog parrot shapes
EPLL 5.7 4.8 6.4 6.5
PLE 4.2 4.3 6.1 5.9
E-PLE 5.0 4.7 6.6 5.7

rand 0.2 barbara frog parrot shapes
EPLL 2.5 2.5 4.0 2.8
PLE 1.7 2.0 3.7 2.4
E-PLE 1.9 2.2 3.8 2.3

rand 0.4 barbara frog parrot shapes
EPLL 4.7 4.5 6.7 5.6
PLE 3.7 4.0 6.9 5.4
E-PLE 3.7 4.1 6.7 4.7

rand 0.6 barbara frog parrot shapes
EPLL 8.6 7.2 9.5 9.6
PLE 10.6 7.1 10.9 11.2
E-PLE 7.9 6.8 10.0 8.8

rand 0.8 barbara frog parrot shapes
EPLL 15.8 11.2 15.0 17.6
PLE 20.1 11.0 16.0 19.4
E-PLE 16.9 10.8 14.8 16.5

2. The higher the masking ratio, the worse the recovery in all cases. A higher masking ratio also
implies that an algorithm has to guess more so that a well constructed prior knowledge is the
most needed. Lacking such a structure, PLE does not do as well as the other two.

3. For natural images, one single iteration of E-PLE usually suffices to achieve a good restoration
(see figure 3). More iterations do guarantee an increase in likelihood [7], though not necessarily
in RMSE. Yet for a highly degraded image, more iterations could allow better inpainting
especially for those images rich in structure such as barbara.

4. On the contrary, in case of artificial images, it is desirable to have the algorithm update mixture
components through learning in order to adapt itself to this unexpected reality. This explains
why EPLL yields a consistently worse result with shapes (see figure 4).

5. E-PLE outperforms PLE in general and owing to a reduced set of factors, E-PLE runs faster as
well. Moreover, due to a carefully calibrated prior, one iteration of E-PLE is usually sufficient
in the sense that more iterations do not bring about significant gain in RMSE to justify the
additional computational cost. The same cannot be said of PLE (see figure 5).

6 Appendix

In this section, EM used in E-PLE is derived.
E-PLE’s observation model is

P̃ = M
(K−1∑
k=0

1s=kP +N
)

=
K−1∑
k=0

M(P +N)1s=k

whereby a patch undergoes noise N and linear distortion by a mask M. The patch model selector s
is distributed according to the mixing weights w· and independent of N .
Let Θ be the parameter set containing

(
F k,µk,wk

)
0≤k≤K−1

, and the noise standard deviation σ.

Lemma 1 Given the linear model

∀1 ≤ i ≤ N, P̃i =
K−1∑
k=0

Mi(F kci + µk + σni)1si=k
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(a) (b)

(c) (d)

(e) (f)

Figure 3: E-PLE iterates once on the images on the left to produce those on the right. (a) text
masked image (b) inpainted (RMSE = 7.9) (c) randomly masked image (ratio = 0.2) (d) inpainted
(RMSE = 5.0) (e) randomly masked image (ratio = 0.8) (f) inpainted (RMSE = 14.9).

the posterior law of the coefficient ci conditional on (P̃i, si) is Gaussian and its density pi(ci|si) is
characterized by the covariance matrix and mean

Σci|si =
(F T

si
MiF si

σ2
+ I
)−1

and µci|si = Σci|si
F T
si

(P̃i −Miµsi)

σ2
.
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(a) (b)

(c) (d)

Figure 4: Inpainting an artificial image (a) masked shapes (40% pixels visible) (b) inpainted with
EPLL (RMSE = 9.6) (c) inpainted with PLE (six iterations and RMSE = 11.2) (d) inpainted with
E-PLE (six iterations and RMSE = 8.8).

Figure 5: The importance of a good initialization of directional models: an example of how RMSE
evolves over iteration with PLE.

Moreover, the density of P̃i given si is

pΘ(P̃i|si) = CMi,σ2 exp
(1

2
ln det Σci|si +

µTci|siΣ
−1
ci|siµci|si
2

−
‖Miµsi − P̃i‖

2

2σ2

)
for some positive constant CMi,σ2 only depending on Mi and σ2.
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Proof : an elementary application of Bayes formula implies

pΘ(P̃i|si) =

∫
dcipΘ(ci|si)pΘ(P̃i|ci, si) =

=
CMi,σ2

(2π)lsi/2

∫
dci exp

(
− ‖ci‖

2

2
−
‖Mi(F sici + µsi)− P̃i‖

2

2σ2

)
=

=pΘ(P̃i|si)
∫
dcipi(ci|si) =

=
CMi,σ2

(2π)lsi/2

∫
dci exp

(
−

(ci − µci|si)
TΣ−1

ci|si(ci − µci|si)
2

+
µTci|siΣ

−1
ci|siµci|si
2

−
‖Miµsi − P̃i‖

2

2σ2

)
=

=CMi,σ2 exp
(1

2
ln det Σci|si +

µTci|siΣ
−1
ci|siµci|si
2

−
‖Miµsi − P̃i‖

2

2σ2

)
Hence the lemma’s claims. �
As a by-product, we find the posterior probability

PΘ(si|P̃i) ∝ pΘ(P̃i|si)PΘ(si)

∝ wsi exp
(1

2
ln det Σci|si +

µTci|siΣ
−1
ci|siµci|si
2

−
‖Miµsi − P̃i‖

2

2σ2

)
.

Hence P̃i is best associated to

ki = argmax
0≤si≤K−1

(
lnwsi +

1

2
ln det Σci|si +

µTci|siΣ
−1
ci|siµci|si
2

−
‖Miµsi − P̃i‖

2

2σ2

)
.

With the parameter set Θt known at time t, EM first calculates the conditional expectation of the
log-likelihood completed with latent variables (si, ci)1≤i≤N (by abuse of notation, the probabilities P
and densities p are mixed up if the context is clear)

N∑
i=1

EΘt

[
lnPΘ(P̃i, si, ci)|P̃i

]
=

=
N∑
i=1

K−1∑
k=0

EΘt

[
lnPΘ(P̃i, si, ci)|P̃i, si = k

]
PΘt(si = k|P̃i) =

=
N∑
i=1

K−1∑
k=0

(
EΘt

[
lnPΘ(P̃i, ci|si = k)|P̃i, si = k

]
+ lnwk

)
PΘt(si = k|P̃i) =

=

N∑
i=1

K−1∑
k=0

(
EΘt

[
− ‖ci‖

2

2
− ‖P̃i −Mi(F kci + µk)‖2

2σ2
− |Mi|

2
lnσ2 + Ck,Mi

|P̃i, si = k
]

+ lnwk

)
PΘt(si = k|P̃i)

where |Mi| is the number of non-zero elements in Mi and Ck,Mi
is a constant that depends only

on the couple (k,Mi). The only variables that remain random in the conditional expectation are
(ci)1≤i≤N and this allows us to put the previous lemma to good use. Since only the second order
moments are involved, the computation is straightforward:

EΘt

[
‖ci‖2|P̃i, si

]
= tr(Σci|si + µci|siµ

T
ci|si) := tr(Ci)

EΘt

[
‖P̃i −Mi(F kci + µk)‖2|P̃i, si

]
= ‖P̃i −Miµk‖2 − 2

〈
P̃i − µk,MiF kµci|si

〉
+ tr(CiF T

kMiF k). (5)

Next, EM maximizes the expectation just obtained w.r.t. the model parameters. For a more compact
expression, let us combine the factor loading matrix F si with the mean µsi to form F̃ si (thus the
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coefficient ci is extended by one additional constant equal to 1). Now derive the expectation w.r.t.
F̃ k and set it to zero

∂

∂F̃ k

N∑
i=1

PΘt(si = k|P̃i)
∫
dc̃ipi(c̃i|si = k)‖P̃i −MiF̃ kc̃i‖2 = 0

which leads to

N∑
i=1

MiF̃ kPΘt(si = k|P̃i)
∫
dc̃ipi(c̃i|si = k)c̃ic̃

T
i =

N∑
i=1

MiP̃iPΘt(si = k|P̃i)
∫
dc̃ipi(c̃i|si = k)c̃Ti .

Updating (F̃ k)0≤k≤K−1 amounts to solving a linear equation: denoting by (M)q the q-th row of a
matrix M , we have

∀1 ≤ q ≤ κ2,

(F̃ k)q

n∑
i=1

δMi(q,q),qPΘt(si|P̃i)
∫
dc̃ipi(c̃i|si)c̃ic̃Ti =

( N∑
i=1

MiP̃iPΘt(si|P̃i)
∫
dc̃ipi(c̃i|si)c̃Ti

)
q

where δ·,· is the Kronecker delta and∫
dc̃ipi(c̃i|si)c̃ic̃Ti =

(
Ci µci|si
µTci|si 1

)
,

∫
dc̃ipi(c̃i|si)c̃Ti =

(
µTci|si 1

)
.

Hence, if none of the observed patches has a visible pixel at row q, we will not be able to estimate the
factors’ or means’ coordinate at that position. However, it rarely happens if we have a large enough
dataset and that the mask behaves sufficiently randomly.

Similarly, the new model prior can be found via the optimization problem

argmax
w1,···wK−1

K−1∑
k=0

lnwk

N∑
i=1

PΘt(si = k|P̃i) s.t. min
0≤k≤K−1

wk ≥ 0 and
K−1∑
k=0

wk = 1

whose solution is

∀0 ≤ k ≤ K − 1, wk =
1

N

N∑
i=1

PΘt(si = k|P̃i).

Finally, the noise level can be estimated by

∂

∂σ2

N∑
i=1

K−1∑
k=0

PΘt(si = k|P̃i)
∫
dcipi(ci|si = k)

(
− |Mi|

2
lnσ2 − ‖P̃i −MiF̃ si c̃i‖2

2σ2

)
= 0

whose solution is quite intuitive:

σ2 =

∑N
i=1

∑K−1
k=0 PΘt(si = k|P̃i)

∫
dcipi(ci|si = k)‖P̃i −MiF̃ si c̃i‖2∑N

i=1 |Mi|
.

where the integral is the same as (5).
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