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Abstract

In most typical digital cameras, even high-end digital single lens reflex ones (dslr), the acquired
images are sampled at rates below the Nyquist critical rate, causing aliasing effects. In this work
we describe a new algorithm for the estimation of the point spread function (psf) of a digital
camera from aliased photographs, that achieves subpixel accuracy. The procedure is based on
taking two parallel photographs of the same scene, from different distances leading to different
geometric zooms, and then estimating the kernel blur between them.

Source Code

ANSI C source code to produce the same results as the demo is accessible at the IPOL web
page of this article1. Future software releases and updates will be posted at https://github.

com/mdelbra/two-photos-psf-estim.
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Disclaimer

This work publishes only the psf estimation algorithm as described below. It is not the object of
this work to study the problem of image registration. For this purpose the demo code uses the
orsa–homography routines [4], which are based on sift keypoints. All these subroutines may be
eventually updated or replaced by other image registration subroutines.
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1 Introduction

In most digital cameras, and even in high-end dslr, the acquired images are sampled at rates far
below the Nyquist critical rate, causing aliasing effects. In this work we introduce a blind algorithm
for the subpixel estimation of the point spread function of a digital camera from aliased photographs.
The numerical procedure simply uses two fronto-parallel photographs of any planar textured scene
at different distances. The mathematical theory developed by Delbracio et al. [1] proves that the
camera psf can be derived from the relative kernel between the two images. Experimental evidence
shows the well-posedness of the problem and the convergence of the proposed algorithm to the camera
in-focus psf. An experimental comparison of the resulting psf estimates shows that the proposed
algorithm reaches the accuracy levels of the best non-blind state-of-the-art methods.

Light diffraction, lens aberrations, sensor averaging and antialiasing filters are some of the inherent
camera factors that unavoidably introduce blur in images. The blur that results from the combination
of all these factors can be modeled locally as a convolution kernel known as Point Spread Function
(psf), that corresponds to the space variant impulse response of the optical system.

psf estimation procedures can be either blind or non-blind. Non-blind approaches assume per-
fect knowledge of a specially designed calibration pattern, and perform local kernel estimation by
comparing one or several photographs of the calibration pattern with the ideal calibration pattern.
Blind approaches estimate the psf from a single or a set of photographs from one or several scenes,
whose exact knowledge or exhaustive descriptions are not required. They do assume, however, that
the scenes involved in the estimation follow some statistical model of sharp images, or include a
significant amount of geometric cues such as sharp edges. Most of the blind psf approaches attempt
to detect edges, which are modeled as pure step-edge functions convolved with the psf kernel. In this
setting, blind estimation is very ill-posed; to solve the inverse problem, the solution space has to be
constrained by considering kernels with a parametric model or with strong regularity assumptions.
Blind estimation techniques are in general much less accurate than their non-blind counterparts.
The proposed formulation ensures regularization-free subpixel recovery of the psf, from a pair of
photographs of the same scene. The pictures have to be acquired at sufficiently different distances,
with fixed camera configuration. In this sense, the proposed psf calibration procedure is as simple
as for any blind calibration method.

This article is organized as follows. Section 2 describes the general mathematical digital camera
model used for psf estimation. In section 3 we outline the mathematical analysis that motivates the
proposed psf estimation algorithm. The complete analysis of the theory underlying the proposed
psf estimation algorithm is presented in the companion paper by Delbracio et al. [1]. In section 4
a detailed description of the implemented algorithm is given while in section 5 experimental results
generated with real camera data are presented. In appendix 7 we summarize some tips concerning
the set-up for an accurate estimation. ANSI C source code to produce the same results as the demo
is accessible on the article web page http://dx.doi.org/10.5201/ipol.2013.77.

2 The Camera Model

An accurate estimation of the psf requires a proper modeling of the digital image formation process.
The simple pinhole camera model commonly used in computer vision only tells how to obtain a
continuous planar scene w from the 3D world. When the 3D world is composed of a single planar
scene u, the latter will be distorted at the image plane to w = u ◦D by a homography D.

The distortion D may take the form of a more general (but regular) diffeomorphism, when the
scene is a regular close-to-planar surface, or when the geometric distortion due to the optical system
is taken into account.
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For the purpose of psf estimation this simple model needs to be augmented with at least:

1. a modeling of continuous to digital conversion at the image plane, i.e. a sampling operator S1

and additive noise n due to measurement uncertainties, and

2. the blurring kernel h due to intrinsic camera characteristics, such as diffraction when light
goes through a finite aperture, light averaging within the sensor, lens aberrations, etc. Note
that we do not consider here blur effects (like motion or defocus blur) that may change from
one snapshot to another. This means that particular attention has to be paid while capturing
images for psf estimation, in order to minimize those variable blur sources.

The whole image formation process can be summarized in a single equation

v = g(S1 ((u ◦D) ∗ h) + n,

where g(·) is a monotone non-decreasing function that describes the non-linear sensor response. If
the camera is working outside of the saturation zone, the response should be linear, since we are
dealing directly with raw images. Therefore, we will consider that the function g is linear so we can
include its effect inside the image u. Hence, in the sequel, the image formation model will be

v = S1 ((u ◦D) ∗ h) + n. (1)

Suppose that the psf h is s-band-limited, that is supp(ĥ) = [−sπ, sπ]2. Then, if sampled at least
at a rate s, the Nyquist sampling theorem guarantees perfect reconstruction of h from its samples.
We are actually interested in the case s > 1, usual for digital cameras.

Notation In the sequel, f̂ denotes the Fourier transform of a function f . We denote by I1 the
Shannon-Whittaker interpolator defined as I1u(x) =

∑
k u(k)sinc(x − k). Let us denote by Ss the

s-to-1-resampling operator Ss = S1HsI1 and the continuous homothecy Hλu(x, y) = λ2u(λx, λy).
(i.e. λ > 1 is a zoom-out). The digital Nyquist homothecy operator of parameter α is defined by
Hαu := S1W1HαI1u, where W1 is the ideal low pass filter at frequency π. We also denote the linear
map associated to the convolution with a digital image u by C[u]. Let L be a linear operator, and
denote by L∗ its adjoint, and by L+ its left pseudo-inverse L+ := (L∗L)−1L∗ (when it exists).

3 PSF Estimation from Two Unknown Scaled Images

Assume we perfectly know the latent sharp image u that produced the blurry aliased observation v.
Under this non-blind assumption solving for the psf amounts to solve an inverse problem governed
by the image formation model (1). The common approach that relies on regularization techniques
allows to correctly recover the geometric and radiometric distortions (D and g), but severely distorts
the high-frequency components of h. Notwithstanding, this non-blind inverse problem is well posed
as long as a white noise image u is chosen as the calibration pattern [2], thus paving the way for
unbiased estimation of h (because no regularization is used) up to unprecedented levels of accuracy.
On the contrary, the widespread calibration patterns based on step-edges (see for instance the paper
of Joshi et al. [3]) lead to ill-posed inverse problems, thus precluding accurate estimation of h at
subpixel rate unless the family of admissible kernels h is drastically reduced by regularization or
other techniques.

Between these two extremes many highly textured natural scenes exist which, while not being
optimal, still lead to a well-posed inverse problem. Such images are exploited in this article in order
to circumvent the non-blind hypothesis, by taking two snapshots of the same scene. More precisely,
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in the following, we show that recovery of camera psf is possible from the estimate of the kernel blur
between images of two different views. The presentation is divided in two parts. First we characterize
this kernel for a pair of fronto-parallel views of a planar scene, and we give precise conditions under
which this inter-image kernel can be estimated. Then we show that the camera psf can be derived
from the inter-image kernel, under very weak and reasonable conditions.

3.1 Estimating the Relative Blur between Two Images

Suppose we have two digital images ṽ1, ṽ2 of the same planar scene u, captured from different
distances in a fronto-parallel position, with negligible rotation around the optical axis. Let λ1, λ2
denote the corresponding zooms between the scene and each of the images. This can be written

ṽi = S1Hλiu ∗ h+ ni = S1vi + ni = vi + ni for i = 1, 2,

where we have called vi = Hλiu∗h and vi = S1vi. We assume that the acquisition distances are such
that sλ1 < λ2, the importance of this will be clear later.

Let v1, v2 be two fronto-parallel continuous views of the same scene, acquired from different
distances λ1 < λ2 respectively. We call inter-image kernel between v1 and v2, any kernel k satisfying

v2 = Hλ2
λ1

v1 ∗ k.

If we set λ = λ2
λ1

, it can be shown [1] that the inter image kernel satisfies

Hλh ∗ k = h. (2)

If û does not vanish inside [−s π
λ2
, s π

λ2
]2 then the inter image-kernel is unique and only depends

on h and λ. One simple way of estimating k is by considering the least squares estimator

ke :=
(
SsC[Hλ

s
ṽ1]
)+

ṽ2.

This estimator appears naturally from the definition of the inter-image kernel v2 = Hλv1 ∗ k, and
by using ṽ1 and ṽ2 as approximations of v1 (the closest high resolution image) and v2 (the farthest
low resolution image) respectively. The estimation is performed on a discrete grid of s× the camera
sensor resolution. The resulting estimation will be accurate as long as the noise is much smaller than
the signal power and the image v1 is not very aliased. See the article of Delbracio et al. [1] for more
quantitative results and mathematical details.

3.2 Recovering the Camera PSF

Notice that h appears on both sides of (2). However, it can be obtained from k by calculating the
following limit

h = lim
n→∞

Hλnk ∗ . . . ∗Hλk ∗ k.

This can be readily seen by taking the Fourier transform of both sides of the previous equation. The
mathematical details proving convergence are covered in the paper by Delbracio et al. [1]. Finally,
this last equation can be rewritten by using mostly zoom-in homothecies as

h = lim
n→∞

Hλn(k ∗H 1
λ
k . . . ∗H 1

λn
k).

While mathematically equivalent in the continuous setting, performing the computations according
to the last expression leads to a simpler implementation. Indeed, this permits to avoid the down-
sampling that would be required to deal with aliasing problems introduced when zooming-out digital
images.

245



Mauricio Delbracio, Andrés Almansa, Pablo Musé

4 Algorithm Description

The input of the algorithm are the two digital images: ṽ1, ṽ2, the super-resolution factor s and the
kernels (inter-image kernel and psf) support size: p× q at the s× super-resolved grid.

The output of the algorithm are an s× sampling of the inter-image kernel k and an s× sampling of
the camera psf h. Both images are of size p× q.
The complete chain is summarized in the block diagram shown in figure 1.

Figure 1: Block diagram summarizing the complete psf estimation algorithm.

4.1 Image Subpixel Alignment, Geometric Transformation Estimation

In order to align both images and to estimate the geometric transformation from one to the other
we use sift points and the ORSA-Homography subroutine described in the paper of Moisan et
al. [4]. These subroutines may be replaced by any other accurate sub-pixel registration method. The
important output of this stage is that given the two images we have a function D that maps one
to the other. Suppose that the common parts of ṽ1 and ṽ2 are respectively of size M1 × N1 and
M2 ×N2. Then

D : [0,M2 − 1]× [0, N2 − 1]→ [0,M1 − 1]× [0, N1 − 1].

In the case of a homography, D can be expressed in homogeneous coordinates as a linear transform
represented by the 3× 3 matrix:

D =

 h0,0 h0,1 h0,2
h1,0 h1,1 h1,2
h2,0 h2,1 1

 .

The common parts of the input images are found by computing the smallest rectangular sub-images
containing all paired sift points. Additionally, the input images do not need to be given in the right
order since from the estimated homography it can be easily deduced which one is the closest image
and which one is the farthest one. From now on we will consider that ṽ1 is the common region of the
closest image and ṽ2 the common region in the farthest one. Let d1 = (d1x , d1y) and d2 = (d2x , d2y)
be the positions, in the original input full images, of the top left pixel of the extracted sub-images.
These offsets are kept in order to directly work with the estimated geometric transform D, and the
extracted sub-images.
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4.2 Image Interpolation: Hλ/sṽ1

In order to generate the rescaled samples Hλ/sṽ1 we need to interpolate the digital image ṽ1 at
the desired scale λ/s. This is done by using the estimated geometric transformation D. From now
on we will consider that 1× is the camera sampling frequency and the equivalent frequency band
[−π, π]2. The spectrum of the resampled image should be cut to be band-limited at [−sπ, sπ]2 before
resampling it. This is necessary to avoid aliasing artifacts. We do this by the following procedure:

1. Frequencies higher than sπ are cut-off from the closest image ṽ1.

(a) Compute the dct (dct-ii from libfftw library) of ṽ1. Let (cij), with i = 0, . . . ,M1 − 1
and j = 0, . . . , N1 − 1 be the dct coefficients of ṽ1.

(b) Set cij to zero for i ≥ sM2 or j ≥ sN2 (M2 and N2 are the number of rows and columns
of the common region part in the captured zoom-out image ṽ2).

(c) Compute the inverse dct (dct-iii from libfftw library) of (cij). Let v̄1 be the resulting
image.

2. Using the previously computed geometric transformation D, the filtered zoom-in image is
interpolated at the desired resolution λ/s by bicubic interpolation (Keys parameter: −0.5).
We proceed as follows:

(a) Create a super-resolved s× regular sampling grid of [0,M2]× [0, N2], i.e., the step size is
1/s, first sample (0, 0). Let us denote this grid by g2s .

(b) Transform the sampling grid by applying the estimated geometric transformation D to
get g1s = D(g2s + d2)− d1.

(c) Interpolate the values of v̄1 at g1s to get Hλ/sṽ1. The size of this image is (s(M2 − 1) +
1)× (s(N2 − 1) + 1).

Additionally, in order to get rid of slight changes in illumination the mean pixel values of Hλ/sṽ1

and ṽ2 are subtracted from Hλ/sṽ1 and ṽ2 respectively.
In order to keep track of the common regions between the two images, an auxiliary binary image,

that will serve as a mask, is computed. This mask is created by interpolating an image of the same
size as ṽ2, where each pixel value is 1, by the sampling grid g1s . Then, this mask is sub-sampled
s× to get the 1× image mask m2. This mask will be necessary in the next section to restrict the
estimation problem to the pixels that will be actually used.

4.3 Solving for the Inter-image Kernel

First, the following linear system is built:

argmink ‖MSsUk−Mṽ2‖22, (3)

where the matrix MSsU is composed of:

1. The matrix U associated to the 2D convolution operator with the interpolated image Hλ/sṽ1.
The convolution is done with a kernel of size p× q.

2. The s-down-sampling matrix Ss takes the top left sample per each block of s× s pixels.

3. Finally a mask M is applied, setting to zero all values that are outside the region of interest.
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The region of interest consists of the previously computed mask m2 that restricts the convolution
to the intersection of both images. This mask is eroded by a square element of size 2r+1, r = max(p,q)−1

2s

to avoid boundary problems due to the convolution of finite support sequences. The farthest image
ṽ2 is reshaped as a vector to be consistent with the matrix formulation of the system, and then the
matrix mask M is applied.

In practice the matrix MSsU is computed directly and its size is
(
M+p−2

s
+ 1
)
×
(
N+p−2

s
+ 1
)
,

M × N being the size of the image Hλ/sṽ1. The reason for that is strictly the computational cost.
Indeed, the sub-sampling operation consists of selecting only a few elements of the convolution with
Hλ/sṽ1. Thus, we restrict the computation to those elements that will result from the sub-sampling
operation. The product of the resulting subsampling SsU with the mask M follows the same idea:
if an element of SsU is selected by the mask, its value is kept unchanged; otherwise, it is set to zero,
meaning that will not be taken into account further.

Problem (3) is finally solved by a least squares algorithm.

4.4 From the Inter-image Kernel to the PSF

In order to recover the camera psf h we need to compute (see the article of Delbracio et al. [1])

h = lim
n→∞

Hλn(k ∗H 1
λ
k . . . ∗H 1

λn
k).

The value λ = (λx, λy) is estimated from the geometric transformation D. In the case D is estimated
as a homography, the scale values are taken as λ = (h0,0, h1,1). This corresponds to the situation
where D is a pure zoom, and is a good approximation to the fronto-parallel acquisition with negligible
rotation. We proceed as follows:

1. Initialize u0 = k, n = 1.

2. Compute H1/λnk by using λ = (λx, λy).

(a) Let pn = dpλnye and qn = dqλnxe be the nearest larger integers to pλny and qλnx respectively.
We create a sampling grid with step (1/λnx, 1/λ

n
y ) of size pn × qn. This grid should be

centered at xc = (p − 1)/2, yc = (q − 1)/2. This is done by considering sample positions
(xij, yij) = (j/λx + τx , i/λy + τy), with i = 0, . . . , pn − 1 and j = 0, . . . , qn − 1. The offset

(τx, τy) =
(
q−1
2
− qn−1

2λx
, p−1

2
− pn−1

2λy

)
is necessary to center the grid.

(b) Interpolate, by bicubic interpolation (Keys parameter -0.5), the values of k to get H1/λnk
using the sampling grid defined in the previous step.

3. Calculate un = H1/λnk ∗ un−1. This image has the same size as H1/λnk and is the central part
of the convolution coinciding with the support of H1/λnk.

4. If min{λnx, λny} > λmax or n = nmax go to 5. Else update n := n+ 1 and repeat from 2.

5. Calculate h = Hλnun.

(a) We create a sampling grid with step (λnx, λ
n
y ) of size p× q. This grid should be centered at

xc = (p − 1)/2, yc = (q − 1)/2. This is done by considering sample positions (xij, yij) =
(jλnx + τx , iλ

n
y + τy), with i = 0, . . . , p − 1 and j = 0, . . . , q − 1. The offset (τx, τy) =(

qn−1
2
− q−1

2
λx,

pn−1
2
− p−1

2
λy
)

is necessary to center the grid.

(b) Interpolate, by bicubic interpolation (Keys parameter -0.5), the values of Hλnu to get h
using the sampling grid defined in the previous step.
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The algorithm converges after a few iterations since λn grows very fast. We set nmax = 3 and
λmax = 50, since the convolution with the inter-image kernel zoomed-out 50× or greater produces a
negligible change in the final result.

Thresholding negative values. Since negative light does not exist the estimated psf should be
positive. We can therefore constrain the solution to be non-negative by projecting the result of step
5 to the non-negative half-space.

5 A Running Example

In this section we show an example of the algorithm applied to a psf estimation at 3× the sensor
resolution from real camera acquisitions. Figure 2 shows two digital images acquired by a Canon EOS
400D camera provided with a Tamron AF 17-50mm F/2.8 XR Di-II lens, and the psf estimation from
the inter image kernel. The estimation was done for the blue channel. Figure 3 shows the registered
and interpolated closest image, necessary for the estimation of the inter-image kernel. Also, the mask
showing the pixels that are actually used for the estimation is presented. See caption of figure 3 for
details.

6 Conclusion

In this work we presented an algorithm for the subpixel estimation of the point spread function of
a digital camera from aliased photographs. The procedure is based on taking two fronto-parallel
photographs of the same flat textured scene, from different distances leading to different geometric
scales, and then estimating the kernel blur between them. The proposed algorithm does not require
any special acquisition setup or calibration pattern.

7 Appendix: General Tips for the Set-up

1. The scene should be as planar and as textured as possible.

2. The photographs should be taken between 2 and 8 relative distance. The possible super-
resolution factor is always less than the relative distance, so for 3× estimation relative distance
should be higher than 3.

3. To produce accurate estimations it is highly recommended to use a tripod to avoid handheld
shake.

4. Both photographs should be taken with the same camera parameters. The only exception is
camera focus, that should be re-set to have both images in focus.

5. The images should be taken with the same illumination conditions.

6. Both images should be recorded in raw format (no compression, no post-processing: no de-
mosaicking, no denoising, no enhancing, etc). raw conversion is camera-dependent and not
provided by our demo. In our examples a suitable conversion of the raw format to a pgm
image containing the Bayer pattern could be achieved by the command “dcraw -4 -d input.raw
output.pgm”. A single color channel should then be extracted and used as the input to our
algorithm.
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input image 1 input image 2

3× inter image kernel estimation 3× psf estimation

Figure 2: An example of a pair of digital images that allow to estimate the psf. Top: two distant,
parallel views of a wall. Bottom: the inter-image kernel between these two views. The inter-image
kernel models the necessary blur that should be applied to the closest image to produce the farthest
image (with the necessary zooming). The estimated inter-image kernel and camera psf are obtained
at 3× the camera resolution for the blue channel. Although no regularization is imposed, the kernels
are smooth.
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