
Published in Image Processing On Line on 2014–07–31.
Submitted on 2013–09–26, accepted on 2014–03–20.
ISSN 2105–1232 c© 2014 IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
https://doi.org/10.5201/ipol.2014.105

2
0
1
5
/
0
6
/
1
6

v
0
.5
.1

IP
O
L

a
rt
ic
le

c
la
ss

Implementation of the Centroid Method for the Correction

of Turbulence

Enric Meinhardt-Llopis1, Mario Micheli2

1 CMLA, ENS Cachan, France (enric.meinhardt@cmla.ens-cachan.fr)
2 Department of Mathematics, University of Washington, USA (micheli@uw.edu)

Communicated by Yohann Tendero Demo edited by Enric Meinhardt-Llopis

Abstract

The centroid method for the correction of turbulence consists in computing the Karcher-Fréchet
mean of the sequence of input images. The direction of deformation between a pair of images is
determined by the optical flow. A distinguishing feature of the centroid method is that it can
produce useful results from an arbitrarily small set of input images.

Source Code

The source code and a online demo are accessible at the IPOL web page of this article1.

Keywords: turbulence; centroid

1 Introduction

A common model of turbulence-degraded video is given by random local deformations:

Ii(x) = I(x + ui(x)) (1)

where I is a base image without turbulence and u1,u2,u3, . . . is a sequence of random vector fields.
For practical purposes, the vector fields ui are assumed to be smooth and to have a point-wise
distribution κ(u) of zero mean and finite variance. Analytically, this model can be inverted (i.e., find
the image I from the sequence Ii) by different methods. A first method consists in computing the
average of all the input images Ii, which converges to the image I blurred by the positive kernel κ,
and then de-convolve the average image [6, 7, 9, 16]. A second method consists in inverting the
deformation of one of the images Ii to recover the image I [5, 4, 21, 8, 15]. In the first case, one must
know exactly the statistical distribution κ of the fields ui and have a large enough set of independent
images Ii. In the second case, only a single image I1 is needed, but one must know exactly the field u1.
However, in real problems, neither the distribution κ nor the individual vector fields ui are known,
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so these data must be somehow estimated from the sequence of images Ii. The centroid method
described in the present article is intended to find, or at least approximate, the vector fields ui from
the sequence of images Ii.

The centroid method for the correction of turbulence was introduced, in a slightly informal way,
by Frakes–Monaco–Smith in 2001 [5] and it was formalized recently by Micheli [15]. There are other
methods for the correction of turbulence based on optical flow [13]. A distinguishing feature of the
centroid method is that it only computes flows between pairs of input images, and it never uses
the average of the input images. The main advantage of our method is that it is able to deal with
large deformations using a small quantity of images. The main inconvenient is that it is slow for
large input sequences (due to the time needed to estimate the vector fields) and that the results are
unsatisfactory when there are distortions other than geometric deformations (e.g., local blurs).

2 Description

Optical flow allows to interpolate two images without interpolating their color values (see Fig-
ure 1). Let Ω be the image domain (either a rectangle or the whole plane). The action of a vector
field u : Ω→ R2 over an image A : Ω → R is defined formally as the push-forward of the image A
by the mapping ϕ : Ω → Ω given by ϕ(x) := x + u(x). See Figure 2 for an illustration of the
push-forward operation. We use the notation

A� u := A ◦ ϕ−1.

This operation is only well-defined when the mapping ϕ is invertible. Far from the boundary of the
image domain, this corresponds to the local condition |Dϕ| > 0 on the determinant of the Jacobian
of ϕ.

More generally, we can consider the sequence of images

At := A� tu t ∈ [0, 1]

which interpolates in a continuous way between the images A and A� u using only the pixel values
of image A. In the particular case where u = FAB is the optical flow between two images A and B,
this means that A � u = B and thus the sequence above is a continuous interpolation between the
images A and B. For t = 1

2
, the image A� 1

2
u lies at the midpoint, or centroid, between A and B.

The centroid method is the generalization of this construction to an arbitrary quantity of im-
ages I1, . . . , IN . Instead of computing the linear average image

Imean :=
1

N

N∑
n=1

In = I1 +
1

N

N∑
n=1

(In − I1) (2)

we transform the image I1 by the average of the optical flows

Icentroid := I1 �
1

N

N∑
n=1

FI1,In (3)

where FI1,In is the optical flow between images I1 and In. Mathematically, this construction corre-
sponds to the Karcher–Fréchet mean [12, 18, 20] on a metric space of images whose geodesics are the
curves of the form At.

Any general optical flow algorithm can be used in our application; for example Horn–Schunck [10,
14], Lucas–Kanade [2] or TV –L1 [23, 19]. We have found that this choice is not critical, since all the
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optical flow estimation methods give essentially correct results over most of the image domain, the
differences being over small areas where the flow is difficult to compute. When taking the average of
many of these vector fields, these differences tend to disappear. For simplicity, all the experiments
shown here use the Horn–Schunck implementation which is published in IPOL [14], with the same
regularization parameter α = 20. This choice of α = 20 is a hand-tuned compromise with the purpose
to find a smooth flow field quickly: larger values of α lead to smoother flow but the method converges
very slowly; smaller values of α lead to faster convergence but they are less robust and produce more
artifacts. The compromise was reached by looking at the results of the examples presented in this
article.

Equation (3) depends on the arbitrary choice of I1 as reference image. This dependence can be
removed by computing the average of the results with each image as reference:

I :=
1

N

N∑
k=1

(
Ik �

1

N

N∑
n=1

FIk,In

)
(4)

This new formulation does not depend on any arbitrary parameter, however the running time is
prohibitive for a very small gain. A good compromise consists in restricting the above average to
a small subset of values of k, for example, one out of every 30 frames, or even a fixed quantity of
images. In our implementation, as detailed below, we use a variation of Formula (4) which uses the
Weiszfeld median instead of the mean.

A B A+ 1
2
(B − A) A� 1

2
FAB

Figure 1: Comparison between the linear interpolation of two images and the interpolation by optical
flow. Here, FAB is a vector field that represents the optical flow between the images A and B. The
notation � for the push-forward is described in the text.

3 Algorithm

The pseudo-code below describes in detail the centroid method for the correction of turbulence. The
“main” function is CentroidCombination (Algorithm 4) which combines the centroids computed
from seven reference frames; this function is a computationally practical version of Formula 4.

The core algorithm is the subroutine CentroidFromReference (Algorithm 1), which is simply
the transcription of Formula (3). The subroutine OpticalFlow(A,B) shall compute a vector field u
such that A�u = B approximately. In our case, we use the Horn–Schunck method [10] implemented
in IPOL [14], but this can be replaced by any other optical flow technique.

The subroutine PushForward(A,u) (Algorithm 2) computes the image A�u. This computation
requires the inversion of a vector field, which is performed by the function InvertField (Algo-
rithm 3). The inversion of a vector field u is defined as a vector field v such that if

ϕ(x) := x + u(x)
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A u A� u

Figure 2: Push-forward of an image by a vector field. Notice that performing this computation
requires the inversion of the vector field, which is a nonlinear iterative procedure.

then

ϕ−1(x) = x + v(x).

We use a simple algorithm [3] to compute v(x) which consists in doing 6 recursive applications
of the mapping F (y) = −u(x + y), whose fixed point is y = v(x). On a neighborhood of x the
Lipschitz constant of this mapping is the operator norm of the Jacobian matrix Du(x). Thus, for
the pixels x where ‖Du(x)‖ < 1 holds, the fixed-point iterations converge to the inverse vector field.

The subroutines PushForward and InvertField need to interpolate images at sub-pixel positions,
which is done by the subroutine InterpolateImageAt. We propose to use bi-cubic interpolation [11],
as implemented by function BicubicInterpolationImage on the appendix, but this can be replaced
by a higher-order spline.

Algorithm 1: CentroidFromReference (implements Equation 3)

Input : Images I1, · · · , IN
Input : Parameter r ∈ {1, . . . , N}, index of the reference image
Output: Image I

for n = 1, . . . , N do1

un ← OpticalFlow(Ir, In)2

end3

u← 1

N

N∑
n=1

un
4

I ← PushForward(Ir, u)5

Algorithm 2: PushForward

Input : Image I
Input : Vector field u
Output: Image J = I � u

v← InvertField(u)1

for x ∈ Ω do2

J(x)← InterpolateImageAt(I, x + v(x))3

end4
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Algorithm 3: InvertField

Input : Vector field u
Output: Vector field v

v = 01

for i = 1, . . . , 6 do2

for x ∈ Ω do3

v(x)← −InterpolateImageAt(u, x + v(x))4

end5

end6

Algorithm 4: CentroidCombination (implements an approximation of Equation 4)

Input : Images I1, · · · , IN
Output: Image I

M ← 71

for i = 1, . . . ,M do2

r ← 1 + bN/Mc(i− 1)3

Ji ← CentroidFromReference(I1, . . . , In, r)4

end5

I ← GeometricMedian(J1, . . . , JM)6

4 Results

It is notoriously difficult to find freely available video sequences with a high degree of turbulence in
order to try these algorithms. Since the correction of videos degraded by turbulence has military [13,
15] or sensitive [17] applications, the original sequences used to evaluate published methods are
typically not available. In order to evaluate our online implementation we use two video sequences
available in the literature from the publications by Efros et al. [4] and Tian et al. [21]. We also use
synthetic sequences produced by deforming a color photograph by smooth random fields.

Figures 3 through 5 show the results of the function CentroidCombination for these sequences.
See the on-line demo associated to this article for a larger collection of experiments. Notice that
in general the method is always a clear improvement over the average image. The main advantage
of the centroid method is that it can yield useful results with a small amount of input frames (as
opposed to deconvolution-based methods, which need a large quantity of input images). In fact, the
centroid of two deformed images is well-defined, and it exhibits less deformation than either image.

Appendix: Bicubic interpolation and vector medians

This appendix describes the implementation of some auxiliary functions that are needed in the rest
of the algorithm. The bicubic interpolation (algorithms 5, 6 and 7) is used for warping images and
fields, and the Weiszfeld vector median [22] (Algorithm 8) can be, optionally, used to combine several
centroids as an alternative to Formula 4.
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I1 average centroid

Figure 3: Result of the centroid method for the sequence from reference [4] (used with permission).
This is an extract of 400 frames from the original sequence, cropped around the center of the image.

I1 average centroid

Figure 4: Result of the centroid method for the sequence from reference [21] (used with permission).
This is a short sequence of 61 frames with rather large deformations, for which the average has not
converged to a uniformly blurry image.

I1 average centroid

Figure 5: Result of the centroid method over a simulated sequence of 400 frames.
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Algorithm 5: BicubicInterpolationImage (example of InterpolateImageAt)

Input : Image I
Input : Position (x, y) inside the image domain
Output: Value z

x← x− 11

y ← y − 12

for i, j = 0, 1, 2, 3 do3

cij ← I (bxc+ i, byc+ j)4

end5

z ← BicubicInterpolationCell(c, x− bxc, y − byc)6

Algorithm 6: BicubicInterpolationCell

Input : Sixteen cell values cij, i, j = 0, 1, 2, 3
Input : Position (x, y) inside the cell, 0 ≤ x, y < 3
Output: Value z

v0 ← CubicInterpolationLine(c00, c01, c02, c03, y)1

v1 ← CubicInterpolationLine(c10, c11, c12, c13, y)2

v2 ← CubicInterpolationLine(c20, c21, c22, c23, y)3

v3 ← CubicInterpolationLine(c30, c31, c32, c33, y)4

z ← CubicInterpolationLine(v0, v1, v2, v3, x)5

Algorithm 7: CubicInterpolationLine

Input : Four line values vi, i = 0, 1, 2, 3
Input : Position x, 0 ≤ x < 3
Output: Value y

y ← v1 + 1
2
· x ·

(
v2 − v0 + x ·

(
2v0 − 5v1 + 4v2 − v3 + x ·

(
3(v1 − v2) + v3 − v0

)))
1

Algorithm 8: GeometricMedian (Weiszfeld’s algorithm, [22])

Input : A set of N D-dimensional vectors x1, . . . ,xN

Output: The geometric median y

ε = 10−3
1

y← 1

N

N∑
n=1

xn
2

for i = 1, . . . , 5 do3

y←

N∑
n=1

xn/

√
ε2 + ‖y − xn‖2

N∑
n=1

1/

√
ε2 + ‖y − xn‖2

4

end5
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Image Credits

Synthetic turbulence by E.Meinhardt-Llopis; base image from the public domain Prokudin-

Gorskii Collection

Van Nevel at the U.S. Naval Air Warfare Center, Weapons

Division (China Lake, California), thanks Stanley Osher

NATO SET156 (ex-SET072) Task Group, thanks Jerome Gilles

Thanks Y.Y. Schechner and M. Alterman [1]

A.A. Efros, V.Isler, J. Shi and M. Visontai [4]

Thanks Y. Tian and S.G. Narasimhan [21]
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