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Abstract

This contribution deals with the Heeger-Bergen pyramid-based texture analysis/synthesis algo-
rithm. It brings a detailed explanation of the original algorithm tested on many characteristic
examples. Our analysis reproduces the original results, but also brings a minor improvement
concerning non-periodic textures. Inspired by visual perception theories, Heeger and Bergen
proposed to characterize a texture by its first-order statistics of both its color and its responses
to multiscale and multi-orientation filters, namely the steerable pyramid. The Heeger-Bergen
algorithm consists in the following procedure: starting from a white noise image, histogram
matchings are performed to the image alternately in the image domain and the steerable pyra-
mid domain, so that the corresponding output histograms match the ones of the input texture.

Source Code

An on-line demo1 of the Heeger-Bergen pyramid-based texture synthesis algorithm is available.
The demo permits to upload a color image to extract a subimage and to run the texture synthesis
algorithm on this subimage.

The algorithm available in the demo is a slightly improved version treating non-periodic
textures by a “periodic+smooth” decomposition [13]. The algorithm works with color textures
and is able to synthesize textures with larger size than the input image. The original version of
the Heeger-Bergen algorithm (where the boundaries are handled by mirror symmetrization) is
optional in the source code.

An ANSI C implementation is available for download here2. It is provided with:

• An illustrated html documentation;

• Source code;

This code requires libpng, libfftw3, openmp, and getopt. Compilation and usage instruc-
tions are included in the README.txt file of the zip archive.

The illustrated HTML documentation can be reproduced from the source code by using
doxygen (see the README.txt file of the zip archive for details).

Keywords: texture; synthesis; heeger; bergen

1https://doi.org/10.5201/ipol.2014.79
2https://doi.org/10.5201/ipol.2014.79
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The Heeger-Bergen Pyramid-Based Texture Synthesis Algorithm

1 Introduction

Given an input texture image, the aim of texture synthesis algorithms is to produce an output
texture image that is both visually similar to and pixel-wise different from the input texture. Texture
synthesis algorithms can be separated in two categories: neighborhood-based methods and statistical
constraint approaches.

Neighborhood-based algorithms consist in producing a new texture by arranging local neighbor-
hoods of the input texture in a consistent way. The first methods of this kind create the new texture
one pixel at a time [4, 22] while subsequent algorithms would rather copy a whole neighborhood or
patch [3, 9]. We refer to the state of the art [23] for a more complete survey of this category of
texture synthesis algorithms.

Contrary to neighborhood-based algorithms, synthesis algorithms based on statistical constraints
attempt at modeling the texture by involving statistical and/or perceptual considerations. They
typically consist in two steps, the analysis step and the synthesis step. The analysis step estimates a
set of statistics from the input texture (e.g. histograms, covariance function, etc.). The synthesis step
generates a random image that satisfies the statistical constraints estimated during the analysis step.
The Heeger-Bergen algorithm belongs to this category of algorithms. It proposes to characterize
a texture by the first-order statistics of both its color and its responses to multiscale and multi-
orientation filters, namely the steerable pyramid, which is motivated by texture discrimination theories
(see [8] and the references therein). The Heeger-Bergen approach has been extended and improved by
several authors [15, 14, 17] by taking into account second-order or higher statistics and/or by using
more involved multiscale image representations. A simpler approach taken in [6] models certain
textures as Gaussian random fields. Tartavel et al. recently proposed an hybrid neighborhood-based
algorithm relying on a spectral statistical constraint [20].

Another field related to texture synthesis is procedural texture synthesis by example. Procedural
textures are programs that permit to define and generate a texture in a continuous domain They are
used in computer graphics in situations where one does not want to deal with raster images (made
of pixels) [10]. Within this field, a simplified version of the Heeger-Bergen algorithm adapted to the
procedural texture framework has been proposed [11]. More recently, a similar algorithm relying on
Gaussian random fields models has been developed [7].

Let us now describe in more detail the Heeger-Bergen texture synthesis algorithm. The output
texture is initialized with a white noise image. Histogram matchings are performed to this output
texture image alternately in the image domain and a multiscale transform domain, namely the
steerable pyramid, until all the output histograms match the ones of the input texture.

The paper is organized as follows. Section 2 is dedicated to the full presentation of the algorithm.
We first present the two fundamental tools of the Heeger-Bergen algorithm, the steerable pyramid
decomposition and histogram matching. We then describe in detail the algorithm for grayscale and
color textures. Finally we discuss the artifacts caused by the non periodicity of the input texture.
We propose a new alternative to deal with this issue by replacing the input texture by its periodic
component [13], which enables us to attenuate a low frequency artifact inherent to the Heeger-Bergen
algorithm.

Section 3 presents several experiments whose goal is to illustrate the influence of the algorithm
parameters.
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2 Algorithm

2.1 Steerable Pyramid

2.1.1 General Description and Illustration

The steerable pyramid is a linear multiscale and multi-orientation image decomposition that has been
developed in the 90s by E. Simoncelli and his co-authors (see e.g. [19, 18] and the references therein).
Given an input image, it is obtained by first splitting the image into a high frequency part and a
low frequency part and then by sequentially applying bandpass oriented filters to the low frequency
image followed by downsampling. This results in a sequence of images having different sizes, referred
to as a pyramid, each corresponding to a certain scale and orientation, apart from the high frequency
and the low frequency residuals. Two examples of steerable pyramid decomposition are displayed in
figures 1 and 2.

In this paper we use the (real version of the) filters described by Portilla and Simoncelli [15]. This
slightly differs from the original paper [8] where the real steerable pyramid was computed with some
approximation, while with the filters used here, the transformation is made in the Fourier domain
without making use of any approximation. Still, as in the original paper, we only consider the real
part of the steerable pyramid. Indeed, one can only deal with real filter responses to apply histogram
matching in the synthesis step of the algorithm. In what follows, we describe precisely how these
filters are defined and implemented.

Original image Associated steerable pyramid

High frequency residual

1st scale of oriented subbands with angle θ = 0, π
4
, π

2
, and 3π

4

2nd scale of oriented subbands with angle θ = 0, π
4
, π

2
, and 3π

4

Low frequency residual

Figure 1: Steerable pyramid decomposition of the Lena image with two scales and four orientations.

278



The Heeger-Bergen Pyramid-Based Texture Synthesis Algorithm

Original image Associated steerable pyramid

High frequency residual

1st scale of oriented subbands with angle θ = 0, π
4
, π

2
, and 3π

4

2nd scale of oriented subbands with angle θ = 0, π
4
, π

2
, and 3π

4

Low frequency residual

Figure 2: Steerable pyramid decomposition of a texture image with two scales and four orientations

2.1.2 Multiscale Decomposition Procedure

The steerable pyramid decomposition convolves recursively the image with oriented filters at different
scales. The decomposition has two parameters:

• the number of scales P (default value 4),

• the number of orientations Q (default value 4).

The steerable pyramid decomposition algorithm consists of a sequence of convolution products
with several filters. The involved filters h0, l0, l and bq will be explicitly defined in the next section,
for now let us just mention that h0 is a high-pass filter, l0, l are low-pass filters, and that each bq
is an oriented bandpass filter. The decomposition algorithm is detailed in Algorithm 1. It is also
represented by the diagram of Figure 3. As clarified by Algorithm 1 and illustrated by figures 1
and 2, the steerable pyramid of an image u of size M ×N is made of PQ+ 2 images:

• A high frequency residual of size M ×N .

• For each scale p = 1, . . . , P , Q images of size M/2p−1 ×N/2p−1.

• A low frequency residual of size M/2P ×N/2P .
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Algorithm 1: Steerable pyramid decomposition

Input : Number of scales P , number of orientations Q, discrete image u of size M ×N such
that M and N are multiples of 2P .

Output: Steerable pyramid of u: sequence of PQ+ 2 images of varying size (see figures 1
and 2 for illustration)

1. Compute the high frequency residual h0 ∗ u and store it in the pyramid.
2. Compute the low frequency band v ← l0 ∗ u.
3. for scale p = 1 to P do

4. Compute the oriented high frequency band bq ∗ v for each orientation q = 0, . . . , Q− 1 and
store it in the pyramid (these Q images constitute the p-th scale of the pyramid).

5. v ← the low frequency image l ∗ v.
6. Downsample v by a factor of two.

7. end

8. Store the remaining image v (of size M/2P ×N/2P ) as the low frequency residual of the
pyramid.

Figure 3: Diagram for the steerable pyramid: The left part corresponds to the steerable pyramid
image decomposition. The right part corresponds to the image recontruction from the pyramid. This
recursive step is performed until the number of desired pyramid scales P is reached.

Note that for the pyramid decomposition to be well-defined, it is necessary that the width M
and the height N of the input image u be multiples of 2P . This will be assumed throughout, even
though it should be mentioned that this restriction could be overcome by adapting the downsampling
and upsampling procedure for images with odd sizes. However our current implementation does not
enable the pyramid decomposition if the width and the height are not multiples of 2P . Thus, a
preliminary crop is performed on the sample texture to ensure this condition.

All the convolution products of the pyramid decomposition algorithm are performed using the fast
Fourier transform (FFT) for computational efficiency. The downsampling operation is also performed
in the Fourier domain by extracting the centered part of the Fourier transform (which corresponds
exactly to downsampling since it is always applied to band-limited images).

2.1.3 Definition and Computation of the Steerable Filters

In this section we define explicitly the filters involved in the steerable pyramid computation. We
recall that in this paper we use the real version of the complex filters described by Portilla and
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Simoncelli [15]3.
As said above, when computing the steerable pyramid, all the convolution products are performed

by component-wise multiplications in the Fourier domain. Hence, one only needs an expression of
the discrete Fourier transforms (DFT) of the filter images h0, l0, l, bq. Not surprisingly, these filters
are actually directly defined in the Fourier domain by sampling various functions defined analytically
in the continuous frequency domain.

For a discrete image of size M × N , we denote by ΩM,N = {0, . . . ,M − 1} × {0, . . . , N − 1}
the discrete image domain (that is, the pixel indices). We denote by Ω̂M,N =

{
−M

2
, . . . , M

2
− 1
}
×{

N
2
, . . . , N

2
− 1
}
the discrete Fourier domain (that is the frequency indices). The continuous frequency

domain will be [−π, π]2. The following definition of the Discrete Fourier Transform (DFT) is used

(FM,N(u))m,n
= ûm,n =

M−1∑

k=0

N−1∑

l=0

uk,le
−2iπ(k m

M
+l n

N ), (m,n) ∈ Ω̂M,N ,

and its associated inverse DFT is

(
F−1

M,N(v)
)
k,l

=
1

MN

M
2
−1∑

m=−M
2

N
2
−1∑

n=−N
2

vm,ne
2πi(m k

M
+n l

N ), (k, l) ∈ ΩM,N .

Finally, since the filters will be defined in terms of polar coordinates in the continuous frequency
domain [−π, π]2, let us define the standard polar transformation ρ to go from Cartesian coordinates
to polar ones4

ρ : [−π, π]2 −→ R×]− π, π]

(x, y) 7−→ (r, θ) =




(|x|, π) if y = 0 and x ≤ 0,(√

x2 + y2, 2 arctan

(
y

x+
√

x2+y2

))
otherwise.

The functions defined in the continuous frequency domain [−π, π]2 are at the heart of the definition
of the steerable pyramid filters. For any polar coordinate (r, θ) ∈ R×]− π, π] define

L(r, θ) = L(r) =





1 if r 6 π
4
,

cos(π
2
log2(

4r
π
)) if π

4
6 r 6 π

2
,

0 if r > π
2
,

and

H(r, θ) = H(r) =





0 if r 6 π
4
,

cos(π
2
log2(

2r
π
)) if π

4
6 r 6 π

2
,

1 if r > π
2
,

which correspond respectively to a low pass filter and a high pass filter. For the Q orientation indices
q = 0, . . . , Q− 1, define also the following cone-shaped filters

Gq(r, θ) = Gq(θ) = αQ

(
cos

(
θ − πq

Q

)Q−1

✶|θ−πq

Q |6π
2
+ cos

(
θ − π(q −Q)

Q

)Q−1

✶|θ−π(q−Q)
Q |6π

2

)
,

3The formula given in [15] for the definition of the polar function L contains a small error of factor of two. The
corrected formulas reproduced here can be found in Appendix A of a later article [16].

4In practice this transformation is straightforward thanks to the C function atan2.
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where the normalizing constant αQ is given by

αQ = 2Q−1 (Q− 1)!√
Q(2(Q− 1))!

.

Then, the high, low and oriented filters are defined by

L0(r, θ) = L0(r) = L
(r
2

)
,

H0(r, θ) = H0(r) = H
(r
2

)
,

Bq(r, θ) = H(r)Gq(θ).

Given an image u, to compute the convolution u∗v using FFT one only needs the expression of the
DFT of v. The DFTs of the filter images h0, l0, l, bq, which we will denote respectively by ĥ0, l̂0, l̂, b̂q,

are defined as follows: For each filter f ∈ {h0, l0, l, bq}, the DFT f̂ is obtained by sampling the
corresponding analytical function F ∈ {H0, L0, L, Bq} in the continuous frequency domain according
to the formula

f̂m,n = F ◦ ρ
(
2πm

M
,
2πn

N

)
, (m,n) ∈ Ω̂M,N . (1)

The function F ◦ ρ is sampled M times along the x-axis and N -times along the y-axis, as illustrated
by Figure 4.

Figure 4: Discrete spatial domain ΩM,N and corresponding sampling grid of the continuous frequency
domain [−π, π]2 used for the definition of the DFT of the discrete pyramid filters. WhenM is different
from N the Fourier sampling grid cells are rectangular.

In Algorithm 1, each convolution of the form f ∗v (or f ∗u) where f is one of the filters {h0, l0, l, bq}
is performed in the Fourier domain as follows:

1. Compute the DFT
(
f̂m,n

)
, (m,n) ∈ Ω̂M,N , by sampling F according to Equation (1) where

M ×N is the size of the second image v.

2. Component-wise multiply f̂ and v̂ (which gives the DFT of f ∗ v).
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The down-sampling is also performed in the Fourier domain by extracting the central part of the
DFT (which is zero outside this region before down-sampling). In the end, the number of FFT calls
used by the pyramid decomposition algorithm (Algorithm 1) is PQ+ 3:

• One forward FFT to compute û.

• PQ+ 2 backward FFTs (involving images of different sizes) to compute the pyramid images.

2.1.4 Steerable Pyramid Reconstruction

One of the interesting features of the steerable pyramid is that it has been designed to be self-
inverting [18]. This means that reconstructing any image from its pyramid is possible and only
involves the very same filters as for the decomposition computation.

The steerable pyramid reconstruction procedure corresponds to the right part of the diagram
of Figure 3. The reconstruction algorithm is given in detail in Algorithm 2. As for Algorithm 1,
we describe the operations in terms of convolution in the image domain, but in practice all the
operations are performed as component-wise multiplications in the Fourier domain. In particular the
upsampling operation must be performed in the Fourier domain by extending the DFT with zeros
in the high frequencies, in order to be consistent with the decomposition procedure. In the spatial
domain, this corresponds to a zero-padding zoom by a factor of two. The number of FFT calls for
the reconstruction algorithm is the same as for the decomposition algorithm, namely PQ+ 3.

Algorithm 2: Steerable pyramid reconstruction

Input : A steerable pyramid having P scales, Q orientations, and corresponding image size
M ×N (see Figures 1 and 2 for illustration)

Output: An image u of size M ×N
1. u← low frequency residual.
2. for scale p = P to 1 do

3. Upsample u by a factor of two using zero-padding zoom (that is, extending the DFT of u
with zeros in the high frequencies)

4. u← u ∗ l.
5. For each orientation q = 0, . . . , Q− 1, convolve the subband at scale p and orientation q

with its corresponding filter bq and add the obtained image to u.
6. end

7. u← u ∗ l0.
8. Convolve the high frequency residual with h0 and add the obtained image to u.
9. Return u.

The steerable filters are designed so that each stage of the diagram of Figure 3 has a flat system
response [18]. More precisely here we have for all (r, θ) ∈ R×]− π, π],

H0(r, θ)
2 + L0(r, θ)

2 = 1

and for all (r, θ) ∈ [0, π]×]− π, π],

Q−1∑

k=0

Bq(r, θ)
2 + L(r, θ)2 = 1

(here putting the functions to the square corresponds to the double convolutions that occur in the
spatial domain when applying the decomposition followed by the reconstruction, see Figure 3). This

283



Thibaud Briand, Jonathan Vacher, Bruno Galerne, Julien Rabin

ensures that if the input of the reconstruction algorithm is the steerable pyramid of an image u, then
the output of the reconstruction algorithm is exactly the image u.

In terms of linear operators, if one denotes byA the matrix of the pyramid decomposition operator,
one easily sees that the matrix of the reconstruction operator is simply the transposed AT of the
decomposition matrix A. However, this reconstruction matrix AT also coincides with the pseudo-
inverse A† of the decomposition matrix A. Indeed, since ATA = Id, the pseudo-inverse of A is

A† =
(
ATA

)−1
AT = AT . In short, the pyramid reconstruction operator is the pseudo-inverse of

the decomposition operator [18]. This observation is of importance here since the reconstruction
operator will be applied to pyramids that do not belong to the range of A (i.e. to pyramids that
do not correspond exactly to the decomposition of one image). Indeed, after applying histogram
matching to each image of a pyramid, there is no guarantee that the resulting pyramid still lies
in the range of A. Since the reconstruction algorithm corresponds to the pseudo-inverse of the
decomposition, one can argue that it is the natural reverse operation even when applied to pyramids
that are outside the range of A.

2.2 Histogram Matching

Given an input image u and a reference image v of the same size, histogram matching consists in
changing the gray-level values of the input u so that it gets the same histogram as the reference
image v.

Histogram matching is known to be an ill-posed problem [2] since several solutions coexist. Our
histogram matching algorithm sorts the pixel list of the two images u and v, and assigns to the pixel
of u having rank k the gray-value of the pixel of v having rank k. This simple algorithm gives a
“perfect histogram matching”, in the sense that the output has exactly the same histogram as the
reference image while the relative rank of the input pixel is preserved. Besides, it is theoretically
well-founded since it corresponds to the optimal transport plan between the two discrete measures∑

m,n δum,n
and

∑
m,n δvm,n

[21, Chapter 1, Page 25].
The complete histogram matching procedure is summarized in Algorithm 3. Examples of his-

togram matchings are shown in Figures 5 and 6. If the reference image v is used several times for
histogram matching, one should store its sorting permutation τ to save computation time (which is
done in our implementation). The histogram matching procedure proposed here is different from the
one described in the Heeger-Bergen paper [8], which is subject to several unnecessary quantizations.

Algorithm 3: Histogram matching

Input : Input image u, reference image v (both images have size M ×N)
Output: Image u having the same histogram as v (the input u is lost)

1. Define L = MN and describe the images as vectors of length L (e.g. by reading values line by
line).

2. Sort the reference image v:
3. Determine the permutation τ such that vτ(1) ≤ vτ(2) ≤ · · · ≤ vτ(L).
4. Sort the input image u:
5. Determine the permutation σ such that uσ(1) ≤ uσ(2) ≤ · · · ≤ uσ(L).
6. Match the histogram of u:
7. for rank k = 1 to L do

8. uσ(k) ← vτ(k) (the k-th pixel of u takes the gray-value of the k-th pixel of v).
9. end

More generally, one can also match histograms of images having different sizes if the input image
length and width are multiples of the ones of the reference image. In this case, if for example
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(a) Input image (a Gaussian
white noise)

(b) Reference image (c) Output image

(d) Histogram of (b) (e) Histogram of (a) (f) Histogram of (c)

Figure 5: Example of histogram matching: The histogram of a Gaussian white noise is matched with
the histogram of the Lena image.

the reference v has size M × N and the input image has size rM × rN , with r = 2, 3, . . . , the
matching is done by calling Algorithm 3 with the input u and the larger reference image w obtained
by replicating r2 times each pixel of v. Equivalently, and more efficiently, this amounts to replacing
line 8 of Algorithm 3 by

uσ(r2(k−1)+i) ← vτ(k), for i = 1, 2, . . . , r2,

that is, the k-th block of r2 pixels of u takes the gray-value of the k-th pixel of v.

One known drawback of performing histogram matching with this method is that, for pixels
that have the same gray-level in the input image u, the final gray-level assignment depends on the
scanning order of the sorting procedure. However, since in practice we use this procedure with input
images u that takes float values (starting with a white noise image), the probability that several
pixels of u have the same gray-level is negligible. Hence we neglect the effect of this artifact, even
though practical solutions exist5.

A classical alternative for histogram matching is to apply the pseudo-inverse of the cumulative
distribution functions of v to the distribution function of u. One drawback of this method is that it
requires a convention for the pseudo-inverse of the cumulative distribution function, and it does not
necessarily lead to perfect histogram matching. However, one advantage is that it can be applied to
images having different sizes (without the multiplicity constraint described above).

5To avoid this artifact, one can randomly permute the pixels having the same gray-level. Alternatively, one can
add a small noise to the gray-values of u before sorting, similarly as in the method of [1]. The result of this random
dequantization is similar to using a random scanning order along groups of pixels having similar gray-level value (and
thus imposing total order on the pixels [2]), but is much easier to implement.
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(a) Input image (a pyramid im-
age of a Gaussian white noise)

(b) Reference image (a pyramid
image of Figure 1)

(c) Output image

(d) Histogram of (b) (e) Histogram of (a) (f) Histogram of (c)

Figure 6: Example of histogram matching of a pyramid image: The histogram of an oriented pyramid
image of a Gaussian white noise is matched with the corresponding image in Lena’s pyramid (see
Figure 1).

2.3 Texture Synthesis Algorithm for Grayscale Textures

We can now present the texture synthesis algorithm developed by Heeger and Bergen [8]. Starting
from a white noise image, histogram matchings are performed to the texture image alternatively in
the image domain and in the steerable pyramid domain. The motivation is that after a few iterations,
all the output histograms will match the ones of the input texture, and thus according to several
psychophysical experiments (see [8] and the references therein), the output texture will be visually
similar to the input texture. The algorithm is detailed in Algorithm 4.

An additional extension of the algorithm is to synthesize an output texture that is larger than
the input texture, under the condition that the output image length and width are multiples of the
input image length and width. In this situation, the steps of the algorithm are unchanged, except
that the histogram matching steps involve images having different sizes (as explained in the previous
section).

2.4 Extension to Color Images

The Heeger-Bergen algorithm relies on histogram matching and thus it is only well-defined for
grayscale images.

A first naive idea to extend the algorithm to RGB color textures is to apply it on each color
channel of the input texture. However synthesizing a color texture by considering that its three RGB
color channels are independent is not satisfying. Indeed, RGB color channels are highly correlated,
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Algorithm 4: Heeger-Bergen texture synthesis algorithm for grayscale images (without exten-
sion)

Input : Number of scales P , number of orientations Q, texture image u of size M ×N such
that M and N are multiples of 2P , number of iterations Niter

Output: Texture image v of size M ×N
1. Input analysis:

2. Compute and store the steerable pyramid with P scales and Q orientations of the input
texture u.

3. Output synthesis:

4. Initialize v with a Gaussian white noise.
5. Match the gray-level histogram of v with the gray-level histogram of the input u.
6. for iteration i = 1 to Niter do

7. Compute the steerable pyramid of v.
8. For each of the PQ+ 2 images of this pyramid, apply histogram matching with the

corresponding image of the pyramid of u.
9. Apply the image reconstruction algorithm to this new histogram-matched pyramid and

store the obtained image in v.
10. Match the gray-level histogram of v with the gray-level histogram of the input u.

11. end

12. Return v.

and consequently synthesizing a color texture by synthesizing independently its three color channels
does not respect the channels correlations, which leads to the creation of wrong colors. This is
illustrated by Figure 7 where the Heeger-Bergen algorithm for grayscale textures (see Algorithm 4)
is applied independently to the three channels of an input color texture.

(a) Color cube of (b) (b) Input texture (c) Output texture (d) Color cube of (c)

Figure 7: Independent channel synthesis in RGB space: The Heeger-Bergen algorithm for grayscale
textures (see Algorithm 4) is applied independently to the three RGB channels of the input color
texture (b). Notice the presence of wrong colors as attested by the differences between the RGB
point clouds of the two textures (the filtering process of the on-line demo [12] has been used to
display the RGB point clouds).

The solution proposed by Heeger and Bergen [8] is to change the RGB color space into an input-
adapted color space in which the independent channel synthesis gives good results. This new color
space is obtained by a principal component analysis (PCA) of the RGB point cloud corresponding to
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the input texture. Intuitively, in the PCA color space, the color channels are decorrelated6 and thus
nearly independent. Hence making the channels independent in the output texture does not affect
much the output quality.

We know describe in detail how the PCA color space is computed. For an RGB color image
u = (uR, uG, uB) of size M ×N it consists in the following operations:

• Compute the mean value m = (mR,mB,mG) of each RGB color channel.

• List the RGB pixel values of the centered image u−m in a matrix A ∈M3,MN(R).

• Compute the correlation matrix C = 1
MN−1

AAt.

• Diagonalize this 3× 3 real symmetric matrix: set C = PDP T where D is the diagonal matrix
containing the non-negative eigenvalues in decreasing order and P is the matrix of the
corresponding orthogonal change of basis matrix.

The complexity of this operation is linear in the number of pixels. Once the change of basis matrix
P is computed, to go from one RGB image v = (vR, vG, vB) to its representation in the PCA color
space of u, one does:

• change each RGB pixel (vR,i, vG,i, vB,i)
T into P T (vR,i −mR, vG,i −mG, vB,i −mB)

T .

Obviously, the reverse operation to go from an image v = (v1, v2, v3) given in the PCA color space
to the corresponding image in RGB color space is

• change each PCA pixel (v1,i, v2,i, v3,i)
T into (mR,mB,mG)

T + P (v1,i, v2,i, v3,i)
T .

A PCA channel decomposition of a color texture is shown in Figure 8. Observe that the dynamic
of the texture is mainly contained in the first principal component.

(a) Color texture (b) 1st principal component (c) 2nd principal component (d) 3rd principal component

Figure 8: PCA channels of a color texture (for visualization, the mean color of the texture is added
to each component). Note that the dynamic of the texture is mainly contained in the first principal
component. This observation is valid for most standard texture samples.

The Heeger-Bergen texture synthesis algorithm for RGB color textures is the following:

1. Compute the PCA color space of the input image u.

6Let us mention that the PCA channels are not totally decorrelated, only their intensity values are. This is because
the PCA only considers color correlations and not spatial correlations. See [7, Section 7] for a more detailed discussion
and the definition of an alternative color space for independent channel synthesis.
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2. Determine the channels of u in the PCA color space.

3. Apply the texture synthesis Algorithm 4 on each PCA channel. This gives an output texture
v in the PCA color space.

4. Convert the image v in the RGB color space by applying the procedure described above. The
obtained RGB image is the output of the algorithm.

An example of synthesis of an RGB texture using this algorithm is shown in Figure 9. One can
observe that thanks to the use of the PCA color space, the output texture does not present noticeable
wrong colors.

(a) Color cube of (b). (b) Texture sample. (c) Texture synthesized. (d) Color cube of (c).

Figure 9: Independent channel synthesis in PCA space: The Heeger-Bergen algorithm for grayscale
textures (see Algorithm 4) is applied independently to the three PCA channels of the input color
texture (b). Observe that the colors of the output texture are similar to the ones of the input, as
confirmed by the similarity between the two corresponding RGB color cubes.

2.5 Avoiding Artifacts Due to Non Periodicity

Since the pyramid decomposition computation is based on the DFT, it treats the input image as
if periodic. However, in practice real-world textures are never periodic. Consequently this periodic
edge handling artificially introduces discontinuities in the input texture. This may create artifacts
in the output texture as illustrated by the second image of Figure 11.

To cope with this problem, Heeger and Bergen propose to use a mirror symmetrization at the
border. Although this solution ensures that the input texture is indeed continuous at the border, it
is not perfect since it artificially introduces new orientations in the input texture (one should think
of the example of a slanted wood texture such as the one of Figure 11).

Following a previous approach [6], we propose instead to replace the input texture by its periodic
component, as defined by Moisan’s “periodic + smooth” image decomposition [13]. We recall in
Appendix A how the periodic component of an image is computed. The “periodic + smooth” image
decomposition is illustrated by Figure 10. In most cases, the periodic component is close to the
original texture, except for some color gradation. Indeed, the gradations are suppressed since they
lead to edge discontinuities.

We illustrate with Figure 11 the results of the texture synthesis algorithm with three different edge
handling: No edge handling, mirror symmetrization (as originally proposed by Heeger and Bergen),
and using the periodic component in place of the input. One can notice slight differences between
these different results. Observe that with the wood texture example, only the third solution does not
suffer from noticeable artifacts. More results are shown in the experiments section (see Figure 16).
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(a) Original texture (b) Periodic component of (a) (c) Smooth component of (a)

(d) Original texture (e) Periodic component of (d) (f) Smooth component of (d)

Figure 10: Example of “periodic + smooth” decomposition. The mean of the input is added
to the smooth component for visualization purpose. Case (a): the periodic component is close to the
original texture. Case (d): the periodic component differs from the original texture because of the
gradation (that is noticeable in the smooth component).

The blotchy artifact that can be noticed in the wood texture of Figure 11 is inherent to the
Heeger-Bergen algorithm and it can be explained as follows: the blotches correspond to the low
frequency residual of the pyramid. If the input texture has a non-negligible low frequency residual,
then the output texture also has a non-negligible low frequency residual (since they share the same
histogram) which results in a component that corresponds to a filtered white noise with a filter that
has the size of the smallest scale (P = 4 in this example). Since computing the periodic component
attenuates the low-frequency of the texture, when using the periodic component one attenuates the
low-frequency blotchy artifact. Another (more costly) solution to restrict this artifact is to increase
the number of scales, provided that the size of the images are divisible by a large power of 2 (see
Figure 15).

3 Experiments

In this section, we present several experiments illustrating the influence of the algorithm parameters.
Let us recall that these parameters are:

• The number of iterations Niter of the synthesis algorithm.

• The number of scales P of the steerable pyramid decomposition.

• The number of orientations Q of the steerable pyramid decomposition.
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Figure 11: Comparison between the textures synthesized with different edge handling. From left
to right: Original image, output without edge handling, output with mirror symmetrization at the
border, and output obtained by replacing the input by its periodic component. Note that for the
wood texture, only the third solution is acceptable.

• The edge handling option.

In the experiments that follow one varies one parameter while letting the other ones fixed to
their default values. These default values are Niter = 5, P = 4, Q = 4, and edge handling using the
periodic component. For each comparative experiment, the same Gaussian white noise image is used
for the initialization in order to facilitate the visual comparison of the output textures.

3.1 Influence of the Number of Iterations

As illustrated by Figure 12, the empirical convergence of the output texture is quite fast, and for most
textures five iterations are enough. However for certain cases with peculiar orientation or geometry,
the output quality slightly improves when increasing the number of iterations.

Let us note that, contrary to what is stated in the original article [8], we did not observe any
artifact when using a large number of iterations (e.g. 100), as illustrated by Figure 13. This may be
explained by the fact that our implementation makes use of perfect filters for the steerable pyramid
and that we do not make any quantification for the histogram matching procedure.

Even though we did not investigate in this direction, Figure 13 may suggest that the sequence
of texture images obtained at each iteration converges to a limit texture image: Indeed, when using
the same input noise, there is nearly no difference between the output texture after 20, 50 or 100
iterations. To the best of our knowledge there is no theoretical proof of this convergence, and we
believe that it would be a valuable theoretical justification for the whole procedure.

3.2 Influence of the Number of Orientations

Increasing the number of analyzed orientations often slightly improves the results (even if the texture
has no dominant orientations, see Figure 14). However, when the sample is isotropic this parameter
has no noticeable effects, and for most cases four orientations are enough.
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Figure 12: Influence of the number of iterations. From left to right: original image, result with
Niter = 1, 5 and 10. For the first examples the number of iterations has a noticeable influence while
it is not the case for the last one.
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Figure 13: Large number of iterations. From left to right: original image, result with Niter = 20,
50 and 100. Contrary to what is stated in [8], one does not observe any artifact when using a large
number of iterations.

3.3 Influence of the Number of Scales

As illustrated by Figure 15, the number of pyramid scales is the more influential parameter: using
the highest value of this parameter permits to take into account all scales of the texture. Besides,
using a large number of scales enables to eliminate the low frequency blotchy artifact discussed in
Section 2.5. Nevertheless, for textures made of incoherent small patterns the result only weakly
depends on the pyramid depth (see bottom of Figure 15).

3.4 Influence of the Edge Handling

As discussed in Section 2.5, the way of handling the edge discontinuity of the sample may have an
important impact on the results of the algorithm. Figure 16 completes Figure 11. One can observe
that using the periodic component gives better results for all the examples. Hence using the periodic
component enables to limit the low frequency blotchy artifact without using a large number of scales.

4 Conclusion

In this paper, we have described in detail the Heeger-Bergen texture synthesis algorithm [8]. In
addition of mathematical and algorithmic clarifications we proposed a minor improvement regarding
edge-handling in the analysis step by using the “periodic+smooth” decomposition [13]. Numer-
ous numerical experiments illustrate the influence of the different parameters of the algorithm and
demonstrate that the proposed ANSI C implementation reproduces the result quality of the original
paper [8].
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Figure 14: Influence of the number of orientations. From left to right: original image, result
with Q = 2, 4 and 8 (and default values Niter = 5 and P = 4).
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Figure 15: Influence of the number of scales. From left to right: original image, result with
P = 1, 4 and 8 (and default values Niter = 5 and Q = 4).

A Periodic Component Computation

We recall in this appendix how the periodic component of an image u is computed [13]. The above
description as well as the corresponding C code are from IPOL paper [5].
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Figure 16: Influence of the edge handling. From left to right: Original image, output without
edge handling, output with mirror symmetrization at the border, and output obtained by replacing
the input by its periodic component.

Given a discrete image u, the periodic component p of u is the unique solution of the problem
{

∆p = ∆iu,
mean(p) = mean(u),

where ∆ is the usual discrete periodic Laplacian (each point has four neighbors) and ∆i is the discrete
Laplacian in the interior of the image domain (points at the border of the image have only three or
two neighbors).

Relying on this characterization, the periodic component p of u is computed using the classic
FFT-based Poisson solver. More precisely p is computed by the following procedure:
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1. Compute the discrete Laplacian ∆iu of u.

2. Compute the DFT ∆̂iu of ∆iu.

3. Compute the DFT p̂ of p by inverting the discrete periodic Laplacian:





p̂m,n =

(
4− 2 cos

(
2mπ

M

)
− 2 cos

(
2nπ

N

))−1

∆̂ium,n, if (m,n) ∈ Ω̂M,N \ {(0, 0)}

p̂0,0 =
M−1∑

k=0

N−1∑

l=0

uk,l if (m,n) = (0, 0)

4. Compute p by inverse DFT.

Image Credits

Most of textures come from this website: http://www.lemog.fr/lemog_textures/ and are copyright free.

A few textures are personal pictures of one of the authors.

References

[1] A. Bevilacqua and P. Azzari, A high performance exact histogram specification algorithm,
in Proceedings of the 14th International Conference on Image Analysis and Processing, 2007,
pp. 623 – 628. http://dx.doi.org/10.1109/ICIAP.2007.4362846.

[2] D. Coltuc, P. Bolon, and J.-M. Chassery, Exact histogram specification, IEEE Trans-
actions on Image Processing, 15 (2006), pp. 1143 – 1152. http://dx.doi.org/10.1109/TIP.

2005.864170.

[3] A.A. Efros and W.T. Freeman, Image quilting for texture synthesis and transfer, in Pro-
ceedings of the 28th annual conference on Computer graphics and interactive techniques (SIG-
GRAPH), ACM, 2001, pp. 341–346. http://dx.doi.org/10.1145/383259.383296.

[4] A.A. Efros and T.K. Leung, Texture synthesis by non-parametric sampling, in Proceedings
of the Seventh IEEE International Conference on Computer Vision, 1999., vol. 2, IEEE, 1999,
pp. 1033–1038. http://dx.doi.org/10.1109/ICCV.1999.790383.

[5] B. Galerne, Y. Gousseau, and J.-M. Morel, Micro-texture synthesis by phase random-
ization, Image Processing On Line, (2011). http://dx.doi.org/10.5201/ipol.2011.ggm_rpn.

[6] , Random phase textures: Theory and synthesis, IEEE Transactions on Image Processing,
20 (2011), pp. 257 – 267. http://dx.doi.org/10.1109/TIP.2010.2052822.

[7] B. Galerne, A. Lagae, S. Lefebvre, and G. Drettakis, Gabor noise by example, ACM
Transactions on Graphics, 31 (2012), pp. 73:1–73:9. http://dx.doi.org/10.1145/2185520.

2185569.

[8] D.J. Heeger and J.R. Bergen, Pyramid-based texture analysis/synthesis, in Proceedings of
the 22nd annual conference on Computer graphics and interactive techniques (SIGGRAPH),
ACM, 1995, pp. 229–238. http://dx.doi.org/10.1145/218380.218446.

297



Thibaud Briand, Jonathan Vacher, Bruno Galerne, Julien Rabin
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