
Published in Image Processing On Line on 2014–07–01.
Submitted on 2013–03–19, accepted on 2013–06–28.
ISSN 2105–1232 c© 2014 IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
https://doi.org/10.5201/ipol.2014.81

2
0
1
5
/
0
6
/
1
6

v
0
.5
.1

IP
O
L

a
rt
ic
le

c
la
ss

An Analysis and Implementation of a Parallel Ball Pivoting

Algorithm

Julie Digne

Université Lyon 1, LIRIS-GeoMod, CNRS, France (julie.digne@liris.cnrs.fr)

Communicated by Thomas Lewiner Demo edited by Julie Digne and Miguel Colom

Abstract

The problem of surface reconstruction from a set of 3D points given by their coordinates and
oriented normals is a difficult problem, which has been tackled with many different approaches.
In 1999, Bernardini and colleagues introduced a very elegant and efficient reconstruction method
that uses a ball pivoting around triangle edges and adds new triangles if the ball is incident
to three points and contains no other points. This paper details an implementation and paral-
lelization of this algorithm.

Source Code

The ANSI C++ source code permitting to reproduce results from the on-line demo is available
at the IPOL web page of this article1. The Ball Pivoting Algorithm is linked with patent
US6968299B1, it is made available for the exclusive aim of serving as a scientific tool to verify
the soundness and completeness of the algorithm description.

Keywords: surface reconstruction; point cloud

1 Introduction

The Ball Pivoting Algorithm (BPA) is a powerful heuristic for reconstructing a triangular mesh
surface from a set of scattered 3D points. It was introduced by Bernardini et al. [2] and provided a
way to build an interpolating mesh in contrast with other research directions aiming at building an
approximating mesh ([10], [9], [3]).

The method is strongly linked to the α-shapes theory and sampling conditions for the ball pivoting
algorithm can be deduced from it ([6], [1]). The α-shape of a point set P is a filtering of its Delaunay
triangulation keeping only Delaunay facets whose three vertices lie on the surface of an empty-interior
1
α

-ball. Thus the ball pivoting algorithm computes a subset of the 1
r
-shape of the point set P and

sampling conditions for BPA can be deduced from the α-shapes (see the paper by Bernardini et al. [2]

1https://doi.org/10.5201/ipol.2014.81

Julie Digne, An Analysis and Implementation of a Parallel Ball Pivoting Algorithm, Image Processing On Line, 4 (2014), pp. 149–168.
https://doi.org/10.5201/ipol.2014.81

https://doi.org/10.5201/ipol
https://doi.org/10.5201/ipol
http://creativecommons.org/licenses/by-nc-sa/3.0/
https://doi.org/10.5201/ipol.2014.81
https://doi.org/10.5201/ipol.2014.81
https://doi.org/10.5201/ipol.2014.81


Julie Digne

for details). An improvement of this algorithm was later proposed by Digne at al. [5], attempting to
better preserve the details.

Let P be a sampling of a manifold M , the surface of a 3D object. This algorithm builds a
watertight reconstruction of M from P , provided P is dense enough. The water-tightness condition
is that an r-ball cannot pass through P without touching 3 points. The algorithm starts by putting
a ball in contact with three points (forming thus a seed triangle). The ball is then rotated around
two of these three points: it remains in contact with the two points and rotates around the axis they
form until it touches another point. Hence the creation of an expansion edge front, formed originally
with the three edges of the seed triangle and then expanded.

The remaining of this paper is divided as follows: Section 2 details the data structures used in
this implementation. Section 3 explains how spatial queries are handled, Section 4 explains the ball
pivoting implementation itself, Section 5 explains the main limitations of the Ball Pivoting in its
present state. Section 6 explains how the process is parallelized. Section 7 gives technical details
about the code. Finally, Section 8 presents experimental results.

2 Data Structures

This method requires two important data structures. First, a point sorting and searching structure
must be set up in order to access quickly range neighborhoods of a given position. Second, a surface
mesh connectivity structure must be constructed. This structure is a manifold with holes type
structure. The surface is guaranteed to be self-intersection free (no triangles will intersect each other
except at an edge or vertex, and at most two triangles can be adjacent to an edge). But the structure
will still be able to account for insufficient data by allowing for holes in the mesh: some edges will
only be adjacent to a single triangle. Such an edge will be called boundary edge.

2.1 Search Structure

To access quickly range neighborhoods we use an octree as a search structure dividing the space into
cells containing the points. The acceleration of the search structure is done through locational codes
as explained by Frisken and Perry [8] (see Section 3.1). We give in Table 1 a short benchmark of
computation times for finding range neighborhoods of all points in a point cloud containing 362269
points with diameter 0.256. See Section 3.1 for details on these locational codes.

radius (% size) mean number of neighbors computation time
0.0005 (0.20%) 5.24 3s
0.001 (0.39%) 22.00 5s
0.002 (0.78%) 88.29 15s
0.01 (3.9%) 2301.32 8min19s

Table 1: Typical neighbor search times for all points of a point cloud containing 362269 points with
diameter 0.256. The computation time is roughly linear with respect to the number of neighbors.
The point cloud used here is the Stanford Bunny (see Table 6 and Figure 10).

2.2 Mesh Structure

The chosen mesh structure describes a manifold with boundaries, we describe it for completeness.
It consists in a set of triangular facets, edges and vertices. Each vertex stores its adjacent triangles

150



An Analysis and Implementation of a Parallel Ball Pivoting Algorithm

and edges. Each edge stores both of its end vertices and at most two adjacent facets.
We will use a specific vocabulary in the description below:

• Sample: a point of the input point set.

• Seed facet: an orphan facet built to serve as starting facet for the triangulation expansion.

• Expansion front: a set of edges from which the triangulation will be expanded. An edge of the
expansion front will be called front edge; it has only one adjacent facet.

• Inner edge: an edge with two adjacent facets. This edge is frozen, its neighboring facets will
not change anymore and it is not on the expansion front.

• Boundary edge: an edge with only one adjacent facet but which does not belong to the expan-
sion front.

• Front vertex: a vertex which belongs to a front edge.

• Inner vertex: a vertex belonging to at least one facet and no front or boundary edge.

2.3 Guarantees for Triangles and Edges

The input of the algorithm is a set of oriented samples. Therefore, we must ensure that the created
mesh remains consistent with this orientation throughout the reconstruction process. To do so,
before adding a facet to the triangulation, we check that its normal is consistent with the normals
of its three vertices: the normal of the triangle should have positive scalar product with each of the
normals of the vertices. If it is not the case the facet is discarded.

By convention, a created facet will store its three vertices v0, v1, v2 ordered so that the normal of
the triangle has positive scalar product with (v1 − v0)⊗ (v2 − v0).

3 Implementation Details: Spatial Queries

The neighborhood queries are done through an octree structure. Although these neighborhood
queries are not per se part of the ball pivoting algorithm, we detail the implementation of spatial
queries for completeness. First all samples are sorted into an octree, that is, a subdivision of the
space into cells. Each cell has eight children cells obtained by splitting the cell into eight identical
cubes. The splitting process stops when the desired octree depth is obtained. Note that even if the
shape has a strong anisotropy, we will still use hypercubes and not hyperrectangles for simplicity
reasons.

We first review briefly the locational codes used to speed up neighbor searches explained by
Frisken and Perry [8]. Then we explain how these codes are used to get the neighbors of a given
point.

3.1 Locational Codes

We summarize here the vocabulary used for the octree description

• Octree: a data structure in which each internal node has at most eight children. Each node
corresponds to a subset of the space called cell. In our case, we will not create nodes if no
sample lies inside their corresponding cells (unbalanced octree).

151



Julie Digne

• Cell : a cubic subset of the space corresponding to a node of the octree. Each cell has one
parent (except for the root, see below) and at most eight children. It contains pointers to its
parent and children, its size, depth, origin point and its child index (relative position of the
cell with respect to its parent midpoint). In addition a leaf cell maintains a list of the input
samples it contains.

• Root : the first node of the octree. This node has no parent cell. Its cell corresponds to the
whole bounding box of the point set.

• Leaf : the last nodes of the octree. These nodes have no children and will be the ones whose
cells actually contain the samples, as a single list.

• Child : each child cell corresponds to a subset of its parent. The children are numbered as
explained in Figure 1.

• Octree Depth: the number of node subdivisions. For example, an octree with depth 0 corre-
sponds to an octree with a single cell (the root). An octree with depth 1 corresponds to the
root and its eight children.

• Depth of a cell : depth of the corresponding node in the octree. The depth of the root is equal
to the octree depth and the depth of the leaves is 0.

• octree.origin: corner of the bounding box. All samples s of the point set are such that
octree.origin.x < s.x ≤ octree.origin.x + octree.size (similarly for s.y, s.z). A similar def-
inition holds for cell.origin.

• octree.size: size of the bounding box. A similar definition holds for cell.size.

For simplicity, we will identify the nodes with their corresponding cells, in the remaining of this
paper.

The search in the octree structure is accelerated using locational codes [8]. In a nutshell a
locational code of a given position p with coordinates p.x, p.y, p.z is the triplet:

(bp.x− octree.origin.x
octree.size

·c, bp.y − octree.origin.y
octree.size

·c, bp.z − octree.origin.z
octree.size

·c)

expressed in binary notation. Read from left to right, these codes yield the path in the octree starting
from the root to the leaf actually containing p. They can be derived for trees in any dimension (binary
tree, quadtree, octree, n-tree, . . .). In a binary tree, for example, the code 1011 encodes the path
starting from the root cell then right - left - right - right child.

In the following pseudo-code, we denote by binsize the binary notation of 2octree depth. We will
also perform logical shifts operations: >> l means shifting the binary code l bits to the right. For
example, 1000 >> 3 yields 1, suppressing the last three bits of the code. Similarly << l means
shifting the binary code to the left. For example, 1 << 3 gives 1000. & corresponds to the AND
operator between two codes. For example, 10010&01011 gives 00010. The main operations using
these locational codes are detailed below:

• Computing the code of a cell: the cell codes are computed when the tree is built. The codes
are computed recursively as explained in Algorithm 1.

• Computing the code of a sample point: the code of a sample point p is computed as the integer
part of p.x−octree.origin.x

octree.size
· binsize expressed in binary notation (and similarly for p.y and p.z).

152



An Analysis and Implementation of a Parallel Ball Pivoting Algorithm

• Translating the code into a path in the octree: the code gives a succession of child indices
composing the path. For example (01, 11, 10) means the child index 3 followed by 5 (see line 10
of Algorithm 1).

• Getting the code of the left neighboring cell: the code is given by (cell.xloc − 1, cell.yloc −
1, cell.zloc− 1).

• Getting the code of the right neighboring cell at level l: the code is given by (cell.xloc +
2l, cell.yloc + 2l, cell.zloc + 2l). For leaves, it means computing (cell.xloc + 1, cell.yloc +
1, cell.zloc+ 1)

Algorithm 1: BuildOctree(P , r). Octree construction

Input: A set of points P , a loose bounding box given by a point o and a size s, a depth depth
Output: An octree

1 binsize← binary(2depth)
2 Initialize the octree: build an empty root cell, set its size to s, its origin to o, and its level to
depth

3 for p ∈ P do
4 Compute the codes xloc, yloc, zloc of p as xloc = binary(floor(p.x−octree.origin.x

octree.size
· binsize))

(similarly for yloc andzloc)
5 cell← root of the octree
6 l← depth− 1
7 while cell depth > 0 do
8 childbranchbit = 1 << l
9 x = xloc&childbranchbit >> l (and similarly for y, z)

10 childindex = (x << 2) + (y << 1) + z
11 if cell.child(childindex) does not exist then
12 create cell.child
13 child.size← 1

2
cell.size

14 child.origin.x← cell.origin.x+ x · child.size (similarly for y, z)
15 child.depth← cell.depth− 1
16 child.xloc← cell.xloc+ (x << child.depth) (and similarly for yloc and zloc)

17 cell = cell.child(childindex)
18 l← l − 1

19 Add p to cell.points

Algorithm 1 sums up the octree construction method. We give below some details:

• Line 9: childbranchbit is a binary integer that in base 2 has a single 1 at position l+ 1 starting
from the right. For example 1000 for level 3. Then (xloc&childbranchbit) >> l gives either 1
or 0: the next direction to take in the path to the leaf.

• Line 10: the child index gives the index (between 0 and 7) corresponding to the child on the
path at depth l (see Figure 1 for the numbering of the children). It is obtained by concatenating
the bit at position l in the three codes xloc, yloc, zloc.

• Line 14: the origin of the newly created cell is easily deduced from the locational code.

153



Julie Digne

0 4

5

73

1

2 6

000 100

101

111011

010

001

110

O x

y

z

Figure 1: Numbering of the children of a cell.

• Line 16: to get the code of the child cell, one simply has to add bit x to the code of the parent
cell cell.xloc (and similarly for y and z).

We give in Figure 2 an example of the codes involved in the building of a binary tree. The process
is identical to the one of an octree (except that three separate codes will be required for an octree,
one per dimension).

3.2 Neighborhood Queries

In the whole paper we will denote by P the point cloud and by Nr(p) the range neighborhood of
radius r centered at p, i.e. Nr(p) = {q ∈ P| ‖q − p‖ ≤ r}.

Algorithm 2: Nr(p) = getNeighbors(p,P , r). Finding the neighbors with fixed radius of a
given point (see the text for details)

Input: An octree containing a point cloud P , a query point p, a radius r
Output: A set of neighbors Nr(p)

1 l← depth corresponding to radius r
2 Cl ← cell containing p at level l
3 Cells← cells of level l adjacent to Cl and intersecting B(p, r)
4 for C ∈ Cells do
5 for q ∈ C do
6 if ‖p− q‖ ≤ r then
7 q is added to Nr(p)

The spatial query method is explained in Algorithm 2 and details of each important step are
given in the text below.

• Line 1: the input radius r corresponds to a depth l in the octree. l is chosen to be the smallest
depth such that the cells of depth l have a size superior to 2r.

• Line 2: to find the cell Cl of level l that contains p, one has to convert the coordinates of p into
locational codes and follow the path given by those codes starting from the root. Notice that
Cl is not necessarily a leaf depending of the chosen radius and octree depth.

154



An Analysis and Implementation of a Parallel Ball Pivoting Algorithm

Published in Image Processing On Line on 2013–00–00.
Submitted on 2013–03–19, accepted on 2013–06–28.
ISSN 2105–1232 c© 2013 IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
http://dx.doi.org/10.5201/ipol.2013.81

2
0
1
3
/
0
7
/
1
9

v
0
.4

IP
O
L

a
rt
ic
le

c
la
ss

An Analysis and Implementation of a Parallel Ball Pivoting

Algorithm

Julie Digne1

Université Lyon 1, LIRIS-GeoMod, CNRS, France (julie.digne@liris.cnrs.fr)

0000

0000

0000 0100

1000

1000

1000 1010

1010 1011

1100

1100 1110

Published in Image Processing On Line on 2013–00–00.
Submitted on 2013–03–19, accepted on 2013–06–28.
ISSN 2105–1232 c© 2013 IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
http://dx.doi.org/10.5201/ipol.2013.81

2
0
1
3
/
0
7
/
1
9

v
0
.4

IP
O
L

a
rt
ic
le

c
la
ss

An Analysis and Implementation of a Parallel Ball Pivoting

Algorithm

Julie Digne1

Université Lyon 1, LIRIS-GeoMod, CNRS, France (julie.digne@liris.cnrs.fr)

0 2.5 5 6.25 6.875 7.5 8.75 10

0000 0100 1000 1010 1011 1100 1110

7.1

Figure 2: Example of an unbalanced binary tree of depth 5 representing segment [0, 10] and the
locational codes of the cells (top). Corresponding partition of the 1D-segment (bottom). 7.1 has
binary code binary(floor(0.71 · 24)) = binary(11) = 1011 and the cell it belongs to is depicted in
red in both tree and segment representations. Other examples can be found in the paper by Frisken
and Perry [8].

• Line 3: since r is less than half the size of the cells of level l, the number of neighboring cells
intersecting the ball of radius r centered at p is at most 8 (including Cl). In each direction
x, y, z, the ball can only intersect other cells on one side of Cl. To get those cells, one computes
the corresponding locational codes, as explained above, and gets the cells accordingly.

4 Implementation Details: the Ball Pivoting Algorithm

Short Preliminary: Elementary Relation in Triangles

This small section only details how the circumcenter of a sphere passing through three points and
with given radius r is found (if it exists). First, a sphere passing through all points is necessarily
located on a line passing through the circumcenter of the triangle and orthogonal to the triangle
plane. Let us consider triangle ABC, and denote by a (resp. b, c) the size of the triangle side
opposite to vertex A (resp. B, C). Then the circumcenter H of ABC has barycentric coordinates:(

a2(b2 + c2 − a2), b2(a2 + c2 − b2), c2(a2 + b2 − c2)
)

and the square circumradius is

r2c =
a2 · b2 · c2

(a+ b+ c) · (b+ c− a) · (c+ a− b) · (a+ b− c)
.

Thus, such a sphere exists only if r2 − r2c ≥ 0. Let us denote by n the normal to the triangle plane,
oriented such that is has a nonnegative scalar product with each of the normals of the vertices.
Provided r2 − r2c ≥ 0 the sphere exists and the center O of the sphere is:

155



Julie Digne

O = H +
√
r2 − r2c · n.

By convention, we only consider spheres with circumcenter above the triangle plane.

4.1 Overview

The Ball Pivoting algorithm consists in two steps:

• Finding a seed triangle: the algorithm looks for three orphan vertices that lie on the surface of
an empty-interior sphere of given radius r.

• Expanding the triangulation: triangles are added to the triangulation by pivoting a ball around
front edges until no more front edge remains.

If the point cloud is not r-connected, then the expansion step will stop before all points are
triangulated. Therefore another seed must be found as shown in Algorithm 3, and both steps must
be alternated. In addition to this iterative process, we add a small post-processing step in the end,
to fill the remaining triangular holes, that might occur due to numerical instabilities for example (see
Section 7.3).

Algorithm 3: Reconstruct(P , r). Ball Pivoting Reconstruction

Input: An oriented point cloud P , a radius r
Output: A surface mesh T

1 while A new seed can be found do
2 T = FindSeedTriangle(P , r) (Algorithm 4)
3 T = ExpandTriangulation(T,P , r) (Algorithm 5)

Both steps will be explained in more detail in the remainder of this section.

4.2 Finding a Seed Triangle

The search for a seed triangle is the first step of this algorithm: it starts with a single point; and
tests for each set of two neighbors if a triangle can be built such that its circumsphere with radius
r has an empty interior. In practice more than one triangle can fit the description. The steps are
detailed in Algorithm 4 below.

The key steps of Algorithm 4 to find a triangulation seed are explained below:

• Line 2: if a seed triangle incident to p exists, then all its vertices lie in N2r(p). Therefore it is
enough to reduce the search to this neighborhood.

• Line 4: three vertices are compatible if the normal to the triangle they form has positive scalar
product with each of the normals of the vertices.

• Line 6: the r-ball passing through p, q, s is entirely included in the ball passing through p with
radius 2r. Therefore to check that the points are in empty ball configuration, one only needs
to compute the center c of the r-ball (Section 4), and traverse N2r to check that no point is in
the interior of the r-ball centered at c.

156



An Analysis and Implementation of a Parallel Ball Pivoting Algorithm

Algorithm 4: T = FindSeedTriangle(P , r). Finding a seed triangle in the point cloud (see
text for details)

Input: An oriented point cloud P sorted in an octree; a radius r
Output: A seed triangle T

1 for p ∈ P do
2 Look for all points in a ball neighborhood N2r(p) sorted by increasing distance
3 for (q, s) ∈ N2r(p) do
4 if p, q, s are not compatible then
5 Continue

6 if p, q, s are in empty ball configuration then
7 return a facet with vertices (p, q, s)

8 if No Facet was found then
9 exit

Once a seed triangle is found, its three edges are added to the set of expansion front edges.
As explained in Section 2.3, facets will store their vertices in a particular order. Throughout the
triangulation process, when an edge e is created, it has a single adjacent facet formed by the end-
vertices of e and an opposite point v. Edge e will be oriented coherently with the facet orientation:
(e.target−e.source)⊗ (v−e.source) must have positive scalar product with the normal to the facet.
If it is not the case the source and target of the edge are switched. This edge orientation is only valid
as long as the edge has only one adjacent facet (front or boundary edge). If the edge has two adjacent
facets, the orientation is not valid with respect to the last-added facet, but it has no consequence
since this edge will no longer intervene in the triangulation (it is frozen). Thus, edges in the edge
front are always oriented coherently (the target vertex of one edge is the source vertex of the next).

4.3 Expanding the Triangulation

Expanding the triangulation is done by considering edges of the edge front. Let us denote by e an
edge of the expansion front. It has only one adjacent facet f (by construction there are no orphan
edges). We proceed by rotating the ball of radius r from its initial position as r-circumsphere of f
around edge e until it meets another point v. We then test if the sphere is empty or not. If the
sphere is empty we can create a new facet from e and v. This ball rotation is illustrated in Figure 3.

e

Figure 3: A rotating ball

Several cases (illustrated in Figure 4) are possible:

157



Julie Digne

• Expansion case: v is an orphan vertex. A new facet is created, e is removed from the expansion
front, and the two newly created edges are added to the front. The front size increases by 1.

• Gluing case: v is not an orphan vertex (it belongs to a front edge), but is not linked to the
endvertices of e. In this case, e is removed from the front. A new facet is created and the two
newly created edges are added to the front. The front size increases by 1.

• Hole filling case: v is already linked by edges to the two endvertices of e. A new facet is created
and e is removed from the expansion front along with the edges linking v to e. The front size
decreases by 3.

• Ear filling case: v is linked to only one of e’s endvertices by a front edge e′. A new facet is
created from e and e′ which are both removed from the front. Only one edge is created and
added to the front. The front size decreases by 1.

f
e

v

(a) Expansion case

f
e

v

(b) Gluing case

e f
v

(c) Hole filling case

e

v
f

(d) Ear filling case

Figure 4: Several cases for rotating the ball around an edge. The existing facets are depicted in
light gray. The edge e around which the ball is pivoting is depicted using a bold red segment, the
candidate vertex v is depicted using a red dot. The resulting facet f is depicted in red. Active edges
are drawn with bold lines.

We ensure that each vertex will be manifold (i.e. it will not be a junction between two surface
sheets) by checking that, in the gluing case, the candidate vertex is not an inner vertex. We ensure
that each edge is manifold by checking that when the facet to be created involves an existing edge
(hole filling and ear filling cases), this edge is a front edge.

The process is summed up in Algorithm 5. Some of the steps of this algorithm call for an
explanation:

• Line 3: the pop() command removes and returns the first element in the list container, effec-
tively reducing the list size by one.

• Line 5: an edge in the edge front can still have an inner or boundary tag. For example, in the
ear filling and hole filling cases (see Figure 4), the facet creation implies turning more than one
front edge into inner edges.

• Line 6: the findCandidate method is explained in Algorithm 6.

• Line 10: when a facet is created from an edge and a vertex, one first looks if the edges end
vertices are already linked by an edge to the vertex. If it is not the case the edges are created.
The facet is then created and stored.

• Lines 11 and 12: those edges were created or reused during the facet creation.

158



An Analysis and Implementation of a Parallel Ball Pivoting Algorithm

Algorithm 5: T = ExpandTriangulation(T,P , r). Expanding the triangulation (see the text
for details)

Input: An input seed triangle T , a point cloud P to triangulate, a radius r
Output: A surface mesh T

1 Add the three edges of T to edge front
2 while edge front is not empty do
3 e← edge front.pop()
4 if e is tagged as boundary or inner edge then
5 Continue

6 v ← FindCandidate(e,P , r)
7 if v == NULL then
8 Tag e as boundary edge
9 Continue

10 Create facet f(e, v) and add it to T
11 es ← edge linking e.source and v
12 et ← edge linking e.target and v
13 if es has two adjacent facets then
14 Tag es as inner edge
15 else
16 add es to the edge front

17 if et has two adjacent facets then
18 Tag et as inner edge
19 else
20 add et to the edge front

• Lines 13 and 17: if the edges were created during facet creation, then they must have only
one adjacent facet. Otherwise if they were re-used, they have two adjacent facets and are now
inner edges and tagged as such.

Let us now detail the key-steps of Algorithm 6 (findCandidate method):

• Line 6: to look for all potential candidates, one can restrict the search to a neighborhood of
radius r′ = ‖m − c‖ + r instead of 2r (as used in the search for a seed). This is simply due
to the fact that ‖m − c‖ = ‖m − cnew‖, where cnew is the center of the r-ball of the triangle
formed by the edge and the candidate.

• Line 11: e and v are compatible if and only if (e.source− e.target)⊗ (v− e.target) has positive
scalar product with the normals of v, e.source and e.target.

• Line 15: to compute the angle, we compute the dot product between cnew−m
‖cnew−m‖ and c−m

‖c−m‖ ,
by taking the arc-cosine, one gets an angle θ. The sign ambiguity is removed by considering
((c−m)⊗ (cnew −m)) · (e.target− e.source), if it is negative, replace θ by 2π − θ.

• Line 16: to check that the ball is empty, one traverses the neighborhood Nr′(m) and checks that
no points is in the interior of the r-ball centered at cnew. It avoids querying for the neighbors
of cnew.

159



Julie Digne

Algorithm 6: v = FindCandidate(e,P , r). Finding a vertex v to create a facet with edge e
(see the text for details)

Input: A front edge e, a point cloud P , a radius r
Output: A vertex to be linked with e

1 c← center of the r-circumsphere of the facet adjacent to e
2 m← e.midpoint()
3 r′ = ‖m− c‖+ r
4 θmin = 2π
5 Find Nr′(m) the set of all points in P within radius r′ of m (Algorithm 2)
6 L← ∅
7 for v ∈ N2r(m) do
8 if v is an inner vertex, or belongs to e then
9 Continue

10 if v is not compatible with e then
11 Continue

12 Compute the r-circumsphere center cnew of the triangle (e, v)
13 if cnew does not exist then
14 Continue

15 Compute the angle θ between c−m and cnew −m
16 if e, v are in empty ball configuration and θ < θmin then
17 candidate = v
18 θmin = θ

19 if No vertex is found then
20 return NULL
21 else
22 return candidate

4.4 Post-Processing

At this point, there may remain holes in the triangulation, either due to a lack of points, (acquisition
holes) or to some bad normal orientation that would cause the manifold test to fail. To avoid that, we
added an extra post-processing step, that looks for triangular holes: three boundary edges forming
a loop, and creates a triangle if the hole boundary orientation is coherent. More precisely, for a
boundary edge e one looks for two neighboring boundary edges e1 and e2 such that e.source =
e2.target, e1.source = e.target and e1.target = e2.source (in other words, the three edges form an
oriented loop).

5 Known Limitations of the Method

The ball pivoting algorithm is known to be very sensitive to the chosen ball radius. A small radius will
tend to generate more surface holes and possibly split the shape into several connected components.
A larger radius can induce detail loss. Both those limitations are illustrated in Figure 5.

To deal with radius dependence, Bernardini et al. propose to use several radii instead of a single
one. The user then provides a series of radii and the method is applied starting with the smallest
radius. The set of boundary edges from this radius is then used as the front edge to rotate the ball

160



An Analysis and Implementation of a Parallel Ball Pivoting Algorithm

(a) Detail loss (b) Hole creation (c) A possible correction: using
multiple radii

Figure 5: Limitations for the Ball Pivoting Algorithm: detail loss and hole creation due to a too
large radius (left) and a too small one (middle). A possible solution is to use multiple radii (right):
here three different radii are used successively from smallest radius to largest one, allowing for the
recovery of details and the filling of the holes.

with increased radius. We give in Figure 6 the results of using a single radius 0.0003, two successive
radii 0.0003 and 0.0005, and finally three radii 0.0003, 0.0005, 0.002. Table 2 sums up the time spent
(without any parallelization) and mesh quality obtained for the three reconstructions. As can be
seen, using too small a radius yields a mesh with a lot of holes, using a sequence of radii allows for
creating a watertight mesh. The choice of an adequate radius or series of radii is in itself a problem,
for which we give a very naive heuristic below.

Figure 6: Reconstructing the Stanford Bunny point cloud, with a single radius (0.0003), two radii
(0.0003; 0.0005) and three radii (0.0003; 0.0005; 0.002).

Radius choice The choice of the radius parameter is a difficult one. We propose a naive way to
estimate this parameter given the size s of the bounding box and the number of samples N . If the
shape was a perfect sphere, then the surface of the equivalent sphere would be πs2, thus the number
of points per unit surface would be N

πs2
. The experimentations done on several shapes led us to select

a radius such that, in average, the number of points per range neighborhoods is around 20. Then

an estimation of the radius is r =
√

20
N
s which is the one proposed in the IPOL demonstration of

the algorithm. This radius is only a rough estimate and should only be considered as such. When
building the octree a more adapted radius can be estimated by considering the octree statistics (the

161



Julie Digne

Radius Time(s) vertices facets boundary edges
0.0003 10s 318032 391898 272832

0.0003; 0.0005 21s 356252 698963 22727
0.0003; 0.0005; 0.002 29s 361443 713892 7897

Table 2: Computation time and watertight quality of the reconstructed surface depending on the
radius quality. When choosing a small radius, the created mesh contains numerous holes (corre-
sponding to a high number of boundary edges) and a relatively low number of vertices: data points
are missed by the reconstruction. On the contrary, when using multiple radii, the mesh has fewer
holes (fewer boundary edges) and more vertices. The original point set contains 362269 points. The
corresponding reconstructions are shown in Figure 6

average number of points per non-empty cell at each scale). Let l be the scale where there are roughly
20 points in average, then a better estimate can be obtained by taking the radius equal to half the
size of the cells at scale l.

Algorithm modification for multiple radii Using multiple radii does not change radically the
algorithm. Assuming we are given a series of radii (ri)i=0,··· ,n, we start by performing the regular BPA
reconstructions with radius r0. When the reconstruction with radius ri is over, we consider the set of
boundary edges and test for each boundary edge if its adjacent facet is in empty ball configuration
for radius ri+1, if it is the case, the edge is removed from the set of boundary edges and added to
the front. Then the front expansion is performed again. The process is iterated until no radius is
available anymore. An important aspect is that no seed triangle search is performed for radii ri with
i ≥ 1, only front expansions.

6 Parallelization

6.1 Principle

The code can be well parallelized since it is a front propagation method. We use a shared memory
parallelization method: each thread accesses the shared memory and processes independently a part
of the data. More practically, we use the octree data structure to sort cells into sets, each set
containing cells that can be processed independently as shown in Figure 7.

Processing a cell consists in finding all front edges contained (even partly) in the cell and ex-
panding the front from them while ensuring that all added vertices remain in the dilated cell (i.e. in
the cell or in a narrow band around the cell as depicted in Figure 7). Once the expansion is done,
the algorithm looks for a seed triangle, and, in case such a seed is found, expands the new front
until no front edge remains. Since these dilated cells do not intersect, one can safely process them
simultaneously. After all cells in the batch have been processed, the sets of created facets are merged,
and the next batch of cells is processed (Figure 7: first red cells are processed simultaneously then
yellow, green and blue cells).

There is no guarantee at all that the result of the parallelized version of the algorithm will provide
the same result as the single-threaded version. Indeed, choosing N different seeds and propagating
from these seeds is not equivalent to starting from a single seed and propagating from a single front.
This parallelization strategy ensures that no additional triangulation stitching step is required in
the single-radius case: once all cells are processed, the final triangulation is available. In the case
of multiple radii, the parallelization is slightly more complicated. Indeed the seed facets are only

162



An Analysis and Implementation of a Parallel Ball Pivoting Algorithm

Figure 7: BPA parallelization in 2D. Cells that can be processed simultaneously are depicted in the
same color. The first set of cells is depicted in red and the corresponding dilated cells are contoured
in dashed red (left). The next set of processed cells is depicted in yellow, then in green and the last
one in blue. Dilated cell contours are omitted on the last three figures for clarity.

looked for with the first radius: other radii will expand the front edge but will not create new seed
facets. In that case, there is no guarantee that the front will not reenter an already processed cell:
each set of cells can still be processed independently but after all batch of cells have been processed,
there may remain some front edges. Therefore we add a small step that expands the triangulation
globally from these edges. Fortunately, in practice, only a very limited amount of such edges remain
so that this final expansion is not time-consuming.

Finally, the parallelization done here is not the same as the out-of-core extension proposed in the
original article. Its goal is not to be able to handle larger data, but to accelerate the computation.

6.2 Parallelization Detail

Algorithm 7: Parallelization of the Ball Pivoting Algorithm (see text for details)

Input: An oriented input point cloud P sorted into an octree with a depth corresponding to
the given radius r

Output: A surface mesh T
1 d← 2 · r
2 l← smallest level at which cells have size greater than 2d
3 for i = 0 · · · 8 do
4 cells← cells of the octree at level l with child index i
5 for C ∈ cells do in parallel
6 Cd ← dilated cell C with bandwidth d
7 Find a seed inside Cd

8 Expand the triangulation (Algorithm 5) while ensuring that all vertices stay in Cd

The details are explained in Algorithm 7. Some important steps are explained hereafter:

• Line 1: the bandwidth to dilate the cell is chosen to ensure that once a dilated cell is processed,
the triangulation front will not enter the cell again.

• Line 4: recall that each cell of the octree encodes its child index as explained in Figure 1.

• Line 8: the three vertices of the seed must lie inside the dilated containment cell Cd. When
the ball is pivoted around an edge, if the candidate vertex does not belong to Cd, the edge
is tagged as active, but still removed from the expansion set and no facet is created. On the

163



Julie Digne

Point set Number of Points Radii
Computation Time

Single-threaded Multi-threaded (4 cores)
Bunny 360K 0.0003; 0.0005; 0.002 29s 12s
Dragon 1.5M 0.0003; 0.0005; 0.001 58s 41s

Pyramid 1M 0.3; 0.4; 0.6 99s 68s

Table 3: Comparisons of single-threaded and multi-threaded versions of the code on several different
point sets with different radii. The tests were done on a 4-core laptop, using the single-threaded
version or the parallel version (-p option). The reconstructed shapes are shown in figures 10 and 11.

contrary, if no candidate at all is found (within Cd or outside of Cd), the edge is added to the
set of boundary edges.

The parallelization allows for much faster computation times as shown in Table 3. The compu-
tation time is strongly dependent on the sampling of the shape: if a single seed triangle search is
needed, then it will be much faster than if this search has to be done a lot of times (since expanding
the front is faster than looking for seeds).

7 Code

7.1 Dependencies

The code provided is a stand-alone C++ code, available at https://doi.org/10.5201/ipol.2014.
81. It uses the C++ standard template library extensively. The user can choose between the single-
threaded implementation and its parallel version. The single-threaded version does not rely on any
external libraries. The parallelization is done through OpenMP 2, a standard API for shared memory
multiprocessing programming. The code was tested successfully on Ubuntu 12.04, 12.10 and Debian
6.0.7 with g++ 4.4 or 4.7, and on MacOs 10.8 using g++4.8.0. The compilation is done through the
CMake build system to be cross-platform. The code compiles with g++ and with clang, but there is
no support for OpenMP with the clang compiler, so that the parallelism is deactivated in that case.

7.2 Integration in a Larger Project

The code is templated and the structures are kept as simple as possible in order for a better integration
into different C++ projects. In particular, it should be easy to interface it with the CGAL library [7]
and thus benefit from CGAL geometry kernels. Nevertheless, the goal here is to have a standalone
code, avoiding the need to link against such a heavy library as CGAL.

7.3 Numerical Robustness

The current implementation relies heavily on geometric tests (e.g. to know whether a point lies within
a sphere given by a point and a radius, to know if a point lies on the right side of a potential triangle,
etc.). These problems are known to generate numerical robustness problems potentially dramatic
for global structures such as Delaunay. A solution to that problem is to use exact arithmetic, which
is very time-consuming. An alternative is to use robust arithmetic through robust predicates (i.e.
predicates that will give consistent results) as described in the paper by Shewchuk [11]. Yet in our

2The OpenMP API specification for parallel programming. http://openmp.org.

164

https://doi.org/10.5201/ipol.2014.81
https://doi.org/10.5201/ipol.2014.81
http://openmp.org


An Analysis and Implementation of a Parallel Ball Pivoting Algorithm

case the consequences of not using any robust predicates is not so dramatic since the construction of
the mesh is incremental and local. A numerical instability will only affect the choice of a particular
triangle instead of another but will not create disturbing global artifacts.

8 Experiments

8.1 An Artificial Shape

We first show the result of the Ball Pivoting on a perfect sphere of radius 2 containing 30000 points
(Figure 8). We show in particular that increasing the radius on this simple toy example eventually
allows for a watertight mesh. These experiments show that the ball pivoting is very dependent on
the chosen input radius for the detail preservation. To show efficiently the effect of the ball pivoting
algorithm when data are noisy, we show in Figure 9 the effect of applying the ball pivoting to a noisy
sphere of 30000 samples. The algorithm creates a surface that is a kind of dilatation of the noisy
shape (for the same reason as in Figure 5b). If a single radius is used (Figure 9a), it omits more than
2/3 of the input points, losing therefore its interpolating characteristic. The created mesh is rather
watertight (10061 vertices, 19634 facets and 296 border edges). If several radii are used (Figure 9b),
the mesh reconstructed interpolates more points but is not watertight at all (27568 vertices, 39544
facets and 73764 border edges).

(a) r = 0.02 (b) r = 0.03 (c) r = 0.05

Figure 8: Result of applying the ball pivoting to an artificial sphere with radius 2. Three experiments
are run, each with a different radius: 0.02 (left), 0.03 (middle) and 0.05 (right). If the radius is too
small, areas with lower density are not triangulated. But choosing too large a radius yields higher
computation times.

8.2 Standard Shapes (Stanford Repository)

The Stanford Bunny contains 10 scans and 362000 oriented points. Bernardini et al. proposed to use
a series of three radii (0.3, 0.5 and 2 mm, the shape being bounded in a box of size 150mm). The
pointset is obtained from the Stanford repository and a mean curvature motion is applied to filter
the point positions as described in the paper by Digne et al. [5]. We also use a single scan containing
1568548 points from another standard shape: the Stanford Dragon. We show the result obtained by
using multiple radii (0.3, 0.5 and 1mm). Both of these reconstructions are shown in Figure 10.

165



Julie Digne

(a) r = 0.05 (b) r = 0.02; 0.03; 0.05

Figure 9: Applying the ball pivoting to a noisy sphere: r = 0.05 (left) and r = 0.02; 0.03; 0.05
(right). A single radius does not allow to interpolate the input data and applying multiple radii is
not a solution in addition to being difficult to tune.

Figure 10: Bunny and Dragon reconstruction

8.3 The Farman 3D Point Sets [4]

The last displayed shapes come from the Farman dataset, a high resolution freely available dataset.
The pyramid is a subsampled oriented version of the original dataset, containing only 1 million points
(Figure 11).

9 Conclusion

This paper presented an implementation of the ball pivoting algorithm along with its parallelization,
allowing for faster triangulation of oriented point clouds. Experiments show that the quality of
the reconstructed surface heavily depends on the choice of the radius, or of an adequate series of
increasing radii to fill up the holes. The question of the automatic choice of such series is open,
although a naive strategy for an automatic radius was proposed here. It is the only hindrance to
a fully automatic algorithm. A modification of the algorithm based on a scale space allowed for a
better reconstruction using a single radius [5].

166



An Analysis and Implementation of a Parallel Ball Pivoting Algorithm

Figure 11: Reconstruction of the Pyramid using radii 0.3; 0.4; 0.6mm (object height 80mm) and of
the Tanagra using radius 0.1mm (object size: 220mm). Both shapes are from the Farman data set.

Acknowledgments

This work was partially funded by Direction Générale de l’Armement, Office of Naval Research (Grant
N00014-97-1-0839) and the European Research Council (ERC Advanced Grant “Twelve Labours”).

Data Credits

The Stanford Bunny and Stanford Dragon (Figure 10) are from the Stanford 3D Scanning Reposi-
tory3. The other shapes (Figure 11) are from the Farman Institute 3D Point Sets4.

References

[1] F. Bernardini and C.L. Bajaj, Sampling and reconstructing manifolds using alpha-shapes,
in Proceedings of the 9th Canadian Conference on Computational Geometry, 1997.

[2] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin, The ball-
pivoting algorithm for surface reconstruction, IEEE Transactions on Visualization and Computer
Graphics, 5 (1999), pp. 349–359. http://dx.doi.org/10.1109/2945.817351.

3http://graphics.stanford.edu/data/3Dscanrep/
4http://www.ipol.im/pub/art/2011/dalmm_ps/

167

http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/
http://www.ipol.im/pub/art/2011/dalmm_ps/
http://dx.doi.org/10.1109/2945.817351
http://graphics.stanford.edu/data/3Dscanrep/
http://www.ipol.im/pub/art/2011/dalmm_ps/


Julie Digne

[3] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C.
McCallum, and T. R. Evans, Reconstruction and representation of 3D objects with radial
basis functions, in Proceedings of the 28th annual Conference on Computer Graphics and In-
teractive Techniques (SIGGRAPH), Springer, 2001, pp. 67–76. http://dx.doi.org/10.1145/
383259.383266.

[4] J. Digne, N. Audfray, C. Lartigue, C. Mehdi-Souzani, and J.M. Morel, Farman
Institute 3D Point Sets - High Precision 3D Data Sets, Image Processing On Line, 1 (2011).
http://dx.doi.org/10.5201/ipol.2011.dalmm_ps.

[5] J. Digne, J.M. Morel, C. Souzani, and C. Lartigue, Scale space meshing of raw data
point sets, Computer Graphics Forum, 30 (2011), pp. 1630–1642. http://dx.doi.org/10.

1111/j.1467-8659.2011.01848.x.

[6] H. Edelsbrunner and E.P. Mücke, Three-dimensional alpha shapes, ACM Transactions on
Graphics, 13 (1994), pp. 43–72. http://doi.acm.org/10.1145/174462.156635.

[7] A. Fabri and S. Pion, CGAL: The computational geometry algorithms library, in Proceedings
of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information
Systems, ACM, 2009, pp. 538–539. http://doi.acm.org/10.1145/1653771.1653865.

[8] S.F. Frisken and R.N. Perry, Simple and efficient traversal methods for quadtrees and
octrees, Journal of Graphics Tools, 7 (2002), pp. 1–11.

[9] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle, Surface re-
construction from unorganized points, in Proceedings of the 19th Annual Conference on Com-
puter Graphics and Interactive Techniques (SIGGRAPH), ACM, 1992, pp. 71–78. http:

//doi.acm.org/10.1145/133994.134011.

[10] M. Kazhdan, M. Bolitho, and H. Hoppe, Poisson surface reconstruction, in Proceedings of
the Fourth Eurographics Symposium on Geometry Processing, Eurographics Association, 2006,
pp. 61–70. http://dl.acm.org/citation.cfm?id=1281957.1281965.

[11] J.R. Shewchuk, Adaptive precision floating-point arithmetic and fast robust geometric predi-
cates, Discrete and Computational Geometry, 18 (1996), pp. 305–363.

168

http://dx.doi.org/10.1145/383259.383266
http://dx.doi.org/10.1145/383259.383266
http://dx.doi.org/10.5201/ipol.2011.dalmm_ps
http://dx.doi.org/10.1111/j.1467-8659.2011.01848.x
http://dx.doi.org/10.1111/j.1467-8659.2011.01848.x
http://doi.acm.org/10.1145/174462.156635
http://doi.acm.org/10.1145/1653771.1653865
http://doi.acm.org/10.1145/133994.134011
http://doi.acm.org/10.1145/133994.134011
http://dl.acm.org/citation.cfm?id=1281957.1281965

	Introduction
	Data Structures
	Search Structure
	Mesh Structure
	Guarantees for Triangles and Edges 

	Implementation Details: Spatial Queries 
	Locational Codes 
	Neighborhood Queries

	Implementation Details: the Ball Pivoting Algorithm 
	Overview
	Finding a Seed Triangle
	Expanding the Triangulation
	Post-Processing

	Known Limitations of the Method 
	Parallelization 
	Principle
	Parallelization Detail

	Code 
	Dependencies
	Integration in a Larger Project
	Numerical Robustness 

	Experiments
	An Artificial Shape
	Standard Shapes (Stanford Repository)
	The Farman 3D Point Sets farmandataset

	Conclusion

