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Abstract

In this work we propose a discussion and detailed implementation of a very simple gradient
domain method that tries to eliminate the effect of nonuniform illumination and at the same
time preserves the images details. This model, which to the best of our knowledge has not been
explored in spite of its simplicity, acts as a high pass filter. We show that with a single contrast
parameter (which keeps the same value in most experiments), the model delivers state of the
art results. They compare favorably to results obtained with more complex algorithms. Our
algorithm is designed for all kinds of images, but with the special specification of making minimal
image detail alteration thanks to a first order fidelity term, instead of the usual zero order term.
Experiments on non-uniform medical images and on hazy images illustrate significant perception
gain.

Source Code

The source code and the online demo are accessible at the IPOL web page of this article1. In
this link an ANSI C source code is available for download which produces the same results as
the demo. Compilation and usage instructions are included in a README.txt file.

The online demo allows one to try Screened Poisson Equation on any uploaded image choos-
ing the tradeoff parameter λ and the level of saturation of the simplest color balance s. By
default the values of λ and s are 0.0001 and 0.1 respectively.

Keywords: color enhancement; Poisson equation; gradient-based methods; non-uniform illu-
mination; color perception theory
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1 Introduction

Modifying image gradients before reconstructing the image is the key idea of the Retinex theory
of Land and McCann [10] which argues that the human visual system is sensitive to illumination
differences and not to absolute luminance. Since the ground breaking reconstruction algorithm
proposed as a “Poisson image editing” [16], many applications use this technique, for high dynamic
range compression [3], Retinex [14], [12], contrast enhancement [15], [1], shadow removal [4], etc.

The basic idea of the Poisson editing reconstruction is to find a function u whose gradient field
best approximates a given vector field V in the L2 norm. This problem can be solved by minimizing
the functional ∫

Ω

||∇u−V||2dx (1)

leading to a Poisson equation. Strong illumination variations affect the appearance of many digital
images. Such variations are due in magnetic resonance (MR) images to the inhomogeneity of the
applied magnetic field, in microscopy images to nonuniform illumination and in underwater photog-
raphy and long distance photography to the light absorption by the medium. For a review of a large
number of methods applied to MRI images see [18]. In this paper we evaluate the performance of
what we shall term the simplest possible gradient domain method to reduce the effect of nonuniform
illumination while preserving fine image details. Since preserving fine image details is more or less
equivalent to preserving the image gradient, the functional must have a forcing term of the type (1)
with V = ∇f , where f is the original image. To reduce the nonuniform illumination the simplest
possible idea is to reduce the image variance, therefore adding in the variational method the term∫

Ω

(u− ū)2dx,

where ū represents the mean value. We therefore consider the functional

J(u) =

∫
Ω

||∇u−∇f ||2dx+ λ

∫
Ω

(u− ū)2dx, (2)

where λ is a constant that controls the trade-off between both terms to be the simplest possible func-
tional coping with the exigences of a Retinex like algorithm. Of course, after solving this variational
problem, the variance being reduced, an affine stretch of the image dynamics can be effectuated,
which is expected to enhance most image details.

To understand the behavior of the model, we consider a nonuniform illumination field (Figure 1)
and apply the model with different values of λ. Note that the result with λ = 0 coincides with the
original image. When the value of λ tends to infinity, the result becomes constant.

To better understand the model, Figure 2 shows the graph of a row of the image in Figure 1 and
the result with λ = 0.001 and λ = 0.01. We will show that the variational model (2) boils down
to a high pass filter. In the literature, one can find many such Wiener-like filters [15], [19], [3], [14].
The so called multiscale retinex methods [6] remove the low frequency illumination components while
enhancing the high frequency reflectance components. They can also be seen as nonlinear high pass
filters, and the same consideration applies to filters that try to model the human visual system [17], [5].
All of these mentioned models are far more complex than the proposed straightforward quadratic
functional. Thus, it is fair to see if it compares to these more complex methods. While of course
differences between results are apparent, on the whole we claim that the simple model is competitive.
It can be tried in the online demo on any image, and compared to the online demo of ACE [5], which
is considered one of the most effective contrast enhancement methods.

The paper is organized as follows. In Section 2 we present the variational model and we solve
exactly in the Fourier domain the associated Euler-Lagrange equation of the model, which is a
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Figure 1: Inhomogeneous illumination. Result of the model with growing λ = 0, 0.0001, 0.001, 0.01,
0.1

Figure 2: Left: graph of a row of the image in Figure 1. Middle: results with λ = 0.001. Right:
result with λ = 0.01

screened Poisson equation. We prove that the spatial filter used to solve it is a specific high pass
filter. A similar work is presented in [1], where the authors study, in the Fourier domain, the screened
Poisson equation. In Section 3 we explain the algorithm to solve the screened Poisson equation using
the fast Fourier transform. Section 4 presents some results and a discussion.

2 The Model

Given an image f , the goal is to find a function u whose vector gradient is close to the vector gradient
of f , but with reduced variance to compensate for illumination inhomogeneities. The objective
function to minimize is

J(u) =

∫
Ω

||∇u−∇f ||2dx+ λ

∫
Ω

(u− ū)2dx, (3)

where λ is a constant that controls the trade-off between the two terms.

18
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The Euler-Lagrange equation is nonlinear. Yet, it is immediately linearized by fixing that the
mean value of u coincides with the mean value of f . With this condition, the function u that
minimizes the functional J satisfies the Euler-Lagrange equation

λ(u− f̄)−∆u+ ∆f = 0, over Ω (4)

with homogeneous Neumann boundary condition

∂u

∂n
= 0, over ∂Ω,

where n is the normal vector to the boundary. Equation (4) is known as a screened Poisson
equation.

2.1 Independence of the Mean Value

It remains to prove that imposing a mean value to the solution is irrelevant. Consider the problem{
λu−∆u = −∆f + λK in Ω
∂u
∂n

= 0 in ∂Ω
(5)

where K is a constant and λ > 0. It is well known that problem (5) has a unique solution when
λ 6= 0. Let u1 and u2 be two solutions of (5) with constants K1 and K2 respectively. Then it follows
immediately from the uniqueness of the solution of (5) that

u1 − u2 = K1 −K2.

Working (e.g.) with eight-bit digital images, the range of values of the image is the interval [0, 255].
When solving problem (5) in the image context, the final solution must be stretched on this range, as
mentioned above. This permits to benefit fully of the relative contrast gain attained by the method.
Consider u1 and u2, solutions of (5) for two constants K1 and K2 respectively and let ũ1, ũ2 be the
associated solutions in the range [0, 255]. Setting Mi = maxui and mi = minui, i = 1, 2 we have

ũi =
255

Mi −mi

(ui −mi), i = 1, 2,

but M1 = M2 + K1 − K2 and m1 = m2 + K1 − K2, which implies ũ1 = ũ2. We conclude that the
final solution is independent of the constant K, so from now on we will set K = 0.

2.2 The Screened Poisson Equation in the Fourier Domain

This section analyzes the solution of the screened Poisson equation

λu−∆u = −∆f

as the result of a high pass filter of the function f , and more precisely as a “center-surround” filter,
namely the subtraction from the image of the same image convolved with a local radial low pass
filter. To this aim we analyze the equation in the Fourier domain. Given a function f(x, y), its
Fourier transform is defined by

f̂(wx, wy) =

∫
IR2

f(x, y)e−ixwxe−iywydxdy
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and the inverse Fourier transform by

f(x, y) =
1

(2π)2

∫
IR2

f̂(wx, wy)e
ixwxeiywydwxdwy.

Recall that
f̂x = iwxf̂ , f̂y = iwyf̂ , f̂xx = −w2

xf̂ , f̂yy = −w2
y f̂ .

Then transforming the screened equation gives

λû+ (w2
x + w2

y)û = (w2
x + w2

y)f̂ ,

and solving for û yields

û =
w2
x + w2

y

λ+ w2
x + w2

y

f̂ . (6)

The frequency filter acts as a high pass filter when λ increases as illustrated in Figure 3.

Figure 3: The frequency domain filter for λ = 0.1 (in red) and λ = 50 (in blue).

2.3 The Solution in the Spatial Domain

Starting from Equation (6) the frequency filter can be decomposed as

w2
x + w2

y

λ+ w2
x + w2

y

= 1− λ

λ+ w2
x + w2

y

. (7)

Computing the inverse Fourier transform of this filter indicates that the solution of the screened
Poisson equation is obtained by convolving the image f with a spatial domain filter. More precisely,
the inverse Fourier transform of the first term in (7) is a Dirac delta function δ(x, y). The second
term is radially symmetric and interpretable using the Hankel transform [2]. Denoting by H{f} the
Hankel transform of f(r), we have

H{f}(ρ) =

∫ ∞
0

rf(r)J0(rρ)dr

and the inverse Hankel transform is

f(r) =

∫ ∞
0

ρH{f}(ρ)J0(rρ)dρ,

where J0 is the zeroth order Bessel function of first kind.
If f(x, y) is radially symmetric, that is, if f only depends on r =

√
x2 + y2, then the 2D Fourier

transform satisfies
f̂(wx, wy) = 2πH{f}(ρ), ρ =

√
w2
x + w2

y.
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The inverse Fourier transform of a radially symmetric function satisfies

f(x, y) =
1

2π
H−1{f̂}(r), r =

√
x2 + y2.

It is known that

H−1{ 1

a2 + ρ2
} = K0(ar)

where K0 is the zeroth order modified Bessel function of second kind. Then the inverse Fourier
transform of the frequency filter (7) is

δ(x, y)− 1

2π
K0

(√
λ(x2 + y2)

)
. (8)

Convolving the filter (8) with f yields the solution of the screened Poisson equation

u(x, y) = f(x, y)−
(

1

2π
K0

(√
λ(x2 + y2)

)
∗ f(x, y)

)
. (9)

Thus, the solution is the difference between the data function and a blurred version of it with the K0

filter. This filter acts as a center-surround filter, as illustrated in Figure 4. Center-surround filters
of this kind model the human perception of colors [7], [1].

Figure 4: The zeroth order modified Bessel function of second kind K0(r)

3 Algorithm

We want to solve the problem {
λu−∆u = −∆f in Ω
∂u
∂n

= 0 in ∂Ω
(10)

where λ > 0. We can solve the screened Poisson equation (10) using the discrete Fourier transform.
Like in [15], the Neumann boundary condition is implicitly imposed by extending the original image
symmetrically across its sides, so that the extended image, which is four times bigger, becomes
symmetric and periodic. The discrete Fourier transform (DFT) permits to compute directly the
Fourier coefficients of a band-limited and (J, L)-periodic function u from its samples ujl on a J × L
grid. The output of the algorithm is an image which is the result of applying the screened Poisson
equation to each color channel separately, followed by a simplest color balance [11] with a 0.2% of
saturation. Then the screened Poisson becomes in the Fourier domain(

λ+

(
2πm

J

)2

+

(
2πn

L

)2
)
ûmn =

((
2πm

J

)2

+

(
2πn

L

)2
)
f̂mn.
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The solution in the Fourier domain is given by

ûmn =

((
2πm
J

)2
+
(

2πn
L

)2
)

(
λ+

(
2πm
J

)2
+
(

2πn
L

)2
) f̂mn. (11)

Applying the discrete inverse Fourier transform yields the solution u.
In eight bit digital images the range is [0, 255]. The best results are obtained when a certain

small percentage of pixels are saturated at 255 and 0, as shown in [11]. The proposed model is
applied to the result of a simplest color balance with 0.2% saturation, and the final result is obtained
by applying to the solution a simplest color balance again. The proposed algorithm is described as
follows

Algorithm 1: Screened Poisson equation algorithm

Data: An input image (one channel) f , λ > 0 tradeoff parameter and s the percentage of
saturation of the simplest color balance.

Result: The image solution of the screened Poisson equation u.
begin

Simplest color balance of f with s% of saturation;
FFT of f ;
Solve equation using (11) → û;
IFFT of û → u;
Simplest color balance of u with s% of saturation;

end

Remark that this algorithm is applied on monochrome images after symmetrization, as indicated
above. For RGB images it applies on each color channel independently. For the Fourier transform we
use the library fftw2. In fact with the FFTW library the symmetrization is implicit and performed
directly as a cosine transform. The complexity of the algorithm is O(n log n). The CPU time on an
intel core i7, 2.7 Ghz and 4 Gb of RAM is 0.63 seconds for a 700× 528 image.

4 Results

In this section we present some applications of the model. These include non uniform illumination
correction, contrast enhancement, and edge detection.

4.1 Non Uniform Illumination Correction

Figure 5 shows an example of a text image with nonuniform illumination. In medical imaging
inhomogeneous scene illumination is frequent and can cause dark regions with low contrast. This
results in a smooth intensity variation across the image which can be compensated. For example
in ophthalmology the use of advanced fundus cameras has become a standard imaging modality
to diagnose diseases such as glaucoma, diabetic retinopathy etc. A better contrast of the relevant
objects on the retina such as the blood vessels or the optic disk can be obtained by restoring the
uniformity of the retina illumination. The classic methods estimate the illumination or the bias field,
using the commonly used terminology, and subtract it from the original image to obtain the final
result [9], [8].

Figure 6 shows an example of a retina image and the result after applying our model. We compare
the results with the above mentioned classic method [8]. Clearly the blood vessels are more visible

2M. Frigo and S.G. Johnson,FFTW package, http://fftw.org
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Figure 5: Left: original Image. Middle: result of simplest color balance with 0.2% of saturation.
Right: result with our model with λ = 0.0005

in dark regions and the result can be used as a preprocessing step in the blood vessel segmentation.
The image and the result of the method in [8] come from the public fundus images database DRIIL
(Digital Retinal Images for ILlumination correction3).

Figure 6: Top left: original Image. Top right: result of simplest color balance with 0.2% of saturation.
Bottom left: result with our model with λ = 0.0005. Bottom right: result of the model. [8]

3http://projects.ubmi.feec.vutbr.cz/ophthalmo
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Another example for potential applications is given by magnetic resonance images (MRI), where
the intensity inhomogeneity is due for example to radio frequency inhomogeneities or to variations
in the static magnetic field. Vovk et al. [18] propose a classification of the correction methods into
prospective methods, that attempt to improve the image acquisition process, and the retrospective
methods that work with the information of the acquired image. The retrospective methods can be
classified into filtering, surface fitting, segmentation and histogram based. The filtering methods
assume that the nonuniform illumination is a low frequency artifact that must be removed. This
is achieved by subtracting from the image its low-pass filtered version. To this group belong the
homomorphic filtering and the unsharp masking. Our method belongs to this group, as explained in
Section 2.3. Note that when λ increases, the support of this filter becomes smaller.

Figures 7 and 8 show the result of our model on MRI images with intensity inhomogeneities.
Clearly the dark regions become more visible and image details are preserved.

Figure 7: Left: original image. Right: result with λ = 0.0005.

Figure 8: Left: original image. Right: result with λ = 0.0005.
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4.2 Contrast Enhancement Results

The recently proposed contrast enhancement methods give increasingly good results [11], [15], [13], [6], [17],
etc. In this section we compare our result with the state of the art automatic color enhancement
(ACE) [17] and with the equally classic multiscale retinex with color restoration (MSRCR) [6]. ACE
results were obtained from the online fast implementation of this algorithm [5] and we have imple-
mented our own (MSRCR).

Figure 9 presents a low contrast image and the corresponding results of ACE, MSRCR and our
model with parameter λ = 0.0001. Observe that the high frequencies (for example in the letters on the
fire-fighter helmet) are better preserved with our model. Another example of contrast enhancement

Figure 9: Top left: original Image. Top right: result of ACE with α = 8. Bottom left: result with
MSRCR. Bottom right: our model with λ = 0.0001.

is shown in Figure 10. Observe that the best result in this case is with the ACE method as the MSR
method gives a very saturated image.

4.3 Tuning λ

In unsharp masking the original image is enhanced by subtracting a smooth version of the original
image. Figure 11 shows the results with increasing values of λ. For a small value of λ the gradient
term is more important and the result is similar to a simplest color balance. As λ increases, the
histogram is more and more concentrated around the mean value but the gradients are preserved.
The final simplest color balance stretches the dynamic range and produces a better contrasted image.

Figure 12 shows an example with a retina image when λ tends to infinity. The result shows that
when λ is too large the models acts as an edge detector.
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Figure 10: Top left: original Image. Top right: result of ACE. Bottom left: result with MSRCR.
Bottom right: our model with λ = 0.0001.

Figure 11: Top left : result with λ = 0.0001. Top right: result with λ = 0.0005. Bottom left: result
with λ = 0.001. Bottom right: result with λ = 0.005.
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Figure 12: Top left : original image. Top right: result with λ = 0.0001. Bottom left: result with
λ = 0.01. Bottom right: result with λ = 0.1.
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