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Abstract

This paper details the recently introduced Ray Histogram Fusion (RHF) filter for accelerating
Monte Carlo renderers [M. Delbracio et al., Boosting Monte Carlo Rendering by Ray Histogram
Fusion, ACM Transactions on Graphics, 33 (2014)]. In this filter, each pixel in the image is
characterized by the colors of the rays that reach its surface. Pixels are compared using a
statistical distance on the associated ray color distributions. Based on this distance, it decides
whether two pixels can share their rays or not. The RHF filter is consistent: as the number of
samples increases, more evidence is required to average two pixels. The algorithm provides a
significant gain in PSNR, or equivalently accelerates the rendering process by using many fewer
Monte Carlo samples without observable bias. Since the RHF filter depends only on the Monte
Carlo samples color values, it can be naturally combined with all rendering effects.

Source Code

The source code and the online demo are accessible at the IPOL web page of this article1.

Keywords: rendering; Monte Carlo path tracing; non local filtering

1 Introduction

Synthesizing high quality realistic images in a reasonable amount of time remains a major challenge
in computer graphics. The aim of realistic image synthesis is to generate new images from a complete
three-dimensional description of a virtual scene. The scene description should contain at least the
geometry, location and properties of objects, the camera viewpoint and a characterization of light
sources. The generated picture should be as photorealistic as possible: if the three-dimensional
scene is constructed and a photograph is taken from the same camera’s point of view, the difference
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should be negligible. Of course this requires a perfect knowledge of how the light interacts with the
environment and extremely accurate material models; oversimplifications must be avoided.

The seminal paper by Kajiya [11] introduced in 1986 the rendering equation, an integral equation
modeling the steady-state light distribution in a scene. Except for very simple scenes, analytical
solutions are impossible to obtain, so most typical approaches are based on Monte Carlo numerical
integration techniques. Image pixels are formed by averaging the contribution of stochastic rays cast
from a virtual camera through the scene. The principal problem of Monte Carlo renderers is that the
variance of the estimator decreases linearly with the number of stochastic samples. Thus the root
mean square error to an ideal image decreases as the square root of the number of samples. Several
hours or even days may be necessary to produce noiseless realistic images. Indeed, at present, the
final image quality is indirectly topped by the available production time and computational resources.

In this paper we detail the recently introduced RHF filter [7] for accelerating Monte Carlo ren-
derers, which are the most popular realistic renderers currently used. In order to synthesize an image
with global illumination, a radiance value must be assigned to each pixel in the image. Path tracing
(and more generally ray-tracing) is a popular technique for resolving the rendering equation ruling
the steady state equilibrium of light. In a ray-tracing scenario, this value is computed as a weighted
average of radiance values incident on the image plane, along light rays coming from the light sources,
bouncing in the scene, passing through the pixel, and pointing to the virtual camera.

Unfortunately, only a finite number of rays can be cast, so the radiance value is computed only
approximately. To avoid artifacts, rays are cast randomly. Mathematically, this is equivalent to
solving the rendering equation through a Monte Carlo numerical integration procedure. The main
problem of Monte Carlo rendering is that the variance of the estimator converges only linearly with
the number of random samples. An example of a scene rendered with a varying number of rays per
pixel is shown in Figure 1.

32spp 64spp 128spp 256spp 512spp

Figure 1: Example of an image rendered with Monte Carlo path-tracing. In a pure mc scenario the
square error decreases linearly with the number of samples per pixel (spp), thus the convergence is
quite slow.

Previous work. There are mainly two approaches to accelerate the convergence of Monte Carlo
rendering to obtain good quality images. One of these approaches is adaptive sampling. This class
of algorithms locally adapt the number of samples cast per pixel. The idea is to increase the number
of rays in complex parts of the scene while maintaining a reduced number in simple parts, such as
flat regions. Complex textures or defocused zones are typical elements that require large amounts of
rays to be properly rendered. In [9] the authors proposed to adaptively distribute a set of samples
in the full, multidimensional sampling domain where the rendering equation is computed. However,
as more Monte Carlo effects are considered (e.g. depth-of-field, motion blur, area lighting), the
dimension of this space becomes larger and suffers from the curse of dimensionality. One of the
most significant adaptive sampling algorithms is certainly the Adaptive Wavelet Rendering [16].
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This method adaptively distributes Monte Carlo samples in the screen space to reduce the variance
of a wavelet basis scale coefficients. Then, the image is reconstructed from these non-uniformly
distributed samples by using a suitable wavelet approximation.

The other approach is adaptive filtering. In this family of algorithms, the existing sets of samples
are combined to produce a better pixel color estimator using ray information in a pixel and in its
neighbors. Adaptive filtering may take place at sample level (i.e. primarily filtering the ray colors)
or at pixel level (i.e. primarily filtering pixel color values). The simplest adaptive filters act at pixel
level, like any filter used in classical image processing [10, 4, 28]. More complex filters make use of ray
information available from the renderer in order to filter also at pixel level [22, 15, 6, 27]. The most
sophisticated filters use additional ray information to adaptively filter the samples [24, 23, 19, 14].

The majority of these methods can actually be written as generalized versions of the bilateral
filter (or the sigma-filter [13]) applying a weighted average of the samples (resp. of the pixels) in a
neighborhood. The main disadvantage of traditional bilateral filters is that by comparing noisy pixel
values, they cannot easily distinguish noise from intrinsic pixel variability. Thus, the clustering of
similar pixels is potentially subject to errors and the filtering will result in a significantly biased image.
As we will present in Section 2, in computer graphics, the statistics of ray samples permit to identify
much more rigorously than in classic image processing the pixels sharing the same model. Indeed,
all ray samples hitting a given pixel and its neighbors can be used for that purpose. Similar pixels
can be detected by comparing their empirical ray color distributions using an adequate histogram
distance. Since the order in which the samples are calculated is irrelevant, the sample color empirical
distribution appears as a natural and complete descriptor of the compared sets. Figure 2 shows a
small region of a Monte Carlo rendered image where two pixels are singled out. Although both pixels
have different colors, their color distributions are strikingly similar. The difference in the pixel colors
may be the consequence of the presence of a single very bright ray sample in one of the distributions.
By comparing the ray color distributions, it is nevertheless possible to conclude that both pixels
share the same “nature”, while this conclusion could not be reached when only comparing the pixel
values. The cornerstone of the RHF algorithm is to find and average the most similar patches by
comparing the ray color sample distributions of each of their pixels.

Figure 2: Monte Carlo rendered pixels can be grouped very efficiently by comparing their ray color
distribution. Left: a crop of a Monte Carlo rendered image where two pixels with different colors
are singled out. The difference in color is due to a poor estimate from a low number of rays cast
at each pixel. Right: the color sample distributions of each pixel. The color sample distribution is
represented in the rgb color box, where the color of each of the rays cast at a pixel is one point.
The color distributions are strikingly similar and can be fused, which is the principle of the proposed
algorithm.

In a pure Monte Carlo rendering the estimation error presents white noise characteristics meaning
that all frequencies are equally contaminated by noise. The RHF has a natural multi-scale imple-
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mentation that sequentially decomposes the input noisy image at each scale, filters each scale and
reconstructs the multi-scale filtered image.

The RHF filter is consistent: as the number of samples increases, more evidence is required to
average two pixels. Pushing the filter to its limit, two pixels will be averaged only if their color
distributions are the same. Therefore, in practice, as the number of samples grows the method
converges to the expected solution. The acceleration factor depends on the degree of self-similarity
of the scene, which fortunately is usually high [12]. The algorithm provides a significant gain in
PSNR, or equivalently accelerates the rendering process by using fewer samples without observable
bias. Being based on the ray color values only, it can be combined with all rendering effects.

Table 1 summarizes the details of the adopted notation. The plan of the article is as follows.
Section 2 defines a pixel similarity measure based on the corresponding cast rays color, and discusses
some differences with metrics only comparing averages. In Section 3 we detail the RHF algorithm
and its natural multi-scale extension. Section 4 presents several results showing the algorithm perfor-
mance. We finally close with Section 5, discussing limitations of our approach and outlining future
work.

2 Ray Distribution Similarity

2.1 Monte Carlo Path Tracing

The global illumination light transport problem can be stated in the space of light paths, as shown
by Veach in [26]. Under this path integral formulation, each pixel color u(x) = (uR(x), uG(x), uB(x))
is given by the integral over all possible light paths

u(x) =

∫
Ωx

f(p)dµ(p), (1)

where Ωx is the space of paths originated at pixel x, p is a path of any length, and dµ(p) is a measure
in the path-space. The function f(p) describes the light contribution through a path p and is the
product of several scene factors due to the interaction of light within the path plus initial self-emitted
radiance and importance distributions. As a result of this formulation, the image color at pixel x
can be estimated from ns(x) random paths p1

x, . . . , p
ns(x)
x , generated by an appropriate Monte Carlo

sampling procedure. That is, if cjx denotes the color transported by random path pjx (for instance, in
path tracing cjx = f(pjx)), the Monte Carlo approximation of (1) is computed as

ũ(x) =
1

ns(x)

ns(x)∑
j=1

cjx. (2)

Figure 3 illustrates this rendering procedure. The Monte Carlo approximation error n(x) can then
be written as n(x) = ũ(x) − u(x). Even though the Monte Carlo approximation is unbiased, the
mean squared error E[n2(x)] decays only linearly with the number of samples ns(x). Consequently,
unless the rendering system produces thousands of samples (spending several hours or even days),
the resulting images will be contaminated by noise. One possible solution to reduce the error while
keeping the rendering time reasonable is to only compute a few samples, and to filter the pixel values
afterwards. Filtering will result in a significant variance reduction, but, it may also increase the
approximation bias. The only filtering processes that do not introduce bias are those combining
pixels x having the same ideal value u(x). While identifying two similar pixels x and y based on
the unknown pixel values u(x) and u(y) is of course impossible, it is reasonable to expect that their

color samples {c1
x, . . . , c

ns(x)
x } and {c1

y, . . . , c
ns(y)
y } will follow similar distributions. Moreover, if N
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u Digital images, defined in a rectangular grid x = (x, y) ∈ {0, . . . ,M−1}×{0, . . . , N−1}.

ũ Noisy digital images, generated with a finite number of Monte Carlo color samples
(see (2)).

h Color sample distribution, defined in a rectangular grid x = (x, y) ∈ {0, . . . ,M−1}×
{0, . . . , N−1}.

h(x) Color sample distribution for pixel x, h(x) ∈ Rnb where nb is the number of histogram
bins.

h(x)[k] Bin k of the pixel color sample distribution h at pixel x.

cjx Color sample transported by a random path pjx started at image plane position ζ =
(ζ, η) ∈ R2 from pixel x.

ns(x) Number of color samples cast from pixel x.

Cx Set of color samples cast from pixel x, i.e. Cx = {c1
x, . . . , c

ns(x)
x }.

Px Patch of half size w centered at pixel x.

u(Px) Evaluation of u on each pixel in patch Px.

ReconFilter(ζ) Samples interpolation filter (e.g. box/Gaussian/Mitchell filter, see [17, Chapter 7]).

Gσ Digital Gaussian convolution of standard deviation σ.

Ds Gaussian subsampling operator by a factor s, (Dsu)(x) = Gσ
√

4s−1u(2sx), s ≥ 1.

Us Digital bicubic interpolator by a factor s.

Table 1: Summary of the notation used in the article.

pixels share the same color sample distribution, the union of the samples can be seen as an N times
larger super-set following the same underlying distribution. By simply averaging them the variance
is reduced by a factor of N .

The cornerstone of the RHF filter therefore is to find similar pixels to each given pixel by com-
paring their underlying sample color distributions. This is what we describe next.

2.2 Color Distribution Pixel Similarity

Consider the empirical distribution of the color samples at a given pixel. In Figure 4 we depict this
distribution for three different pixels on the cornell box scene, for samples generated by a Monte
Carlo path-tracing algorithm. In this example the three pixels were selected because their colors are
very similar. A quick visual inspection shows that the samples of the two edge pixels follow roughly
the same color distribution, and that this distribution is conspicuously different from the one of the
background pixel. This example illustrates to what extent the information provided by the sample

59
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camera

light source

ligh path i

= ...+ + + + + +

Pixel Color Distribution

Color Samples
(light paths)

Figure 3: Pixel color computed as average of values along light paths cast from the image pixel, going
through the camera aperture, bouncing in the scene and reaching a light source. During rendering a
lot of information is computed. In particular, the color of each ray hitting a given pixel. The color
distribution of the rays cast from every pixel can be generated and used to cluster similar pixels.

color distribution can help discriminate pixels of different nature, even when their colors are similar.

Figure 4: This figure singles out three pixels in the Cornell Box scene and their color sample dis-
tributions. (The samples with color values falling out of the [0, 1]3−box are by convention colored
in red.) The first pixel, situated on the brown wall, has a unimodal sample color distribution. The
other two pixels belong to an occlusion boundary showing a bimodal green-brown distribution.

Let us denote by Cx = {c1
x, . . . , c

ns(x)
x } the set of color samples cast from pixel x, and by h(x)

the corresponding empirical color distribution. To measure pixel similarity the binned empirical
distributions will be used as pixel descriptors. Since in general one deals with tri-stimulus color
images, we can choose to build this descriptor either as a single histogram in the three-dimensional
color space, or as three one-dimensional histograms (one per color channel).

Given the color samples Cx and Cy at pixels x and y, and their corresponding nb-binned dis-
tributions (represented as nb dimensional vectors) h(x) = (h1(x), h2(x), . . . , hnb(x)) and h(y) =
(h1(y), h2(y), . . . , hnb(y)), we consider the following metric, based on the Chi-Square distance

dχ2(Cx, Cy) =
1

k(x,y)

nb∑
i=1

(√
ns(y)
ns(x)

hi(x)−
√

ns(x)
ns(y)

hi(y)
)2

hi(x) + hi(y)
, (3)

where ns(x) =
∑

i hi(x) and ns(y) =
∑

i hi(y) are the number of color samples of x and y respec-
tively, and k(x,y) is the number of non-empty bins in h(x) + h(y). This normalization by k(x,y) is
necessary since only the bins carrying information should be considered in the comparison.
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To take into account spatial coherence, the previous pixel-wise distance can be extended to patches
of half-size w centered at x and y by

dχ2(Px, Py) =
∑
|t|≤w

dχ2(Cx+t, Cy+t). (4)

Comparing patches instead of pixels has two advantages. First, matching errors are reduced by en-
forcing spatial coherence. Second, the denoising will proceed by averaging similar patches. Since each
pixel belongs to several patches, it will therefore receive several distinct estimates. Averaging them,
an operation usually called aggregation of estimates, further improves the denoising performance. In
practice, very small patches are used (i.e. 3× 3), and thanks to the self-similarity and redundancy
properties of images, many similar patches are typically found and averaged for any reference patch
in the image.

The order in which the samples are calculated is irrelevant. Thus, the sample color distribution
appears as a natural and complete descriptor of the compared sets. There are different ways of
measuring the similarity between two distributions depending on the data type. For continuous
data, the Cramer-von Mises [1, 2], the Kolmogorov-Smirnov [25, 18] or the Kantorovich-Mallows-
Monge-Wasserstein distances (also known as the Earth Mover’s Distance [21]) are all accepted ways
to compare distributions. These three similarity measures are computed as Lp distances between the
two cumulative distributions (L∞, L2 and L1 respectively). For categorical data, the most popular
measure to compare distributions is the χ2 distance previously defined in (3).

By discretizing the data in a fixed number of histogram bins, the computational complexity of
measuring the similarity between two data sets is kept bounded and independent of the number of
samples. This is important, this distance being computed a large number of times. Thus, the color
space will be divided into fixed bins, and the χ2 distance fits well to this form of categorical data.
Nevertheless, if an image is rendered with very few samples, one of the other two metrics would be
preferable.

Why is it better to compare distributions than just comparing averages? State of the
art image denoising algorithms measure pixel similarity by comparing pixel colors. Indeed, the
bilateral filter and NL- Means replace each noisy pixel by a weighted average of the most similar
ones. In the case of NL-Means, the pixel comparison is performed with patches centered around
each pixel. Nevertheless, image denoising algorithms must know or measure the noise variance to
evaluate properly the similarity of noisy samples. Monte Carlo rendering is an almost ideal situation
where mean and variance values of the rays cast from each pixel can be directly estimated from their
observed distributions. The main disadvantage of this formulation is that it cannot distinguish noise
from intrinsic pixel variability. As a first example, suppose that a pixel is situated on an edge. In
that case the sample color distribution will be at least bi-modal. Thus, it will probably have a large
variance. This variance will result in a large tolerance to differences in the means, and consequently
different pixel types may be wrongly mixed up. A case of this type is shown in Figure 4. On the other
hand, by directly comparing distributions, pixels lit from several sources can be better clustered. In
the case of the histogram comparison, no implicit nor explicit noise model assumption will be needed.
By comparing the ray color distributions, it is nevertheless possible to conclude that pixels are of
the same “nature”, while this conclusion could not be reached when comparing only the averages.

2.3 Color Distribution-Driven Average

Let x be a pixel andNκ(x) the set of pixels y whose centered patches Py are such that dχ2(Px, Py) ≤ κ.
If κ is such that these pixels are of the same nature as x, the maximum likelihood estimator of the
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Mauricio Delbracio, Pablo Musé, Antoni Buades and Jean-Michel Morel

noiseless pixel color is simply their arithmetic mean

ū(x) =
1

|Nκ(x)|
∑

y∈Nκ(x)

ũ(y). (5)

Note that one could adopt a different estimator, for example, by doing a non trivial weighted
average of the similar pixels with weights depending on the pixels similarity. Some preliminary tests
have not shown any particular advantage of such approach, so we opted to keep binary weights for
simplicity. Nevertheless, more sophisticated estimators should be object of future investigation.

Unlike the previous estimator, where only the center of the patch is averaged, one can proceed to
denoise the image patchwise. This is a very classic procedure in patch based image denoising [3, 5, 20].
Given a noisy patch Px centered at pixel x its denoised version Vx is first computed by averaging all
the patches being at a Chi-square distance smaller than κ:

Vx =
1

|Nκ(x)|
∑

y∈Nκ(x)

ũ(Py), (6)

where we denoted by ũ(Py) the evaluation of ũ on each pixel in patch Py.
In this way, we have denoised all patches, not just all pixels. Since each patch contains (2w+ 1)2

pixels, each pixel is conversely contained in (2w+1)2 patches and we therefore obtain a large number
of estimates for its color. These estimates are finally aggregated at each pixel location to build the
final denoised image:

ũ(x) =
1

(2w + 1)2

∑
|y−x|≤w

Vy(y − x). (7)

Taking the mean as done in the preceding formula is the simplest possible aggregation method as
proposed in other denoising algorithms [3, 5].

2.4 Removing Low-Frequency Noise

In a pure Monte Carlo scenario the approximation error is a white random noise. This means that all
frequencies are equally contaminated by noise. The RHF filtering procedure described so far filters
noise at patch scale. Thus, long wavelength noise cannot be eliminated by this procedure, because
large structures cannot be captured by small patches. Removing noise at lower frequencies therefore
requires a multi-scale extension of the method.

Let

Dsu(x) := (Gσ
√

4s−1 ∗ u)(2sx) (8)

be the 2s× Gaussian downsampling operator and Us the 2s× bicubic interpolator. We denoted by
Gσ
√

4s−1 the convolution with a Gaussian function of standard deviation σ
√

4s − 1, where σ = 0.55.
Now, for each scale s, the corresponding histograms hs(x) are computed as follows. Since each pixel
at scale s results from the fusion of a set of neighboring pixels in the original finer scale, the new
histograms are obtained by fusing the color histograms of all pixels in the same neighborhood. To
obtain hs(x), the same down-sampling operator Ds is applied to the original color distribution h(x).
Then, at each scale, the resulting histograms are re-normalized so that the sum of their areas is
preserved across scales (thus preserving the original total number of samples in the finer scale).

Given a noisy image input ũ(x), its respective pixel color distribution h(x), and the considered
number of scales nscal, the multi-scale histogram fusion proceeds as follows:
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1. Generate the Gaussian multi-scale sequence: ũ0 = ũ, ũs = Dsũ, s = 1, . . . , nscal − 1, and their
respective sample color distributions hs.

2. Apply the RHF denoising algorithm separately to each scale to recover ū0, ū1, . . . , ūN .

3. Compute the final image ū = û0 by the recursion ûi = ūi − U1D1ūi + U1ûi+1 initialized with
ûnscal−1 = ūnscal−1.

3 Implementation Details

The RHF algorithm builds on two blocks: the estimation of each pixel sample color distribution, and
a non-local multi-scale filtering based on averaging pixels having similar sample color distributions.
This requires two kinds of data from the rendering system: the noisy Monte Carlo image ũ(x) and
the associated sample color histograms h(x).

The computation of the pixel color distribution is coded on top of pbrt-v2 [17]. To fully under-
stand how the function implementing the color distribution estimation is integrated on this system
we refer the reader to the very complete and comprehensive book by Pharr and Humphreys [17]
where the implementation of pbrt-v2 is detailed. In what follows we present the implementation
details to estimate the pixel’s sample color distribution and to perform the non-local multi-scale
filtering.

3.1 Computing the Samples Color Distribution

A fundamental aspect of the method is that sample color histograms can be computed on the fly,
in parallel with the Monte Carlo rendering process. This is extremely important, since it makes the
memory requirements independent from the number of rendered samples.

To approximate the distribution of the samples using a histogram, the range of possible values has
to be discretized into bins and the number of samples within each bin have to be counted. Smoother
estimates can be produced using kernel density estimation, by interpolating the contribution of
each sample using a kernel. In this work, we opted for a triangular kernel to linearly interpolate
the contribution of each sample color value to its adjacent bins. Sample values have generally a
three dimensional color representation. We can either compute one 3D distribution where bins are
boxes in the 3D color space, or estimate three one-dimensional distributions, one for each color.
Although 3D color distributions capture inter-color correlations, a much larger number of bins are
required to keep the same quantization level, and consequently many more samples. Therefore,
we opted to compute three one-dimensional distributions, one for each color. Let us denote by
h(x) = (hR(x), hG(x), hB(x)), the concatenation of the color histograms for each of the color channels.
Thus, the total number of bins is nb = 3 × nbins, where nbins is the number of bins used to encode
each of the color channels.

Despite the fact that the saturation value for pixels (perfect white) is one2, the rays brightness
may largely exceed that value. This does not mean that the pixel value would be saturated: indeed,
pixel values are obtained by averaging sample color values. To take into account the fact that very
bright samples are less frequent than low-energy ones, the bins are designed so that their sizes increase
with the sample value, following an exponential law of exponent γ = 2.2. More precisely, the bins
lower values bi for i = 0, . . . , nbins are computed as

bi =

{ (
M ·i

nbins−2

)γ
if i = 0, . . . , nbins − 2,

(M · tsat)
γ if i = nbins − 1,

2Although this is an arbitrary choice it is consistent with the pbrt-v2 renderer.
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where nbins is the number of bins, M = 7.5 and tsat = 2 are two constants that define the maximum
value covered by the histogram. This choice was purely empirical. Algorithm 1 details the online
implementation on top of pbrt-v2: given a new sample the algorithm computes the sample contri-
bution to the pixel color distribution using linear interpolation. It is worth mentioning that although
histogram comparison is not particularly sensitive to these parameters, they must be chosen to cover
the dynamic range adequately.

3.2 The RHF Filter

The implementation of the RHF filter is straightforward. In addition to the parameters needed to
compute the histogram, four parameters are involved in the algorithm: the number of scales nscal,
half the patch size w, half the search window size b, and the χ2 distance threshold.

The search of similar patches is restricted to a window of size (2b+1)×(2b+1). This is reasonable
since the probability that two patches are similar will be smaller if one is distant from the other. A
threshold κ (the user parameter) is directly set on the normalized Chi-square distance. To guarantee
that each patch has a minimum number of kNN similar patches in the finest scale (i.e. s = 0), the
κ threshold at this scale is set pixelwise as κx = max

(
κ, dxkNN

)
, where dxkNN is the χ2distance to the

kNN most similar patch of Px centered at pixel x. In the current implementation kNN = 2.

The pseudo-code of both the filtering at each scale and the multi-scale generalization are presented
in Algorithms 2 and 3, respectively. In Algorithm 2, the denoised version of patch Pi is obtained by
averaging all patches Qj such that d2

χ(Pi, Qj) < κi.

The parameter κ controls the amount of noise that is removed, or in other words the trade-off
between image smoothness and noise reduction. The optimal choice of κ depends mostly on the sam-
ple generation process, i.e. the considered renderer. An intuitive explanation for this dependence
comes from the observation that the value of κ is related to the confidence associated to the color
samples. If samples are computed with low confidence, the distance threshold should be less restric-
tive. For instance, in Monte Carlo path tracing, each sample represents the contribution of energy of
a single light path, while in volumetric ray tracing each sample is computed as the average of several
light paths. Therefore, the samples generated with pure path tracing have lower confidence, and
this explains why the threshold should be less restrictive. Nevertheless, the tuning of κ is not time
consuming. Since the distance between patches (the heaviest computational task) is independent of
κ, its computation can be first performed and then several values of the parameter can be tested
with practically no additional cost.

3.3 Computational Complexity and Memory Requirements

The complexity of the filtering at each scale is O(N ·w · b ·nb) where N is the number of pixels, which
is independent of the number of samples.

Since the low-frequency noise filtering is done on a much smaller image, the computational cost
is not significantly increased. Indeed, let C be the computational cost of applying the filter at the
input resolution (scale zero). Then, the cost of filtering the first scale is C

4
, since the image size is

one-fourth the size of the input one. By recursion, one can see that the final cost of the algorithm is
CT =

∑nscal−1
i=0 C(1

4
)i ≤ 4

3
C. This means that the total computational cost is always upper bounded

by 133% of the filtering time at the finest resolution, independently of the number of scales.

The memory consumption of the RHF filter is determined by the number of pixels in the image
and the color histogram representation of each pixel. In all the examples shown here, the color distri-
butions were computed using three histograms of nbins = 20 bins, that is, 60 additional counters per
pixel. If each counter is represented by a floating-point number, the additional memory consumption
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Algorithm 1: Online Color Histogram Computation

input :

- A new color sample c = (cR, cG, cB) and its 2D position in the image plane ζ = (ζ, η).

- Pixel x within the neighborhood of ζ, the number of current pixel color samples ns(x) and its
current color histogram h(x) = (hR(x), hG(x), hB(x)).

- The histogram parameters tsat,M, nbins and γ.

output: updated pixel histogram h(x) = (hR(x), hG(x), hB(x)), updated number of pixel
color samples ns(x).

1 wx
ζ = ReconFilter(ζ − x); Reconstruction filter at position ζ for pixel x (see caption [*])

2 ns(x) = ns(x) + wx
ζ ; Update pixel total samples with sample contribution wx

ζ

3 for channel i in (R,G,B) do
4 v = wx

ζ · ci;
5 if v < 0 then v = 0; Truncate negative values (see caption [†])
6 v = v

1
γ /M ; Compress dynamical range and renormalize

7 if v > tsat then v = tsat; Truncate to tsat

8 fbin = v · (nbins − 2);
9 ibinL = floor(fbin);

Check out of bounds

10 if ibinL < nbins − 2 then
11 //inbounds;

12 wH = fbin− ibinL;

13 ibL = ibinL; Low bin

14 wbL = 1− wH; Low bin weight

15 ibH = ibinL + 1; High bin

16 wbH = wH; High bin weight

17 else
18 //out of bounds, v >= 1;
19 wH = (v − 1)/(tsat − 1);

20 ibL = nbins − 2; Low bin

21 wbL = 1− wH; Low bin weight

22 ibH = nbins − 1; High bin

23 wbH = wH; High bin weight

24 hi(x)[ibL] += wbL;
25 hi(x)[ibH] += wbH;

[*] The reconstruction filter ReconFilter is used to interpolate the samples near a particular pixel. The

final value of a pixel is computed as a weighted average of the samples within the reconstruction filter

support. For instance, the filter ReconFilter can be a box filter averaging with the same weight all the

samples within a square window of side 1 pixel. Other popular interpolation filters are the Gaussian

filter or the Mitchell filter (see [17, Chapter 7]).

[†] Note that v can take negative values due to the use of a reconstruction filter wx
ζ having negative

side-lobes (e.g., Mitchell or Sinc filters). Nevertheless, for computing the pixel color’s histogram,

those negative values are clamped to zero (line 5).
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Algorithm 2: Single-Scale Ray Histogram Fusion

input : mc image ũ, corresponding histograms h (computed by Algorithm 1), half patch
size w, half search window size b, distance threshold κ, minimum number of similar
patches kNN .

output: Filtered image ū.

1 ū← 0;
2 n← 0; auxiliary counter at each pixel in the image

3 for every pixel x do
4 Px ← patch centered at pixel x;
5 Wx ← search window with size b for pixel x;
6 c← 0 and V ← 0;
7 for every y ∈ Wx do
8 Qy ← patch centered at pixel y;
9 dy ← ChiSquareDistance(h(Px), h(Qy)); Given by (4)

10 Sx ← compute knn(kNN , {dy}); Sx : set of indices of kNN most similar patches (smallest dy values)

Lines 11− 18 implement Equation (6)

11 for every pixel y ∈ Sx do
12 V ← V + ũ(Qy);
13 c← c+ 1;

14 for every y ∈ Wx ∩ Scx do
15 if dy < κ then
16 V ← V + ũ(Qy);
17 c← c+ 1;

18 V ← V/c;

Aggregation given by Equation (7)

19 n(Px)← n(Px) + 1; +1 estimator for each pixel in Px

20 ū(Px)← ū(Px) +
(
V − ū(Px)

)
./n(Px);

Notation convention: ũ(Px) is the evaluation of ũ on each pixel in patch Px (the same applies for ū, n, h).

The operator ./ (line 18) represents element-wise division.

of the filter for a 1280 × 720 image would be approximately 0.2GB, regardless of the number of
samples per pixel.

4 Examples

Different types of scenes containing complex geometries, indirect illumination, depth-of-field and
other effects were rendered using the software pbrt-v2 [17]. As previously said, the color distribution
estimation stage was implemented on top of pbrt, so the color histograms were produced online as
the samples were computed. The filtering/reconstruction stage was implemented in a stand-alone
application which makes use of the sample color histogram of each pixel and the noisy Monte Carlo
image generated with a box filter.

In all cases three independent histograms were calculated, one for each channel (R, G, B) with
nbins = 20. The search for similar patches was limited to a 10 × 10 window centered on the filtered
pixel. The patch size for the RHF filter is 3× 3 (w = 1) for all the results shown in this paper. The
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Algorithm 3: Ray Histogram Fusion

input : mc image ũ, corresponding histograms h (computed by Algorithm 1), half patch
size w, half search window size b, distance threshold κ, minimum number of similar
patches kNN and number of scales nscal.

output: Filtered image ū = ū0.

1 s← nscal − 1 nT ←
∑

x,k h(x)[k]total number of samples

2 while s ≥ 0 do
3 us ← Ds(ũ);
4 hs ← Ds(h), nsT ←

∑
x,k h

s
k(x), hs ← nT

nsT
hs;

5 if s = 0 then
6 ūs ← RHF (us, hs, w, b, κ, kNN); Force a min. of kNN similar patches (finest scale)

7 else
8 ūs ← RHF (us, hs, w, b, κ, kNN =0);

9 if s < nscal − 1 then
10 ūs ← ūs − U1D1ūs + U1ūold

11 ūold ← ūs s← s− 1

κ threshold (the user parameter) was manually set to produce a good balance between smoothness
and remaining noise and we always considered a minimum number of kNN = 2 similar patches at
the finest scale.

The effect of κ. The maximum distance authorized between two patches plays an important role
in the bias-variance tradeoff of the method. If the threshold is conservative then very few pixels will
be averaged. Thus, the filtering stage will not introduce bias, but the variance reduction will be
low. On the other hand, if set too large then many pixels of different nature would be considered
similar, and averaged by error. Then the resulting image would be smooth but also biased as shown
in Figure 5.

The effect of the multi-scale procedure. Figure 6 shows the importance of dealing with noise
at multiple scales. When filtering only at a single fine scale, conspicuous low frequency noise remains.
This noise is almost completely eliminated by the multi-scale procedure with three scales.

The effect of the minimum number of similar patches kNN . The minimum number of similar
patches permits to force a minimum filter strength, i.e. a minimum on the variance reduction. In
very complex scenes, such as the San Miguel cathedral scene shown in Figure 7, this is important
since there are regions (e.g. shadows) from where paths very rarely find a way to reach a light
source. When rendering with few samples, this produces impulse noise that can be mitigated by
fixing a minimum number of similar patches.

5 Discussion

This paper detailed the recently introduced RHF filter [7] for accelerating Monte Carlo renderers.
Although there have been several breakthroughs very recently, synthesizing high quality realistic
images in a reasonable amount of time remains a major challenge in computer graphics. In this
RHF filter described here, each image pixel is characterized by the set of rays that reach its surface.
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256 spp psnr=23.4 κ = 0.3, psnr=29.1 κ = 0.4, psnr=29.3 κ = 0.5, psnr=30.8 κ = 0.6, psnr=34.2

Reference κ = 0.7, psnr=36.6 κ = 0.8, psnr=37.1 κ = 0.9, psnr=36.9 κ = 1.0, psnr=36.5

Figure 5: Changing the similarity parameter κ. This parameter controls the maximum distance
that two color distributions can differ. A small detail in the toasters image filtered with the RHF
algorithm with growing κ values. The PSNR presents a minimum for κ = 0.8. If κ is too small the
test on the similarity is excessively conservative, and the noise is not reduced (high variance). If κ is
large, too many pixels are averaged and the image is blurred (high bias). The results were calculated
on the toasters scene generated with 256 samples per pixel (spp).

The algorithm uses a similarity measure on the empirical ray color distribution of each pixel, to
decide whether two pixels can be fused. This simple procedure permits to boost the performance of
any stochastic renderer by reusing samples without introducing significant bias. The RHF method
achieves artifact-free high quality noise reduction on a variety of scenes, and is able to cope with
multiple simultaneous rendering effects. Thanks to its natural multi-scale design, it can successfully
remove noise at all scales.

As a future work, we would like to investigate how rhf can be applied to post-process other
methods that re-synthesize samples using information from the scene, like the one recently proposed
in [14]. Also, since a direct output of the method is the number of similar pixels that each pixel
has, a decision on where to distribute new samples can be adopted. This may be the basis of an
adaptive rendering version of the proposed filtering. The RHF filter assumes that the pixels grouped
as similar have exactly the same expected value. In practice, this does not strictly hold and can
therefore lead to the introduction of a small bias. We would like to explore whether the use of more
general models (e.g. affine or more complex statistical models) can improve the performance and
keep bias controlled.

Besides, it would also be interesting to explore different ways of reducing the computational cost
of the RHF filter. Recently, [8] introduced a technique for accelerating filters based on the auto-
similarity principle. Their algorithm, which reaches outstanding results, learns a set of manifolds
that capture well the image structure, and then filters each of them separately. Hence, this is a
natural research direction to reduce the computational cost of the RHF filter.
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Input Single scale Three scales

Figure 6: Number of scales. Filtering only at a single fine scale will not eliminate large structure
noise. However, this noise is almost completely eliminated by the multi-scale procedure with three
scales.
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