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Abstract

This paper describes a simple pushbroom camera model for Earth observation satellites and
proposes a new algorithm to refine the orientation parameters of a camera from a set of ground
control points. The relative importance of the various orientation parameters is analyzed. On
the last generation of high resolution satellites such as Pléiades and WorldView, the attitude
angles are shown to be the main contributors to localization errors. Thus the proposed algorithm
focuses on refining the attitude angles. It is based on a simple polynomial fitting method.
Numerous experiments, which can be reproduced through the online demo associated to this
paper, show that the proposed algorithm is able to reduce the localization error by one order
of magnitude with only a few ground control points. A geometric simulator for the proposed
model is implemented, as well as the attitude refinement algorithm.

Source Code

The reviewed Python source code implementing a geometric simulator for the camera model
and the attitude refinement algorithm is available from the web page of this article1. Usage
instructions and documentation are included in the README.md file of the archive.

Keywords: pushbroom sensor; satellite orientation; attitude refinement; ground control points

1 Introduction

The number of optical Earth observation satellites has increased drastically over the past decade.
According to the World Meteorological Organization2, 65 civilian observation satellites are currently
in operation, while at the end of the Nineties they were around 30. Their proliferation will certainly

1https://doi.org/10.5201/ipol.2015.146
2Observing Systems Capability Analysis and Review Tool, http://www.wmo-sat.info/oscar/satellites (ac-

cessed on 8 july 2015)
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accelerate as new companies such as Skybox plan to launch dozens of low-cost satellites in the next few
years. Starting during the Fifties, the development of the first Earth observation satellites was mostly
driven by military needs related to the Cold War, but civilian applications followed very quickly
in fields such as meteorology, cartography, geology, hydrology, forestry or glaciology. Nowadays,
images from Earth observation satellites are used to solve problems ranging from geographic mapping
to meteorology predictions [18], including applications as diverse as the measurement of elevation
changes for glaciers [2] or rescue assistance for natural disasters [43].

Most of these applications require the images to be accurately georeferenced. For instance when
using multi-temporal images of the same area to monitor changes in vegetation, water bodies, or
geological landmarks, the images have to be accurately registered in order to provide meaningful
measurements. Obviously for this use case a relative registration of the images may suffice to the
end users, but it implies a preprocessing specific to the application. In an ideal world, all satellite
images would be natively georeferenced to sub-pixel precision.

To georeference an image, two things are necessary. First an accurate geometric model of the
camera with all the numerical values of its parameters, and second a digital surface model of the
ground area corresponding to the viewed scene. This paper deals with the first thing. Observation
satellites use pushbroom cameras which record the scene line by line as the satellite moves forward
on its orbit. The resulting image is a stack of lines taken at slightly different times, from different
positions and viewing angles. The camera position and viewing direction in space (usually referred to
as attitude) are recorded on board during the image acquisition. The frequency and precision of these
measurements depend on the satellite, but even in the best cases the resulting accuracy is limited and
needs to be refined using the image content. A common solution is to use known correspondences
between ground control points, i.e. 3D points located in the viewed scene, and their projection on
the image. The camera parameters are then estimated as those that best fit the correspondences
according to the geometric camera model.

1.1 Previous Work

Many papers describing pushbroom camera models have been published since the early Fifties and
the advent of aerial photography. A thorough analysis of these works was made recently by Poli and
Toutin in their last review paper [31], and also by Konecny [19] and Joseph [18] in their respective
textbooks. An exhaustive review was already made in 2004 by Toutin [38]. We give here a quick
historical overview of the developments on pushbroom camera models and estimation algorithms,
but the interested reader should refer to these publications for a comprehensive coverage.

Papers dealing with pushbroom cameras were published even before the launch of the first ob-
servation satellites, as pushbroom cameras were used on aircrafts [4]. In these papers pushbroom
cameras are generally referred to as strip cameras.

The first camera model for orbiting pushbroom cameras was published in 1983 by Guichard and
Toutin [10, 35]. The model was used for SPOT-1 which was the first civilian Earth observation satel-
lite to be launched after the American Landsat series. Later this model became known as the Toutin
Model and was embedded in the commercial software PCI Geomatica. This model assumes that the
satellite flies on a perturbed elliptical orbit and that its nominal constant attitude is perturbed by
second degree polynomial functions of time. Later the model was extended and adapted to newer
observation satellites [36, 37, 39, 40].

In 1987, Konecny proposed to model the movement of orbiting pushbroom cameras with a straight
path and a constant attitude, which leads to a model with six parameters [20]. The differences
between that model and reality were handled by eight perturbation parameters. This model was
extended later by Jacobsen [14, 15, 16].

In 1987, Gugan proposed an orbiting pushbroom camera model for SPOT-1 in which the satellite
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flies an elliptical orbit whose longitude of the ascending node changes linearly with time, as well as
the satellite true anomaly [9]. The attitudes are assumed to drift linearly with time, and their initial
value is unknown. This model was extended by Michalis and Dowman in 2008 [24].

In 1988, Kratky proposed to model the attitude variations of SPOT-1 by quadratic functions of
time [21], [23]. This model was implemented in the software SPOTCHECK+ and was later extended
by Fritsch and Stallmann [8].

In 1990, Westin proposed to simplify the usual models by approximating the orbit of SPOT-
1 by a plane circular orbit [42]. This approximation has to be valid only during the timespan of
one scene. He reported experiments on SPOT-1 images showing that the ground error due to this
approximation is less than 10 cm. To further simplify the model, the attitude derivatives measured on
board are assumed to be accurate enough, leaving only a constant term (i.e. the initial attitude) to be
estimated. An iterative least-squares minimization was proposed to estimate the seven parameters of
the model (four for the circular orbit and three for the constant attitude term). Sub-pixel accuracies
were obtained on SPOT-1 images using a limited number of control points.

In 1995, Gupta and Hartley described a model similar to Westin’s model, in a paper aimed at
describing a new algorithm for mapping 3D points to the image plane [11]. The only difference of
their model with respect to Westin’s is that the satellite path is assumed to be elliptic instead of
circular. But Gupta and Hartley do not explain how the orbit parameters and the attitude offset
are estimated from ground control points. In 1997 they introduced and gave a rigorous analysis
of the linear pushbroom camera [12]. This model is considerably simpler than the usual models
because it assumes that the satellite flies at a uniform speed on a straight line and that its attitude
is constant. As a consequence, the relationship between image and ground coordinates is linear in
terms of homogeneous coordinates, almost as with standard pinhole cameras. The authors reported
a maximal error of half a pixel on a whole SPOT-1 scene when comparing the linear pushbroom
model to the more realistic model they published two years earlier [11].

In 2005, Poli proposed to model both the position and attitude errors by second order piecewise
polynomials depending on time [28, 29, 30]. For pushbroom cameras carried by satellites, two seg-
ments were reported to be sufficient in general [29]. The position and attitude errors are used to
correct the cubic splines interpolated from the position and attitude samples measured on board and
provided by the image vendors.

In 2007, Crespi et al. proposed to model the satellite path by an elliptical orbit and the attitude
errors by second order polynomials depending on time [5]. The measured attitude functions are
obtained by interpolation from samples provided by vendors. This model was implemented in the
SISAR software, but the implementation is not distributed. The whole model was detailed and
analyzed in 2009 in a book chapter [6].

1.2 Our Contribution

Poli and Toutin grouped the major Earth observation satellites in several classes and subclasses [31].
The present paper focuses on the most recent subclass of satellites, which scan the Earth in asyn-
chronous mode and use a so-called agile configuration. These satellites fly along sun-synchronous and
quasi-polar orbits and provide very high resolution images using a flexible single-lens optical system.
They have the ability to rotate about the axes of their camera in order to point at off-nadir targets
up to 30◦, or to view the target from different directions during a single orbit. Some well-known
commercial satellites of this category are Pléiades 1A and 1B, QuickBird, WorldView 1, 2, and 3,
GeoEye 1, Eros A and B, Orbview 3 and TopSat.

This paper proposes a simple model for this kind of orbiting pushbroom cameras and analyzes the
main causes for localization inaccuracies. A simple algorithm is proposed to improve the localization
accuracy. To the best of our knowledge, this paper is the first published work that provides an open
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source implementation of an orbiting pushbroom camera simulator as well as an online demo allowing
to test the proposed attitude refinement algorithm.

The next section exposes the camera model used in the paper. Section 3 analyzes the main causes
for localization inaccuracies and proposes an algorithm to reduce them. Section 4 presents numerous
synthetic experiments to validate the proposed approach.

2 Pushbroom Cameras

This section describes the pushbroom camera model used in the paper. This model is an extension of
the model that was described by Westin in 1990 [42]. The main difference is that our model is built
for satellites whose attitude vary continuously during the timespan of one scene, while the models
made for SPOT-1 [42, 10, 35, 20, 9, 21, 11] were based on the assumption that the attitude was
unknown but almost constant. In our model the attitude evolution is thus described by polynomial
functions of degree 3.

2.1 The Linear Pushbroom Camera

The goal of a camera model is to define the geometric relationship between image and space coor-
dinates. We will first recall how to derive this relationship with the specialized case of the linear
pushbroom camera that was introduced by Gupta and Hartley in 1997 [12]. The linear pushbroom
camera model relies on two simplifying assumptions:

• the camera is traveling in a straight line at a constant velocity with respect to the world,

• the attitude of the camera is constant over the whole image acquisition duration.

This camera can be thought of as a standard pinhole camera [13] moving at constant speed along a
straight line in 3-space, with fixed attitude. This pinhole camera would have the additional property
of containing a single line of pixel sensors in its focal plane instead of the usual bi-dimensional array
of pixel sensors. Thus, at any moment, only the points lying in the plane defined by the optical
center and the line of pixel sensors are imaged by the camera. This plane is called the view plane,
and is shown in Figure 1. The orientation of the view plane depends only on the camera attitude,
and is assumed to be fixed. It is also assumed that the motion of the camera does not lie in the
view plane. Consequently, the view plane sweeps out the whole 3-space as time varies. The image
provided by such a camera is made of lines scanned independently at different instants of time and
stored one next to the other.

All the coordinates in Figure 1 are expressed in the instantaneous camera frame, defined below.

Definition 1. The camera frame is an orthonormal coordinate frame attached to the moving camera.
The origin of the coordinate frame is the instantaneous camera center. The Z-axis lies in the instan-
taneous view plane and is perpendicular to the linear sensor array. It is directed towards the visible
half-space. The X-axis is orthogonal to the view plane and its direction is determined by requiring
that the motion of the camera has a positive X component. The Y-axis lies in the view-plane, is
parallel to the sensor array, and its direction is determined by requiring that the X,Y, and Z axes
form a right-handed coordinate frame.

The image of a 3-space point X is described by its row and column coordinates x and y. The
first coordinate x gives the time instant at which the point X was imaged, i.e. lay in the view plane.
If δt denotes the time spent by the sensor to measure one sample, then the instant of time at which
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Figure 1: Linear pushbroom camera model. The instantaneous camera optical center C moves at a
constant speed. The view plane sweeps out the whole 3-space as the camera moves forward. The 3D
point X is imaged by the camera to the focal plane location x.

the row x was imaged is xδt (assuming that the first row was imaged at t = 0). The duration δt is
called the dwell time. It is part of the internal parameters of the sensor.

The second coordinate y gives the position of the projection of X on the sensor. It is a 2D
projection carried out in the view plane. The coordinates of the projected point can be expressed in
the camera frame. In that frame the view plane is defined by X = 0. If f denotes the focal length
of the camera, it follows from similar triangles that the point X = (0,Y, Z)⊤ is mapped to the point
(0, fY/Z, f)⊤, as shown in Figure 2.

The coordinate y is a pixel index expressed in the sensor frame, which differs from the camera
frame by a translation. The magnitude of this translation is given by the principal point coordinate
y0. It is the pixel index of the projection of the camera center on the sensor array, as shown on
Figure 3. If w denotes the pixel size measured with the camera frame units, then w(y− y0) = fY/Z.

This permits to describe the locus of 3-space points that may have been imaged on a given image
point.

Result 1. Let x = (x, y)⊤ be an image point, where x is the row index and y the column index. Take
as coordinate frame the instantaneous camera frame at time t = xδt. Then the inverse image of {x}
by the linear pushbroom camera mapping is the 3-space line passing through the origin and directed
by (0, w(y − y0), f)⊤.

2.2 Camera Rotation

Most modern high resolution commercial satellites such as those of the Pléiades and WorldView series
scan the Earth in asynchronous mode [31]. The word asynchronous refers to the fact that the satellite
speed and ground scanning speed are not equal: the satellite moves faster than the projection of its
sensor array on the ground. On the one hand this ensures a longer exposure time, which allows more
photons to reach the CCD (Charge Coupled Device) sensor and thus improves the signal to noise
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Figure 2: For 3-space points in the view plane, the image formation works in the same way as with
a pinhole camera. From similar triangles one knows that the ratio between the Y coordinate of the

image point and f is equal to Y
Z .

Figure 3: The sensor frame is used to express the coordinate of a pixel in a given image row. Its
relationship with the camera frame depends on internal parameters such as the pixel size w and the
principal point coordinate y0.

ratio [28]. On the other hand, it implies that the camera attitude is not constant during one image
acquisition, i.e. that the second assumption made by the linear pushbroom camera model is not
valid, as illustrated in Figure 4. This makes the image formation model slightly more complicated
and increases the number of parameters needed to describe the image acquisition system.

The first consequence of the variation of attitude angles over time on our camera model is that
the camera frame has no longer a fixed orientation. To convert coordinates between the camera
frame and a fixed world frame, an intermediate coordinate frame is thus needed. This frame is the
local orbital frame.

Definition 2. The local orbital frame is an orthonormal coordinate frame attached to the moving
satellite. The origin of the coordinate frame is the satellite center of mass. The Z-axis points towards
the center of the Earth. The X-axis is defined by the motion of the satellite. The Y-axis is determined
by requiring that the X,Y, and Z axes form an orthonormal right-handed coordinate frame.

For the sake of simplicity the camera center is supposed to coincide with the satellite center of
mass. The camera frame and the local orbital frame have thus the same origin, and differ only by
a rotation. This rotation is described by its roll, pitch and yaw components (ϕ, ψ, ω). To obtain
the camera frame, the local orbital frame is first rotated about its X axis by the roll angle ϕ, then
rotated about its new axis Y′ by the pitch angle ψ, and finally rotated about the twice new axis Z′′

by the yaw angle ω. These three rotations are shown on Figure 5. As the three elemental rotations
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Figure 4: Synchronous observation satellites, shown on the left, have fixed attitudes: the orientation
of the camera with respect to the satellite does not change over time. On asynchronous observation
satellites, shown on the right, the attitude angles may vary during the image acquisition, such as the
pitch angle ψ shown here.

occur about axes of the rotating coordinate system (they are called intrinsic rotations), the resulting
transformation matrix is obtained by composing the associated Givens rotation matrices [13] from
left to right

R(ϕ, ψ, ω) =





1 0 0
0 cϕ −sϕ
0 sϕ cϕ









cψ 0 sψ
0 1 0
−sψ 0 cψ









cω −sω 0
sω cω 0
0 0 1



 , (1)

where ca and sa denote cos(a) and sin(a). Note that the values of the attitude angles ϕ, ψ, ω depend
on t. The change of basis matrix from the local orbital frame to the camera frame will usually be
written as R(ϕ(t), ψ(t), ω(t)).

Result 2. Let x = (x, y)⊤ be an image point, where x is the row index and y the column index. In
the local orbital frame at time t = xδt, the inverse image of {x} by the pushbroom camera mapping
is the 3-space line passing through the origin and directed by

R(ϕ(t), ψ(t), ω(t))





0
w(y − y0)

f



 . (2)

Our model makes the extra assumption that the roll, pitch and yaw are polynomial functions of
time of degree 3

ϕ(t) = ϕ0 + ϕ1t+ ϕ2t
2 + ϕ3t

3

ψ(t) = ψ0 + ψ1t+ ψ2t
2 + ψ3t

3

ω(t) = ω0 + ω1t+ ω2t
2 + ω3t

3.

The attitude of the camera is thus entirely described by the set of coefficients of these 3 polynomial
functions, which is denoted by Φ = {(ϕk, ψk, ωk)}k=0,...,3. Additional terms may also be considered
to model certain oscillations of the satellite attitude [26], but this is beyond the scope of the present
paper.

2.3 Satellite Movement

Real satellites have elliptical orbits around the Earth as described by Kepler’s laws. Hartley and
Gupta [12] reported a discrepancy of about 5m when approximating an orbiting pushbroom with a
linear pushbroom camera model on images from the first generation of SPOT satellites.
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Figure 5: The camera frame (represented in black) is obtained from the local orbital frame (in gray)
by composing three Givens rotations [13] about the three axes of the rotating frame. The first
rotation is about the X axis, thus the X axis does not change and X′ = X. In the same way Y′′ = Y′

and Z′′′ = Z′′. The roll angle ϕ shown on the left figure is negative, while the pitch and yaw angles
ψ and ω shown on the middle and right figures are positive.

As the first SPOT satellites had constant attitudes, the main factor responsible for this discrep-
ancy might be the first assumption of the linear pushbroom camera model, i.e. the uniform and
linear camera movement hypothesis.

Orbit description. In this paper the orbit of the satellite is assumed to be a circle centered on
the Earth’s center of mass, as in [42]. It is described by three parameters: the radius of the circle,
plus two angles giving the orientation of the plane in which the circle lies.

The radius is RE+a, where RE denotes the Earth radius and a the flying altitude of the satellite,
usually around 700 km. The orientation of the orbital plane is given by its inclination i ∈ [0, π] and its
reference node longitude λ0 ∈ [−π, π]. The inclination is the angle formed with the equatorial plane,
as shown on Figure 6. The reference node is the intersection between the orbit and the equatorial
plane at which the satellite is ascending (i.e. going towards north). The longitude λ0 is measured
with respect to the inertial frame.

Definition 3. The Earth-centered inertial frame is an orthonormal coordinate frame attached to the
center of mass of the Earth, whose axes have fixed directions. Its Z axis is the Earth rotation axis,
oriented towards the North pole. Its X axis lies in the equatorial plane and is permanently fixed in a
direction relative to the celestial sphere. The Y-axis is determined by requiring that the X,Y, and Z

axes form an orthonormal right-handed coordinate frame.

The inertial frame does not rotate with the Earth. This means that any particular location on
Earth, except the two poles, has coordinates that change over time. Coordinates of points on Earth
are usually expressed in a frame that rotates with the Earth, namely the Earth centered rotational
frame, defined below.

Definition 4. The Earth centered rotational frame, or rotational frame for short, is an orthonormal
coordinate frame attached to the rotating Earth. The origin of the coordinate frame is the center of
mass of the Earth. The Z-axis is pointing towards the north. The X-axis intersects the surface of the
Earth at 0◦ latitude (equator) and 0◦ longitude (Greenwich). The Y-axis is determined by requiring
that the X,Y, and Z axes form an orthonormal right-handed coordinate frame. The coordinates of a
point in that frame are called its geographic coordinates. They are usually given in spherical form
by the longitude λ, the latitude θ and the altitude h above the surface of the sphere.
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Figure 6: A circular orbit around the Earth is described by three parameters: its radius RE + a, the
longitude λ0 of its reference node, and its inclination i. The longitude λ0 is defined with respect to
the X axis of the inertial frame. The inclination i is the angle between the equatorial plane and the
orbital plane. The satellite is localized by its angular position αt. Note that the longitude represented
here is negative.

For the sake of simplicity, we assume that the rotational frame coincides with the inertial frame
at the beginning of the acquisition (t = 0). The frame rotates with the Earth, therefore coordinates
of a fixed point on the Earth surface do not change over time.

Position of the satellite. The position of the satellite on the orbit is given by an angle αt ∈ [0, 2π].
As the orbit is supposed to be circular and uniform, αt depends only on its initial value α0 and on
the time t elapsed since the beginning of the acquisition

αt = α0 + 2π
t

TS
, (3)

where TS denotes the orbital period of the satellite. It is known from Kepler’s third law that

2π

TS
=

√

µ

(RE + a)3
, (4)

where µ is the standard gravitational parameter of the Earth, thus TS depends only on a. For typical
Earth observation satellites with a roughly equal to 700 km, TS is about one hour and a half.

Change of basis. The change of basis matrix from the rotational frame to the local orbital frame
depends both on the orbit parameters and the satellite position. As the rotational frame and the
satellite position depend on the time t, this change of basis matrix depends on t. It is a simple
rotation composed with a translation. Its expression is derived in the next two paragraphs.

From inertial to orbital frame. Given a satellite position αt and a triplet of orbit parameters
(λ0, i, a), the change of basis is obtained by first rotating the inertial frame about its Z axis by λ0.
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Figure 7: Decomposition of the rotation that maps the axes of the Earth-centered inertial frame to
the axes of the local orbital frame. The rotation is obtained by composing three Givens rotations
about the three axes of the rotating frame. In each figure, the old axes are plotted in gray while the
new axes are plotted in black. In the first figure, the inertial frame is rotated about its Z axis by λ0.
In the second figure, the new axes are rotated about X′ by i− π

2
. In the last figure, the new axes are

rotated about Y′′ by π
2
− αt.

This makes the new X axis, X′, point to the reference node, as shown in Figure 7. The new frame is
then rotated about X′ to send the Z axis in the orbital plane. As the Z axis is perpendicular to the
equatorial plane, the angle between the X′Z plane and the orbital plane is i − π

2
. A third rotation

by π
2
− αt about the new Y axis, Y′′, makes the Z axis point towards the satellite. An additional

rotation of π about the same axis makes the Z axis point towards the Earth center. The change of
basis matrix is obtained by composing these three rotations

Pinertial, orbital(λ0, i, αt) =





cλ0 −sλ0 0
sλ0 cλ0 0
0 0 1









1 0 0
0 ci−π

2
−si−π

2

0 si−π

2
ci−π

2









c−αt−
π

2
0 s−αt−

π

2

0 1 0
−s−αt−

π

2
0 c−αt−

π

2



 (5)

From rotational to inertial frame. The change of basis at time t is a rotation of angle
τ = 2π t

TE
, where TE denotes the duration of a stellar day, which is the Earth rotation period relative

to the fixed stars. It is approximately 86 164.10 s. The axis of the rotation is Z, thus the change of
basis matrix is

Protational, inertial(t) =





cτ −sτ 0
sτ cτ 0
0 0 1



 . (6)

The change of basis matrix from rotational to orbital frame is obtained by composing the previous
matrices

Protational, orbital(t, λ0, i, α0) = Protational, inertial(t)Pinertial, orbital(λ0, i, α0 + 2π
t

TS
)

=





cτ+λ0 −sτ+λ0 0
sτ+λ0 cτ+λ0 0
0 0 1









1 0 0
0 ci−π

2
−si−π

2

0 si−π

2
ci−π

2









c−αt−
π

2
0 s−αt−

π

2

0 1 0
−s−αt−

π

2
0 c−αt−

π

2



 ,
(7)

where for readability αt is used to denote α0 + 2π t
TS

in the last matrix (see Equation 3).
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Result 3. Let x = (x, y)⊤ be an image point. In the Earth centered rotational frame at time t = xδt,
the inverse image of {x} by the pushbroom camera mapping is the 3-space line passing through the
point

S = −Protational, orbital(t, λ0, i, α0)





0
0

RE + a



 , (8)

and directed by the vector

u = Protational, orbital(t, λ0, i, α0)R(ϕ(t), ψ(t), ω(t))





0
w(y − y0)

f



 . (9)

Proof. Let us denote by S the center of mass of the satellite. From Result 2 we know that the inverse
image of {x} is the 3-space line passing through S and directed by a vector whose coordinates in the
orbital frame are

R(ϕ(t), ψ(t), ω(t))(0, w(y − y0), f)⊤. (10)

The coordinates of that vector in the rotational frame are obtained by composing with the change of
basis matrix Protational, orbital(t, λ0, i, α0), which leads to the expression of u given in (9). If we denote
by E the Earth’s center of mass, then S − E is a vector whose coordinates in the orbital frame are
−(0, 0, RE + a)⊤. Thus its coordinates in the rotational frame are given by

−Protational, orbital(t, λ0, i, α0)(0, 0, RE + a)⊤. (11)

As E is the origin of the rotational frame, the coordinates of S in that frame are the same.

2.4 Image Formation Model

Localization function. Given an image point x and the altitude h above the sea level of the
associated 3-space point X, it is now possible to compute the geographic coordinates of X (see
Definition 4). This is done by computing the first intersection point of the line defined in Result 3
with the sphere of radius RE + h centered at the Earth center.

The line defined in Result 3 passes through the point S and is directed by the vector u given by
expression (9). The first intersection point with the sphere is computed by finding a scalar r such
that

‖S+ ru‖2= (RE + h)2. (12)

This is a polynomial equation on r of degree 2. When the camera points towards the Earth, this
equation has two positive roots, and the smallest root

r =
−S⊤u−

√

(S⊤u)2 − u⊤u(S⊤S− (RE + h)2)

u⊤u
(13)

gives the position of the desired 3-space point X = S+ ru. This defines the localization function

L :R2 ×R→ [−π, π]× [−π
2
,
π

2
]

(x, h) 7→ (λ, θ),
(14)

which associates a longitude λ and a latitude θ to each image point x, provided that the altitude h
is known. Here λ and θ are the geographic coordinates of the point X = S+ ru.
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Projection function. Conversely, given a 3-space pointX it is possible to compute the coordinates
of its image x. As there is no direct way of computing the time t at which the view plane will sweep
throughX, this computation is not as straightforward as the previous one. This is a notable difference
with the pinhole camera model for which the computation of image coordinates is a linear operation
on homogeneous coordinates of the 3-space point. The projection function

P : [−π, π]× [−π
2
,
π

2
]×R→ R2

(λ, θ, h) 7→ x,
(15)

is the inverse of L with respect to the image coordinates. It is estimated iteratively from L. An
initial estimate is computed by assuming that the dependence with h is linear and the dependence
with (λ, θ) is quadratic. This initial estimate is then refined using the Newton algorithm.

A first estimation P0 of the projection function P is made for a fixed altitude h. The estimation
is done by assuming that the function P (·, ·, h) is quadratic. A 2× 6 matrix P is estimated such that
for all λ, θ

P0(λ, θ, h) = P(1, λ, θ, λ2, θ2, λθ)⊤. (16)

The matrix P is obtained through least squares minimization from a list of correspondences

(xi, yi)↔ (λi, θi) = L(xi, yi, h), (17)

obtained by evaluating the localization function L on the vertices of a regular sampling grid (xi,
yi)i=1,...,n2 of size n× n in the image domain (usually n = 5 is enough). The two rows P1⊤ and P2⊤

of P are computed by least-squares minimization of respectively ‖Ap− b1‖ and ‖Ap− b2‖, where

A =







1 λ1 θ1 λ21 θ21 λ1θ1
...

1 λn2 θn2 λ2n2 θ2n2 λn2θn2






, b1 =







x1
...
xn2






, and b2 =







y1
...
yn2






. (18)

The previous least-squares estimation is carried out for two different altitudes h1 and h2, leading
to two matrices P1 and P2. These two altitudes can be, for example, lower and upper bounds for
the 3D points of the scene. The projection function estimate P0 is finally obtained from linear
interpolation on h

P0(λ, θ, h) =

( |h2 − h|
|h2 − h1|

P1 +
|h− h1|
|h2 − h1|

P2

)

(1, λ, θ, λ2, θ2, λθ)⊤. (19)

Note that the estimation of P1 and P2 is done only once, while Equation (19) has to be evaluated each
time we want to evaluate the projection function. The initial estimate P0 is then refined using the
Newton method [32], as detailed in Algorithm 1. At each iteration, the function (x, y) 7→ L(x, y, h)
is approximated by its first order Taylor expansion. The inversion of its Jacobian matrix, denoted by
Jx,yL(x, y, h), allows to refine the estimation. Note that the partial derivatives needed to compute
the Jacobian matrix are approximated by forward differences. For example:

∂L

∂x
(x, y, h) ≈ L(x+ 1, y, h)− L(x, y, h). (20)

The loop stops when the function L(·, ·, h) maps the refined image coordinates to a point on Earth
which is less than 1mm from the input. This distance is computed using the fact that the squared
distance between two points with spherical coordinates (λ, θ) and (λ̃, θ̃) on the unit sphere is approx-
imated to first order by (θ̃ − θ)2 + (λ̃− λ)2 cos2 θ when (λ̃, θ̃) is close to (λ, θ).
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Algorithm 1: Iterative estimation of the projection function P : (λ, θ, h) 7→ (x, y).

Input: λ, θ, h: geographic coordinates and altitude of a 3D point
niter: number of iterations

Output: x, y: image coordinates
begin

1 x, y = P0(λ, θ, h) // initialization

2 for k ∈ {1 . . . niter} do
3 λ̃, θ̃ = L(x, y, h)

4 if RE

√

(θ̃ − θ)2 + (λ̃− λ)2 cos2 θ < 1mm // error check

5 then

6 break

7

(

x
y

)

←
(

x
y

)

− [Jx,yL(x, y, h)]
−1

(

λ̃− λ
θ̃ − θ

)

// update

Parameter Description Pléiades WorldView-2

in
tr
in
si
cs δt dwell time 0.07ms ?

w pixel width 13 µm 8 µm
f focal length 12.9m 13.3m
y0 principal point coordinate 15000 px 17500 px

ex
tr
in
si
cs

a orbit altitude 694 km 770 km
i orbit inclination 98.2◦ 98.5◦

λ0 reference node longitude −180◦ - 180◦ −180◦ - 180◦

α0 initial angular position on the orbit 0◦ - 360◦ 0◦ - 360◦

∆t duration of the acquisition ≈ 3 s ≈ 3 s
Φ = (ϕk, ψk, ωk)k=0,...,3 coefficients of the attitude functions

Table 1: Parameters of the pushbroom camera model. The last two columns give typical numerical
values for Pléiades and WorldView-2 satellites. The parameters may be divided into two classes:
internal parameters, sometimes called intrinsics, which characterize the camera, and external param-
eters, or extrinsics, which characterize the position and orientation of the camera with respect to the
inertial frame (see Definition 3).

The projection and localization functions depend obviously on the values of the camera param-
eters. For the sake of simplicity, this dependence is not made explicit in Equation (14) but this
may be done if needed by renaming L to Lδt,w,f,y0,a,i,λ0,α0,Φ. The complete set of 20 parameters on
which L depends (12 of them are grouped together into Φ), plus the duration of the acquisition ∆t,
is summarized in Table 1.

3 Pushbroom Camera Parameters Refinement

The computation of the camera parameters, both external and internal, from a set of world to image
correspondences is a problem known as resectioning [13]. In the case of remote sensing images, the
internal parameters are usually known with a good accuracy because the sensor has been carefully
calibrated before the launch of the satellite. Moreover the sensor calibration may have been refined
during the in-flight commissioning, as happened for Pléiades [7]. In this work the internal parameters
are thus assumed to be perfectly known.
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3.1 Camera Position Parameters

On modern high resolution satellites, the external parameters are measured on board in real time and
provided with the images. The attitude parameters are more sensitive to measurement inaccuracies
than the position parameters: for the typical case of a nadir looking satellite orbiting at 700 km,
an error of 1 µrad on the roll or pitch angles yields a displacement of about 70 cm on the ground,
while an error of 1 cm on the camera position yields a displacement of at most 1 cm on the ground.
The accuracy of the attitude is much more critical than that of the camera position. On Pléiades
the orbit parameters, i.e. the satellite positions, are computed on board with centimeter accuracy
by two DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite) positioning
instruments [7]. Note that satellite trajectories are subject to much less perturbations than airplanes
trajectories.

Moreover, in terms of ground coordinates, attitude and position errors have similar effects and
are therefore difficult to distinguish from each other. A roll or pitch error has locally the same
effect as a translation of the focal plane, which can be obtained through a translation of the camera
center. This observation was already reported by Gugan [9], Konecny [20] and Kratky [23] in the
late Eighties about SPOT-1 orientation parameters.

Therefore we make the extra assumption that the camera positions (i.e. the path followed in
3-space by the optical center of the camera) are perfectly known, and that all the measurement
inaccuracies lie in the attitude angles.

3.2 Camera Attitude Parameters

The problem tackled in this section is to estimate the values of the 12 attitude parameters Φ =
(ϕk, ψk, ωk)k=0,...,3, given a set of correspondences between image and world points. To emphasize the
fact that only the attitude parameters are being estimated, the localization and projection functions
L and P introduced in Section 2.4 are denoted by LΦ and PΦ.

3.2.1 Yaw versus Roll and Pitch

If we assume that the satellite is at nadir, i.e. with zero roll and pitch angles, the effect of attitude
errors on the localization function LΦ can be computed simply, as shown on Figure 8. To first order,
a small error ε on the roll or pitch angles induces a displacement of aε on the ground, where a is
the distance between the satellite and the ground. Things are different for the yaw, as it induces
a rotation of the imaging sensor around its center. A small error ε results in a displacement of at
most D

2
ε on the ground, where D is the swath width of the satellite. The relative importance of yaw

errors with respect to roll and pitch errors is thus D
2a
, which is generally less than 2%. For example

with Pléiades D = 20 km and a = 694 km, the ratio is approximately 1.4%.

It is thus reasonable to neglect the yaw error and assume that the yaw coefficients are perfectly
known. The problem is thus narrowed down to estimating the value of the roll and pitch coefficients
given a set of world to image correspondences. For simplicity of notation, the reduced set of 8 attitude
parameters (ϕk, ψk)k=0,...,3 is still denoted by Φ.

3.2.2 Global Energy Minimization

Assume n ≥ 1 point correspondencesXi ↔ xi between 3D pointsXi and 2D image points xi = (xi, yi)
are given. xi and yi are the row and column indices of the image points, meaning that xiδt is the
acquisition time and yi is the column index, i.e. the position on the pushbroom array. When the
attitude coefficients Φ are exact, the line LΦ(xi, ·) passes through the 3-space point Xi and the energy
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Figure 8: Effect of attitude errors on the localization function. The figure on the left shows a pitch
error of ε. To first order, this induces a ground displacement of the sensor projection of aε, where
a is the flying altitude of the sensor. The figure on the right shows a yaw error of ε. It induces a
maximal ground displacement of D

2
ε, obtained for the sensor endpoints, where D denotes the swath

width.

E defined by

E(Φ) =
1

n

n
∑

i=1

d(Xi, LΦ(xi, ·))2, (21)

is zero. Here d(X, ℓ) denotes the Euclidean distance between the 3-space point X and the line ℓ.
Note that even if the line LΦ(xi, ·) can be thought of as the set of points LΦ(xi, h) obtained by
evaluating LΦ on (xi, h) for h varying in R, the line is entirely defined by a point and a direction
(given in Result 3). Hence the evaluation of LΦ(xi, h) for any particular h is not needed. The attitude
parameters can then be estimated by

Φ̂ = argmin
B(Φ,η)

E, (22)

where Φ is the initial estimate measured on board, B(Φ, η) is the ball centered in Φ with radius
η, and η is given by the nominal precision of the satellite attitudes measurement system (typically
50 µrad, i.e. around 30m on the ground).

The cost expressed in Equation (21) involves the distance between 3-space points Xi and rays
back-projected from image points xi. Another option could be to minimize the distance, in the image
plane, between image points xi and projected points PΦ(Xi):

E ′(Φ) =
1

n

n
∑

i=1

d(xi, PΦ(Xi))
2, (23)

This would require to evaluate the projection function PΦ instead of the localization function LΦ,
which, as reported by Gugan [9] and Kratky [22], is more complex computationally since each eval-
uation of PΦ requires several evaluations of LΦ and its derivatives (see Algorithm 1). For solving
the general camera resectioning problem, energy (23) is usually preferred to energy (21) because
in energy (21) the points located far away from the camera have more importance than the points
located close to the camera. But in the case of remote sensing images all the distances between
points are small compared to the distance separating the camera from the scene. The two energies
can thus be considered as equivalent.

342



Attitude Refinement for Orbiting Pushbroom Cameras: a Simple Polynomial Fitting Method

3.2.3 Pointwise Minimization

An alternative approach to global minimization is to compute, for any correspondence X ↔ x, the
instantaneous roll and pitch angles ϕ(t) and ψ(t) needed to make the back-projected ray from x,
namely L(x, ·), pass through X. The direction of this particular back-projected ray depends only on
the values of the roll and pitch angles at time t = xδt, not on the whole set of coefficients Φ. The
coefficients in Φ are then estimated by polynomial fitting from the n computed roll and pitch values.

Each world to image correspondence imposes instantaneous roll and pitch values. Let us
consider a single correspondence between the image point x = (x, y) and the world point X. Knowing
the instantaneous yaw ω(t) at time t = xδt, we look for roll and pitch values ϕ and ψ such that the
ray back-projected from x passes through X. Assume that the coordinates of X are expressed in the
local orbital frame at time t (the conversion from geographic coordinates to local orbital coordinates
is done thanks to Equation (7)). Using the direction of the ray back-projected from x given in
Result 2, our problem amounts to find ϕ and ψ such that R(ϕ, ψ, ω(t))(0, w(y−y0), f)⊤ has the same
direction as X. The factorization of R(ϕ, ψ, ω) given in Equation (1) allows to separate the known
yaw term from the unknown roll and pitch: R(ϕ, ψ, ω) = R(ϕ, ψ, 0)R(0, 0, ω). By denoting

u = R(0, 0, ω(t))





0
w(y − y0)

f



 =





cω(t) −sω(t) 0
sω(t) cω(t) 0
0 0 1









0
w(y − y0)

f



 , (24)

the problem becomes finding ϕ and ψ such that

R(ϕ, ψ, 0)u ∝ X. (25)

With normalized coordinates for u and X the proportionality constraint is replaced by an equality.
The angles ϕ and ψ are obviously bounded to (at least) [−π

2
, π
2
], otherwise the camera would not be

oriented toward the Earth. Another reasonable assumption is that the Z coordinate of u and X is
much bigger than both their X and Y coordinates. Even the most agile satellites such as Pléiades
and WorldView-3 do not usually point more than 30◦ away from nadir. With that assumption our
problem is then completely solved by the next result.

Result 4. Let u = (u1, u2, u3)
⊤ and v = (v1, v2, v3)

⊤ be two points on the unit sphere S2, such that
u3 > |u1|+ |v1|

√
2 and v3 > |v2|+ |u2|

√
2. Then there exists a unique pair of angles (ϕ, ψ) ∈ [−π

4
, π
4
]2

such that
R(ϕ, ψ, 0)u = v, (26)

where R(ϕ, ψ, 0) is the rotation obtained by composing two Givens rotations about the X and Y axis
as defined in Equation (1).

Proof. Using the factorization of Equation (1), Equation (26) becomes





cψ 0 sψ
0 1 0
−sψ 0 cψ



u =





1 0 0
0 cϕ sϕ
0 −sϕ cϕ



v, (27)

which is equivalent to the following system of equations

u1 cosψ + u3 sinψ = v1,

v2 cosϕ+ v3 sinϕ = u2,

−u1 sinψ + u3 cosψ = −v2 sinϕ+ v3 cosϕ.

(28)
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Lemma 1, stated below, shows that each of the first two independent equations has a unique solution
on [−π

4
, π
4
]. Let us show that these solutions ψ and ϕ satisfy the third equation. As u and v lie on

the unit sphere, one can find (α, β) and (γ, δ) in [−π, π]× [−π
2
, π
2
] such that

u1 = cos β cosα

u3 = cos β sinα

u2 = sin β

v2 = cos δ cos γ,

v3 = cos δ sin γ,

v1 = sin δ.

(29)

α and β (resp. γ and δ) are spherical coordinates for u (resp. v). As u3 > |u1| and v3 > |v2|, one can
require additionally that α and γ lie in ]π

4
, 3π

4
[. With these notations the system (28) is rewritten as

cos β cos(α− ψ) = sin δ,

cos δ cos(γ − ϕ) = sin β,

cos β sin(α− ψ) = cos δ sin(γ − ϕ).
(30)

The square of the left term of the third equation is

cos2 β sin2(α− ψ) = cos2 β(1− cos2(α− ψ)) = cos2 β − cos2 β cos2(α− ψ) = cos2 β − sin2 δ, (31)

where the last equality comes from the first equation of (30). Similarly, using the second equation,
the square of the right term is

cos2 δ sin2(γ − ϕ) = cos2 δ(1− cos2(γ − ϕ)) = cos2 δ − cos2 δ cos2(γ − ϕ) = cos2 δ − sin2 β, (32)

hence the two terms have the same squares. As β is in [−π
2
, π
2
], cos β is non-negative. Moreover, as

ψ ∈ [−π
4
, π
4
] and α ∈ ]π

4
, 3π

4
[, it is clear that 0 < α−ψ < π hence sin(α−ψ) > 0. Similarly, cos δ and

sin(γ−ϕ) are non-negative thus the equality between squares suffices to prove the desired result.

Lemma 1. Let a, b, c be three real numbers such that |a|+ |c|
√
2 < b. Then the equation

a cos x+ b sin x+ c = 0 (33)

has a unique solution on [−π
4
, π
4
].

Proof. Let f : [−π
4
, π
4
] → R be the mapping x 7→ a cos x + b sin x + c. This function is continuous

and has values of opposite sign at the endpoints of its domain interval, since

f
(

−π
4

)

f
(π

4

)

=

(

a− b√
2

+ c

)(

a+ b√
2

+ c

)

=

(

a√
2
+ c

)2

− b2

2
< 0. (34)

Thus from the intermediate value theorem [33] f has a root in [−π
4
, π
4
]. To prove the uniqueness,

the case a = 0 being trivial, one can assume that a > 0 (or otherwise use −f). The derivative
of f is x 7→ −a sin x + b cos x. It has a unique zero and changes sign from positive to negative in
arctan b

a
, which is outside the domain [−π

4
, π
4
] since b

a
> 1. Thus f is strictly increasing and the root

is unique.

In practice the solution to Equation (33), and hence to equations (28) and (26), is computed
thanks to the change of variable t = sin x. If x is a solution then t satisfies the quadratic equation

(a2 + b2)t2 + 2bct+ c2 − a2 = 0, (35)

which has two distinct solutions since its discriminant has the sign of a2 + b2 − c2 and we assumed
that c2 < b2. The unique solution to Equation (33) is found by testing these two candidates. The
procedure to compute ϕ and ψ from a world to image correspondence is summarized in Algorithm 2.
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Algorithm 2: Computation of roll and pitch values from a world to image correspondence.

Input: X: Cartesian coordinates of a control point in the Earth-centered rotational frame
x, y: image coordinates
δt, w, f, y0: camera internal parameters
a, i, λ0: orbit parameters
α0: satellite initial position on the orbit
ω: yaw function

Output: ϕ, ψ ∈ [−π
2
, π
2
]: roll and pitch values

begin

1 v← Protational, orbital(xδt, λ0, i, α0)
−1X+ (0, 0, RE + a) // conversion to orbital coordinates

2 v← v
‖v‖

3 u← R(0, 0, ω(xδt))(0, w(y − y0), f)⊤ // yaw application

4 u← u
‖u‖

5 if u3 < |u1|+|v1|
√
2 or v3 < |v2|+|u2|

√
2 then

6 break // the ground control point is unusable

7 else

8 solve R(ϕ, ψ, 0)u = v for ϕ and ψ // using result 4

9 return ϕ, ψ

Polynomial fitting of roll and pitch error evolution. Once a list of roll and pitch samples
has been computed from the set of world to image correspondences thanks to Algorithm 2, the
polynomial coefficients of the roll and pitch functions are estimated by least-squares minimization.

More precisely, assume that a list of roll samples ϕ̂1, . . . , ϕ̂n has been computed at times t1, . . . , tn
from the world to image correspondences. If we denote by ϕ the initial roll function (the one derived
from the onboard attitude measurements), then the roll correction function is estimated by fitting
a polynomial of degree 3 to the points ti, ϕ̂

i − ϕ(ti) in R2. As the initial roll function has a known
accuracy η, given by the satellite specifications, any true roll value cannot differ from ϕ(t) more than
η. The samples ti, ϕ̂

i such that |ϕ̂i − ϕ(ti)|> η are thus discarded. Moreover the fitted correction
polynomial must be bounded by η. Its coefficients p = (p0, p1, p2, p3)

⊤ are estimated by solving a
constrained least squares problem

minimize
p

‖Ap− b‖2

subject to − η ≤
∑

i

pit
i ≤ η, ∀t ∈ [0, T ].

(36)

with

A =







1 t1 t21 t31
...

...
...

...
1 tn t2n t3n






and b =







ϕ̂1 − ϕ(t1)
...

ϕ̂n − ϕ(tn)






. (37)

The constraint −η ≤
∑

i pit
i ≤ η, ∀t ∈ [0, T ] is approximated thanks to a finite sampling

0, T
m
, 2T
m
, . . . , mT

m
of the interval [0, T ], by

−η ≤
∑

i

pi

(

kT

m

)i

≤ η ∀k ∈ {0, . . . ,m}. (38)

This linear constraint is expressed as
−h � Gp � h, (39)

345



Carlo de Franchis, Enric Meinhardt-Llopis, Daniel Greslou, Gabriele Facciolo

where x � y denotes componentwise inequality, i.e. xi ≤ yi for all i, while G is an (m+1)× 4 matrix
and h an (m+ 1)-vector defined by

G =











1 0 0 0

1 T
m

T
m

2 T
m

3

...
...

...
...

1 T T 2 T 3











and h =







η
...
η






. (40)

The optimization problem (36) is thus replaced by a quadratic program problem [3]

minimize
p

‖Ap− b‖2

subject to − h � Gp � h.
(41)

This kind of convex optimization problem that includes inequality constraints can be solved by
interior-point methods. These methods solve the problem by applying Newton’s method to a sequence
of equality constrained problems [3]. A quadratic program solver is available in the cvxopt package,
which is a free software package for convex optimization based on the Python programming language.
It is developed by Martin Andersen, Joachim Dahl and Lieven Vandenberghe. This solver implements
a primal-dual path-following method based on the Nesterov-Todd scaling [41, 1].

Note that for simplicity we detailed only the roll function estimation, but the method applies
to pitch as well. The complete procedure to refine the roll and pitch functions is summarized in
Algorithm 3.

Algorithm 3: Refinement of roll and pitch coefficients from world to image correspondences.

Input: {Xi ↔ xi}: set of n ≥ 1 world to image correspondences
δt, w, f, y0: camera internal parameters
a, i, λ0: orbit parameters
α0: satellite initial position on the orbit
ϕ, ψ, ω: attitude functions measured on board
η: nominal attitude accuracy

Output: ϕ̂, ψ̂: roll and pitch refined functions
begin

1 for k ∈ {1 . . . n} do
2 ti ← xiδt

3 ϕ̂i, ψ̂i ← roll_and_pitch_from_gcp(Xi,xi, δt, w, f, y0, a, i, λ0, α0, ω) // algorithm 2

4 if |ϕ̂i − ϕ(ti)|> η or |ψ̂i − ψ(ti)|> η then

5 discard ϕ̂i, ψ̂i, ti,xi,Xi

6 n← n− 1

7 A← Vandermonde(t1, . . . tn) // Equation (37)

8 for θ ∈ {ϕ, ψ} do
9 b← (θ̂i − θ(ti))⊤ // Equation (37)

10 minimize
p

‖Ap− b‖2 subject to − h � Gp � h // G and h are precomputed

11 θ̂ ← θ +
∑

i pit
i

12 return ϕ̂, ψ̂
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4 Empirical Validation

This section presents an empirical validation procedure for the attitude correction Algorithm 3. All
the experiments are carried out on synthetic data, using the pushbroom camera model described in
Section 2. The implementation of that model is a geometric, and not radiometric, simulator.

On the one hand, synthetic data permits to test any particular configuration, enabling a fine
understanding of the effects of each parameter. Moreover the synthetic observations, i.e. the 3D and
2D coordinates of world to image correspondences, are generated from the image formation model
using the camera parameters, hence are noiseless. Adding artificial noise permits to analyze and
quantify the impact of noise on the refinement algorithm.

On the other hand, the camera model used in the present paper is simplified: to mention just a
few approximations, the orbit is supposed perfectly circular while real observation satellites fly on
elliptical sun-synchronous orbits whose orbital plane precesses once a year, the Earth is supposed to
be a sphere while a closer approximation would be an oblate spheroid, the light travel time from the
Earth surface to the sensor is neglected, as well as the atmospheric refraction. Experiments on real
data are obviously needed for a definitive validation of the proposed algorithm. This delicate task is
left to a forthcoming article.

4.1 Experimental Setup

We use the same notational convention as Hartley and Zisserman in chapter 5 of their reference
book [13]:

• measured quantities are denoted by x (image point coordinates), X (ground point coordinates)
or Φ (attitude coefficients),

• estimated quantities are represented by a hat, such as x̂, X̂ or Φ̂,

• true values are represented by a bar, such as x̄, X̄ or Φ̄.

The testing procedure begins by choosing a fixed set of values for the parameters describing the
pushbroom camera (see Table 1), among which the true attitude coefficients Φ̄ lie. Next a set of
image locations x̄i and associated altitudes h̄i are chosen. The number of such locations will vary.
Synthetic world to image correspondences X̄i ↔ x̄i are generated thanks to the localization function
LΦ̄. The correspondence is exact, in the sense that X̄i = LΦ̄(x̄i, h̄i) precisely, up to machine accuracy.

Next, artificial Gaussian noise is added to the image and ground locations by perturbing both
the x and y coordinates of the image points and the X, Y and Z coordinates of the ground control
points by a zero-mean Gaussian random variable with known variance. The resulting noisy points
are denoted by Xi and xi. A suitable Gaussian random number generator is given in [32]. As the
number of points is usually rather small, the experiment should be run many times with different
realizations of the noise, and the results averaged. In the case of only one experiment, it makes more
sense to impose the magnitude of the noise by choosing the perturbations uniformly on a sphere of
known radius. This is what is implemented in Algorithm 4.

Next, the roll and pitch coefficients are perturbed. On real satellites, the attitude functions are
interpolated from a list of regularly sampled attitude values. These attitude values are measured
with star trackers and gyroscopes at fixed intervals. For examples, on WorldView-2, a state vector
containing the time, position, velocity and attitude is recorded every 0.02 s [31]. On Pléiades, a state
vector containing the time, position and velocity is recorded every 30 s during a timespan longer than
the acquisition in order to provide around 10 samples. The attitudes are given directly as polynomial
functions, but we can reasonably assume that they have been fitted from measured samples. To
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simulate this behavior, d+ 1 real numbers are generated from a zero-mean uniform random variable
with known amplitude. A polynomial perturbation of degree at most d is interpolated from these
d + 1 values, regularly spaced at times t = 0, ∆t

d
, 2∆t

d
, . . . ,∆t. This perturbation is added to the roll

true function ϕ̄ to produce the measured roll function ϕ. The same is done with the pitch. The
resulting noisy attitude coefficients are denoted by Φ.

Then the roll and pitch coefficients are estimated from the noisy ground control points Xi ↔ xi
and the noisy attitude coefficients Φ using the proposed refinement algorithm (see Algorithm 3).
This results in the estimated functions ϕ̂ and ψ̂.

To assess the algorithm performance, the estimation errors ϕ̂− ϕ̄ and ψ̂− ψ̄ are compared to the
measurement errors ϕ− ϕ̄ and ψ− ψ̄. In order to facilitate the comparison, the L2 and L∞ norms of
the error functions are computed. These norms give the root mean square and the maximal errors.
The same quantities are computed for the localization error function defined by

[0,∆t]→ R+

t 7→ d(LΦ(tδt, y0, h0), LΦ̄(tδt, y0, h0)),
(42)

where y0 is the principal point coordinate, h0 = 1
n

∑

i h̄i is the mean altitude and d(X,X′) is the
geodetic distance between two points on the surface of the Earth. As for ϕ and ψ, the estimation
error (computed with Φ̂) is compared to the measurement error (computed with Φ as in (42)).

4.2 Online Demo

The experimental setup presented in Section 4.1 is made available to the reader through the online
demo associated to this paper3.

To help the user with the fastidious task of setting the numerous parameters of the camera, a few
predefined sets of parameters are proposed. They correspond to the internal and orbit parameters
of well-known commercial satellites such as Pléiades and WorldView and are given in Table 1. The
reference node longitude λ0 and the initial angular position α0 on the orbit change over time for any
satellite, thus they should be chosen by the user of the demo. As these two parameters show no
influence on the results of the refinement algorithm, they are not exposed in the demo interface and
have fixed values λ0 = 30◦ and α0 = 180◦ for all the experiments.

As it would be difficult to choose manually a set of realistic values for the 12 attitude coefficients,
the user only selects an initial pointing direction Ψx,Ψy ∈ [−π

4
, π
4
]2 and a heading γ ∈ [0, 2π]. The

heading defines the desired direction of the pushbroom track on the ground, with respect to the local
North direction. The attitude coefficients Φ̄ are then computed from Ψx,Ψy and γ thanks to the
guidance algorithm, given in Appendix B.

Next the user selects a number of image points x̄i by clicking on a white square representing the
image domain. A random altitude h̄i is associated to each image point.

Finally the user selects the standard deviations σimage and σworld of the Gaussian perturbations
added to the coordinates of the image and world points, and selects the degree and amplitude of the
polynomial perturbation added to the roll and pitch functions.

As a result of the simulation, the online demo shows the plots of the localization error function
(see (42)) as well as the roll and pitch error functions, each computed with the measured data
and with the estimated data. An example is given in Figure 9. The complete testing procedure
implemented in the online demo is summarized in Algorithm 4.

3https://doi.org/10.5201/ipol.2015.146
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Algorithm 4: Testing procedure for the roll and pitch refinement algorithm.

Input: δ̄t, w̄, f̄ , ȳ0, ā, ī: set of true internal and orbit parameters
λ̄0, ᾱ0: true reference node longitude and initial angular position on the orbit
Ψx,Ψy, γ: initial pointing direction and heading
{x̄k}: set of n ≥ 1 true image locations
σimage, σworld: std dev of the Gaussian perturbations added to the correspondences
d, η: degree and amplitude of the perturbation added to the roll and pitch functions

Output: statistics (rmse, max) of the roll, pitch and localization error functions, with
measured and estimated attitudes

begin

1 Φ̄← guidance(Ψx,Ψy, γ, δ̄t, w̄, f̄ , ȳ0, ā, ī, λ̄0, ᾱ0)
2 for k ∈ {1 . . . n} do
3 h̄k ← random value between 0 and 1000
4 X̄k ← LΦ̄(x̄k, h̄k)

5 for k ∈ {1 . . . n} do
6 u← random vector on the unit sphere S2

7 v← random vector on the unit circle S1

8 Xk ← X̄k + σworldu
9 xk ← x̄k + σimagev

10 for θ ∈ {ϕ, ψ} do
11 θ0, θ1, . . . , θd ← uniform random samples in [−η, η]
12 p← Lagrange polynomial interpolating (0, θ0), (∆t

d
, θ1), . . . , (∆t, θ

d)
13 θ ← θ̄ + p

14 ϕ̂, ψ̂ ← roll_and_pitch_refinement({Xi ↔ xi}, δ̄t, w̄, f̄ , ȳ0, ā, ī, λ̄0, ᾱ0, ϕ, ψ, ω̄, η)
15 for θ ∈ {ϕ, ψ} do
16 return statistics of θ − θ̄ and θ̂ − θ̄

4.3 Numerical Results

The testing procedure described in Algorithm 4 was run with typical sets of camera parameters on
various control points configurations and various roll and pitch errors. Results presented in Table 2
and Figure 10, show that for a given degree d of the roll and pitch polynomial errors, d + 1 control
points are sufficient to reduce the localization error by one order of magnitude.

However this conclusion holds only if the row indices of the control points are roughly allocated
regularly over the whole row range. Two control points located on neighboring rows correspond to
very close times t and t′, thus the two constraints they provide for the roll and pitch fitting behave
as only one constraint. This is illustrated by the results in Table 3 and Figure 11.

Experiments with different amounts of noise added to the control points show that, as expected,
the estimation is perfect in the absence of noise. The accuracy of the estimation reduces as soon
as the noise amount increases, but this can be compensated by increasing the quantity of control
points. These observations are illustrated by results presented in Table 4 and Figure 12.

5 Conclusion and Future Work

We gave a detailed description of a simplified orbiting pushbroom camera model and showed that,
under reasonable assumptions, the main factor responsible for the localization error are the roll
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Figure 9: Example of results produced with the online demo associated to this paper. Red curves
show the error before correction and blue curves after correction. The user clicked on the image
domain to select the input image points shown in (a). The localization error (in meters) as a
function of time (in seconds) is shown in (b). The red curve gives the error made using the measured
attitudes, while the blue curve gives the error made using the estimated attitudes. The roll and
pitch errors (in micro radians) as functions of time (in seconds) are shown on (c) and (d). The blue
dots give the errors of the instantaneous roll and pitch samples computed from each world to image
correspondence.

and pitch functions. We presented a simple algorithm to refine the roll and pitch functions using
ground control points. It exploits the fact that each ground control point imposes two independent
constraints on the instantaneous values of the roll and pitch, thus permits to compute these values.
Experimental results show that as soon as one has n+1 control points on roughly well spaced rows,
a polynomial error of degree no greater than n is substantially corrected by the proposed algorithm.
In contrast to classical minimization approaches, this algorithm has the particularity that outliers
are automatically detected and removed, preventing them to bias the final result.

To further improve the localization accuracy, once the roll and pitch have been refined, one could
refine the yaw coefficients by minimizing the mean quadratic distance between world points and
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parameters results
noise perturbation roll error (µrad) pitch error (µrad) loc. error (m)

satellite type σimage σworld d η (µrad) before after before after before after
Pléiades 0.5 px 0.2m 0 50 76.48 0.01 61.33 0.92 43.03 0.40
Pléiades 0.5 px 0.2m 1 50 40.11 0.08 39.51 0.59 24.75 0.26
Pléiades 0.5 px 0.2m 2 50 60.53 1.01 27.42 0.89 29.16 0.59
Pléiades 0.5 px 0.2m 3 50 34.74 0.94 52.42 5.24 27.62 2.36

Table 2: Numerical parameters and results of the experiments shown in Figure 10, just below. For
each polynomial error degree d, only d+ 1 control points are used.
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Figure 10: Minimal number of ground control points needed to correct the roll and pitch error, de-
pending on the degree of the polynomial error. Each of the four rows presents a different experiment.
On the dth row, a polynomial error of degree d− 1 is corrected with d control points. The numerical
parameters and results of these experiments are given in Table 2.
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parameters results
noise perturbation roll error (µrad) pitch error (µrad) loc. error (m)

satellite type σimage σworld d η (µrad) before after before after before after
Pléiades 0.5 px 0.2m 3 50 10.97 2.96 51.50 2.15 23.11 1.62
Pléiades 0.5 px 0.2m 3 50 10.97 5.75 51.50 9.58 23.11 4.94
Pléiades 0.5 px 0.2m 3 50 10.97 18.10 51.50 9.07 23.11 8.89
Pléiades 0.5 px 0.2m 3 50 10.97 34.91 51.50 58.08 23.11 29.84

Table 3: Numerical parameters and results of the experiments shown in Figure 11, just below. As
soon as two control points are located barely on the same row, they count as only one point. This
affects the accuracy of the refinement.
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Figure 11: Each of the four rows presents a different experiment. The polynomial error of degree 3
added to the attitudes is identical in the four experiments, as well as the number of control points,
but the positions of the control points vary. When two control points are located on neighboring
rows in the image plane, their effect on the estimated roll and pitch functions is that of a single
control point. This is why on the second experiment shown here the polynomial fitting of the roll
and pitch corrections is poorly conditioned. We are trying to fit a polynomial of degree up to 3 to
three points. Hence the refinement is less accurate. The situation gets worse on the third and fourth
experiments, as confirmed by the numerical results given in Table 3.
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parameters results
noise perturbation roll error (µrad) pitch error (µrad) loc. error (m)

satellite type σimage σworld d η (µrad) before after before after before after
Pléiades 0.5 px 0.2m 3 50 45.87 0.93 31.18 1.01 24.33 0.60
Pléiades 1.0 px 1.0m 3 50 45.87 8.84 31.18 7.41 24.33 5.07
Pléiades 1.0 px 1.0m 3 50 45.87 2.72 31.18 2.12 24.33 1.52
Pléiades 2.0 px 2.0m 3 50 45.87 3.30 31.18 7.50 24.33 3.60
Pléiades 2.0 px 2.0m 3 50 45.87 1.43 31.18 2.41 24.33 1.23

Table 4: Numerical parameters and results of the experiments shown in Figure 12, just below. As soon as

the accuracy of the ground control points decreases, the overall accuracy of the refined attitudes decreases.

This effect can be compensated by adding more ground control points.

0.0 0.5 1.0 1.5 2.0 2.5
10

0

10

20

30

40

50

0.0 0.5 1.0 1.5 2.0 2.5
35

30

25

20

15

10

5

0

5

10

0.0 0.5 1.0 1.5 2.0 2.5
0

5

10

15

20

25

30

35

40

0.0 0.5 1.0 1.5 2.0 2.5
20

10

0

10

20

30

40

50

0.0 0.5 1.0 1.5 2.0 2.5
40

30

20

10

0

10

20

0.0 0.5 1.0 1.5 2.0 2.5
0

5

10

15

20

25

30

35

40

0.0 0.5 1.0 1.5 2.0 2.5
10

0

10

20

30

40

50

0.0 0.5 1.0 1.5 2.0 2.5
35

30

25

20

15

10

5

0

5

10

0.0 0.5 1.0 1.5 2.0 2.5
0

5

10

15

20

25

30

35

40

0.0 0.5 1.0 1.5 2.0 2.5
10

0

10

20

30

40

50

0.0 0.5 1.0 1.5 2.0 2.5
35

30

25

20

15

10

5

0

5

10

0.0 0.5 1.0 1.5 2.0 2.5
0

5

10

15

20

25

30

35

40

0.0 0.5 1.0 1.5 2.0 2.5
10

0

10

20

30

40

50

0.0 0.5 1.0 1.5 2.0 2.5
35

30

25

20

15

10

5

0

5

10

0.0 0.5 1.0 1.5 2.0 2.5
0

5

10

15

20

25

30

35

40

Figure 12: In the first experiment (first row) the roll and pitch are refined from four control points. In the

second row, the same experiment is done with a higher level of noise. The accuracy of the output roll and

pitch functions is lower. In the third row the same experiment is done with six additional control points.

The output is more accurate. Similarly, on the fourth row the noise level is increased and in the fifth row

10 points are added.
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back-projected rays (see energy (21)). Other parameters such as the orbit parameters and the focal
length may be incorporated in that energy to be refined too. The Hessian of the energy could be
used to evaluate the quality of the extrema.

Future work will also include careful experimentation of the proposed algorithm with real data,
and study whether it is possible or not to reduce the need for ground control points by using stereo
images, i.e. sequences of at least two views of the same area. Refining the orientation parameters of
several cameras given a sequence of views of the same scene is a problem known in computer vision
and photogrammetry as bundle adjustment. Several open source tools have been developed to solve
this problem, such as Apero [27], Bundler [34] and OpenMVG [25]. It is likely that ground control
points will always be needed because, as was shown by Jama et al. [17], the bundle adjustment
problem with pushbroom cameras has several degrees of freedom, even if the camera positions are
known.

A Notations

As far as possible we try to use the same notations as Hartley and Zisserman in their reference book
on multiple view geometry [13]. Table 5 summarizes them.

B Guidance Algorithm

In our implementation of the pushbroom camera geometric simulator, the true attitude coefficients
Φ̄ are not set directly by the user. Instead, the user chooses an initial pointing direction Ψx,Ψy and
a heading γ which gives the direction of the movement of the projection of the pushbroom sensor on
the ground, with respect to the local North. The attitude coefficients are computed from Ψx,Ψy and
γ thanks to Algorithm 5.
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Algorithm 7: Pushbroom direction on the ground

Input: X: orbital coordinates of the ground point currently targeted
γ: heading, i.e. direction of the pushbroom array movement, on the ground
t: time elapsed since the beginning of the acquisition, in seconds

Output: v: orbital coordinates of a vector giving the pushbroom movement direction,
projected on the ground

begin

1 E← (0, 0, RE + a)⊤

2 λ, θ ← longitude, latitude of Protational, orbital(t, λ0, i, α0)(X− E)
3 v← (0, sin γ, cos γ)⊤

4 return Protational, orbital(t, λ0, i, α0)
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cθ 0 −sθ
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sθ 0 cθ



v

Algorithm 8: Compute the satellite attitude from a targeted point and a pushbroom direction

Input: X = (X,Y, Z): point on Earth, given by its coordinates in the orbital frame
v: movement of the pushbroom array, projected on the ground, given in the orbital
frame.

Output: ϕ, ψ, ω: attitude angles
begin

1 ϕ← − arctan(YZ )

2 ψ ← arcsin( X
‖X‖

)

3 n← X− (0, 0, RE + a)⊤

4 w = n× v

5 X = −n× R(ϕ, ψ, 0)(0, 1, 0)⊤

6 Y = −n× R(ϕ, ψ, 0)(1, 0, 0)⊤

7 if w ·Y = 0 then

8 ω ← π
2

9 else

10 ω ← arctan(w·X
w·Y

)

11 if v ·Y sinω < v ·X cosω then

12 if ω < 0 then

13 ω ← ω + π
14 else

15 ω ← ω − π

16 return ϕ, ψ, ω
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Notation Meaning
t time in seconds from the beginning of the acquisition of the current image
x image point, usually given by its row and column coordinates
x, y row and column coordinates of an image point
X 3-space point, given either by its geographic or Cartesian coordinates

X,Y, Z Cartesian coordinates of a 3-space point
λ, θ longitude, latitude of a point in the Earth-centered rotational frame
h height of a point above the WGS 84 reference ellipsoid
f focal length
y0 principal point coordinate in the sensor frame
w pixel width
ϕ(t) sensor roll angle at time t measured in the local orbital frame
ψ(t) sensor pitch angle at time t measured in the local orbital frame
ω(t) sensor yaw angle at time t measured in the local orbital frame

R(ϕ, ψ, ω) 3D rotation defined by intrinsic roll, pitch and yaw angles
Φ set of attitude coefficients {(ϕk, ψk, ωk)}k=0,...,3

Ψx,Ψy initial direction of the optical axis in the local orbital frame
γ direction of the projection of the pushbroom sensor on the ground, w.r.t. the North
u direction of a back-projected ray from an image point
a flying altitude of the satellite above the Earth surface
i inclination of the orbital plane
λ0 longitude of the reference node
α0 initial angular position of the satellite on the orbit
αt current angular position of the satellite
∆t duration of the acquisition
TS orbital period of the satellite
RE radius of the Earth (assumed to be spherical)
µ standard gravitational parameter of the Earth
TE duration of an Earth stellar day
E Earth’s center of mass
S satellite center of mass
L localization function, converting image to geographic coordinates
P projection function, converting geographic to image coordinates
P0 initial estimation of the projection function
Jx,yL Jacobian of L with respect to x and y
D swath width of the satellite
n number of ground control points
d degree of a polynomial function

σimage standard deviation of the zero-mean Gaussian noise added to the image coordinates
σworld standard deviation of the zero-mean Gaussian noise added to the ground coordinates
η maximum of the polynomial error functions added to the true attitudes

Table 5: Notations used in the paper
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