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Abstract

This article presents a method for restoring audio signals corrupted by impulsive noise such as
clicks, bursts or scratches. The algorithm takes as input a degraded audio signal and automat-
ically detects the locations of the degraded samples and replaces them with more appropriate
values. Both steps (detection and interpolation) are based on the assumption that the signal
can locally be modeled as a realization of an autoregressive process. Surprisingly, the results
obtained on several types of signals (classical, jazz, vocal, etc.) show that a fully automatic
method, with a carefully fixed set of parameters, can achieve good performance on a wide range
of degraded audio signals.

Source Code

The reviewed source code in C language for this algorithm and an online demo are available from
the web page of this article1. Compilation and usage instruction are included in the README.txt
file of the archive.

Keywords: sound processing; denoising; auto-regressive models

1 Introduction

The degradations commonly found in audio signals can be broadly classified into two groups: localized
and global [9]. The global degradations affect all the samples of the waveform while the localized ones
only affect certain groups of samples and thus cause a discontinuity in the waveform. Among global
degradations we can cite background noise, hiss, flutter and certain types of non-linear degradations
such as speed variations or distortion. In this article, we focus on localized degradations such as
clicks, bursts, outliers, crackles, scratches, etc. These degradations are particularly common in old
gramophone recordings [17]. Restoring audio signals corrupted by impulsive noise is a tricky process
which can be divided into two steps: detection (finding the locations of the degraded samples) and
interpolation (replacing the degraded samples by more suitable values).

1https://doi.org/10.5201/ipol.2015.64

Laurent Oudre, Automatic Detection and Removal of Impulsive Noise in Audio Signals, Image Processing On Line, 5 (2015), pp. 267–281.
https://doi.org/10.5201/ipol.2015.64

https://doi.org/10.5201/ipol
https://doi.org/10.5201/ipol
http://creativecommons.org/licenses/by-nc-sa/3.0/
https://doi.org/10.5201/ipol.2015.64
https://doi.org/10.5201/ipol.2015.64
https://doi.org/10.5201/ipol.2015.64


Laurent Oudre

The detection step is crucial as the performances of any reconstruction or interpolation method
greatly depend on the knowledge of the locations of corrupted samples (unbiased estimation of the
parameters, fidelity to the original signal, convergence of iterative algorithms, etc.) [8]. When the
degradations only consist of small bursts (with a duration of several samples) with high amplitudes, it
is rather easy to locate the corrupted samples (as their amplitudes are particularly high compared to
the other samples). In these cases, a simple median filter or the calculation of some derivatives may
be sufficient for the detection [12]. Unfortunately, in most cases, the bursts, scratches, clicks, etc.,
last from less than 20 microseconds to 4 milliseconds, which corresponds to 1 to 200 samples (with a
sampling frequency of 44.1 kHz). Furthermore, the number of bursts can rise up to 2000 per second
in poor gramophone recordings [8]. Finally, in practice, the amplitudes of the degradation vary
greatly not only according to the type of physical defect, but also within the same recorded extract,
making it very hard to detect the degradations at first sight. More sophisticated methods exist to
deal with more difficult cases, where the locations of the corrupted samples are determined either
in the frequency (or transform) domain [3, 14] or in the time domain. In the latter case, a model is
often assumed for the signal; the degradations are supposed to correspond to the samples which do
not properly fit the model. In most cases, the underlying model is inspired by autoregressive (AR)
or autoregressive moving average (ARMA) processes. Indeed, typical audio and speech signals can
be efficiently approximated as AR or ARMA processes as those are accurate to model the physical
phenomenon of sound production (also known as source-filter model). Depending on the methods,
the model is either time-invariant (the parameters are constant on a given frame) [17, 18, 6, 7, 4, 5, 1]
or time-varying [15, 2] (the parameters slowly vary with time).

The interpolation step uses as input the locations of the degraded samples estimated in the
detection step. Just like for detection, numerous methods have been developed for interpolation
of missing samples in music or speech signals. An overview of these techniques, along with the
description of one AR-based method for interpolating missing samples can be found in [16].

This article describes a complete and automatic method for denoising audio signals corrupted
by impulsive noise. This method assumes that the signal can be approximated by a locally station-
ary AR process and uses this hypothesis in order to detect the corrupted samples, which are then
reconstructed with the method described in [16].

2 Detection Step

2.1 Principle

Consider a finite audio signal s ∈ RN , which is corrupted by a random, additive and impulsive noise
n. The observed signal x = {xt}t=1...N can be written as

xt = st + nt. (1)

Note that this general additive model is only valid if the degradation is not too severe and if the
original signal is still detectable in the observed signal. Should this not be the case, a replacement
model would be more appropriate [9]. Also, a more precise approximation of the observed signal
might be achieved by adding a third term in Equation (1) corresponding to the broadband noise [14].

Now, since the additive noise is supposed to be impulsive, all the samples are not concerned by
the degradation. The noise can be split into two distinct and independent components: a switching
process i with values 0 or 1 and a corrupting noise v [9] such as

nt = it · vt. (2)

The aim of the detector is to estimate as correctly as possible the switching process i. From the noise
structure described in Equation (2), we can formulate some remarks:
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• We have previously seen that, in practice, the degradations may last up to several hundreds of
samples. This means that the values of it are not completely independent as the degradations
tend to occur in contiguous bursts of corrupted samples.

• The randomness of the values of vt can greatly influence the performance of the detector.
Indeed, if vt is small, the noise might be undetectable, causing a missed detection and possibly
a bad estimation of the burst length. On the contrary, if vt is large, the estimation of signal
parameters is corrupted, which can possibly lead to irrelevant results.

Let us suppose that the original clean signal s can be approximated as a realization of a locally
stationary AR process. Then, there exist an order p ∈ N∗ and some coefficients a = [a1, . . . , ap]

t ∈ Rp,
ap 6= 0 such that

st = −
p∑

k=1

ak st−k + et, (3)

where e is a zero-mean white noise of variance σ2
e .

From Equation (1) and Equation (3), we can rewrite xt only in terms of past values xt−k (since
we have no access to st)

xt = −
p∑

k=1

ak st−k + et + nt, (4)

xt = −
p∑

k=1

ak (xt−k − nt−k) + et + nt, (5)

dt = xt +

p∑
k=1

ak xt−k = et + nt +

p∑
k=1

ak nt−k. (6)

In Equation (6), the left hand term dt = xt +
∑p

k=1 ak xt−k corresponds to a filtered version of
the corrupted data xt by using the prediction error filter H(z) = 1 +

∑p
k=1 akz

−k and shall be called
detection signal in the following. The right term is composed of the excitation signal et, the impulsive
noise nt and the effect of the past p impulsive noise samples.

Note that the transformation provided by the prediction error filter from Equation (1) to Equa-
tion (6) has the nice property of transforming the original signal st to the excitation signal et while
keeping the impulsive noise nt unchanged or increased (providing that the impulsive responses of the
previous noise samples do not cancel each other). In practice, for audio or speech signals, the typical
amplitude of st is up to 104 times the one of et, making it easier to detect the impulsive noise. From

the point of view of the detection problem, the signal-to-noise ratio in Equation (1) is
E[n2

t ]
E[s2t ]

while

in Equation (6) it becomes
E[n2

t ]
E[e2t ]

(contrary to what one may think, the useful signal is here nt as it

is the term necessary for the detection of the noise samples). With typical values for st and et, the
improvement in SNR is up to 40 dB [18].

An easy way to detect the locations of the noisy samples is to threshold the detection signal |dt|.
As the values of |et| are random and supposedly small, high values of |dt| correspond to high values
of |nt| and therefore to noisy samples. In particular, if the p previous samples are not corrupted by
impulsive noise, the detection signal is exactly the sum of et and nt. The process becomes trickier
when some of the p previous samples are indeed degraded and artifacts appear. Also note that the
precision in the estimation of the locations of the bursts is limited due to the propagation of the
impulsive noise over the next p samples in the detection signal.
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2.2 Estimation of the AR Parameters

Another important issue is the estimation of the AR parameters. Indeed, the whole filtering process
is based on the good estimation of the AR parameters (which only makes sense if the signal can
be well modeled with an AR model). If we take into account that the estimated parameters âk are
different from the true parameters ak, then the detection signal rewrites

d̂t = xt +

p∑
k=1

âk xt−k (7)

= et + nt −
p∑

k=1

ak st−k +

p∑
k=1

âk xt−k (8)

= et + nt +

p∑
k=1

ak nt−k +

p∑
k=1

(âk − ak) xt−k. (9)

We see that an additional term appears in the expression of d̂t, corresponding to the estimation
error. Once again, this error depends on the p previous samples but, assuming that the AR parame-
ters are correctly estimated, it should remain lower than the present impulse nt, allowing to use the
criterion dt for the impulsive noise detection.

Many methods exist for the determination of appropriate AR parameters from a series of audio
samples. One of the most efficient and less time-consuming is based on the Yule-Walker equations.
These equations, characteristic of AR processes, provide a relationship between the AR parameters
and the values of the autocorrelation function. Given an estimation of the autocorrelation function

R̂(τ) =
1

N

N∑
k=τ+1

xk xk−τ , (10)

the AR parameters are estimated through
R̂(0) R̂(1) · · · R̂(p− 1)

R̂(1) R̂(0) · · · R̂(p− 2)
...

...
. . .

...

R̂(p− 1) R̂(p− 2) · · · R̂(0)



â1
â2
...
âp

 = −


R̂(1)

R̂(2)
...

R̂(p)

 . (11)

There exists a fast algorithm (Levinson-Durbin algorithm [13]) dedicated to Toeplitz matrices which
allows to solve Equation (11) in O(p2) operations. This algorithm also provides an estimation of
the variance σ̂e

2 of the excitation process. More details on the Yule-Walker equations and on the
Levinson-Durbin algorithm can be found in [16].

2.3 Direct Thresholding

We have previously seen that, given an estimation â of the AR parameters, the term dt = xt +∑p
k=1 âk xt−k could be used as a decision criterion for detecting corrupted samples. In fact, from

Equation (9), we see that when it = 1 (i.e. impulsive noise is present), and provided that the
following conditions are satisfied:

1. the estimation error of the AR parameters (âk − ak) is small;

2. the excitation signal |et| is small compared to |vt|;
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3. either the p previous samples are uncorrupted or
∑p

k=1 ak nt−k is small;

then we can say that |dt| ≈ |vt|. Note that hypotheses 1 & 2 are very likely to be satisfied if the AR
approximation fits the original signal.

Before investigating further on these hypotheses, we propose to figure out the general shape of the
criterion dt on a simple example. Let us consider 2000 samples of an audio file (The Beatles) sampled
at 44.1kHz. We artificially created a burst of Nmax = 50 samples at the center of the extract. The
corrupting noise vt was simulated by a zero-mean Gaussian white noise with variance 10−4. The AR
parameters were estimated with the Levinson-Durbin algorithm as previously described. The value
of p was set to p = 3Nmax + 2 = 152 (this empirical expression proved to give acceptable results for
bursts whose length is up to Nmax = 50 samples – see [16] for details).

Figure 1 presents the corrupted audio signal xt along with the corresponding detection signal |dt|
(note that due to its definition, the detection signal is only defined for t > p). We can observe that,
as far as this audio extract is concerned, hypotheses 1 & 2 seem to be valid, as the values of |dt| are
small when there is no impulsive noise. Similarly, for most of the samples corrupted by impulsive
noise, the criterion |dt| takes high values. There are therefore two main issues which prevent from
directly thresholding criterion |dt| for detection:

• Inside the burst, due to destructive interferences and to the fact that the impulsive noise is
random, there are some samples for which the term nt +

∑p
k=1 ak nt−k is small, which can

possibly lead to missed detections.

• The effects of impulsive noise tend to propagate on the next p samples (this is due to the term∑p
k=1 ak nt−k), which can possibly lead to false detections.

Let us prove these assumptions on our example thanks to some quality metrics. We define the
precision P and the recall R as

P =
number of detected samples which are indeed corrupted

number of detected samples
, (12)

R =
number of detected samples which are indeed corrupted

number of corrupted samples
. (13)

If the detection process is flawless (i.e. if it is possible to detect the corrupted samples by thresholding
the criterion |dt|), then there should exist a threshold such as P = 1 and R = 1. If the threshold is
too low then too many samples are detected and P decreases; if the threshold is too high, no sample
is detected and R decreases.

We assume here that the detection threshold λ can be written as

λK = Kσ̂e, (14)

where σ̂e is the estimated value of the excitation standard-deviation. This formulation takes into
account that criterion dt depends on both et and nt and that if the excitation signal et can take high
values, then the threshold should be adapted in consequence.

For our example, we have tried all detection thresholds λK with K between K = 0 and K = 12
with a step of 10−4 and each time, we have calculated the associated precision and recall. The plot
we obtain is displayed in Figure 2. The upper-left corner of the figure corresponds to high thresholds
while the lower-right corner corresponds to low thresholds. We clearly see in this figure that, as far
as our example is concerned, it is impossible to find a threshold which allows to perfectly detect all
corrupted samples. Moreover, the best compromise (i.e. the closest point to the optimal coordinates
(R,P ) = (1; 1)) gives a recall of 66% and a precision of 86.84% which is somehow unsatisfactory.
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Figure 1: Example of detection signal for an audio signal of pop music artificially corrupted by
impulsive Gaussian noise.

2.4 Improvements and Variants

All the variants described in this section build on this basic threshold-based detection but aim to add
some pre- or post-processing steps within the calculation of the criterion so as it really detects bursts
of contiguous samples. If impulsive noise corrupts bursts and not individual samples, the task of
noise detection is in fact reduced to the identification of the number of bursts present on the frame,
along with their first and last samples.

2.4.1 Single Burst

When only one burst is present, an easy solution could then consist in finding the first and last
samples for which the criterion is greater than the threshold and decide that all the samples in
between belong to the burst. When conducting this simple change in the experiment described
in Section 2.3 and testing all detection threshold values λK for K comprised between K = 0 and
K = 12, the best compromise now provides a recall of 94% and a precision of 100%: in fact the
burst boundaries are correctly estimated except for the three first samples of the burst which remain
undetected.

Unfortunately, despite the good results obtained in this example, some questions remain open:
how can we deal with real-time scenarios where several bursts are present and where the degradations
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Figure 2: Precision-recall graph obtained by thresholding criterion |dt|.

are not easily detected? How can we determine a threshold which could work for different types of
degradations?

2.4.2 Multiple Bursts

Figure 3 shows the detection signal obtained on a real-life example of classical music corrupted by
clicks. Since the maximum length of a burst Nmax is not known, we have considered the same value
for p than for the previous experiment (p = 152). The criterion dt seems to be able to identify one
large click (sample 1000), one moderate click (sample 900) and several small clicks which are hard
to locate (samples 530, 560 and 1750).

The method explained in Section 2.4.1 can no longer be applied in this case, as multiple bursts
are apparently present on the frame. Yet, this method can be adapted to multiple bursts by defining
a fusion parameter b which corresponds to the maximum number of consecutive samples within a
burst whose values are lower than the threshold λK [1].

In practice, the detection process is now composed of two steps:

1. Find the set of samples T ⊂ {1, . . . , N} such as ∀t ∈ T, |dt| > λK .

2. If (t, t′) ∈ T 2 and |t− t′| ≤ b, then add all the samples comprised between t and t′ into T .

In [1], the authors propose to use the value of b = 20 (which is equivalent to 0.45 ms for a sampling
frequency of 44.1 kHz). The results obtained on our real-life example for b = 1 (basic thresholding)
and b = 20 and different values for K (2, 2.5 and 3) are displayed on Figure 4. We clearly see that
the number of detected bursts varies much with threshold λK but also with b. Intuitively, the lower
λK , the more samples satisfy the condition |dt| > λK and the larger the number of detected bursts.
The parameter b acts in the opposite direction and tends to merge distinct bursts if they are close to
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Figure 3: Example of detection signal for real-life audio signal of classical music corrupted by clicks.

each other. One may hope that by adjusting these two thresholds, it should be possible to estimate
the accurate number of bursts.

3 Interpolation Step

This article concentrates on the detection of impulsive noise samples; for the interpolation we rely
on the method described in [16]. It is an implementation of the algorithm introduced in [11]. This
classic method offers the good property of being based on AR models as well, which allows us to
factorize the calculation of the AR parameters and use them for both the detection and interpolation
phase. In a nutshell, the method selects the values for the missing samples that minimize the sum
of the absolute prediction error by the AR model. We refer the reader to [16] for more details. The
parameters linked to this method are p and Nw, i.e., the order of the model and the window length;
these parameters are set to the same values used for the detection phase.

4 Summary of the Denoising Method

Now, if we seek to apply our method on real-life examples, we must take into account that a 30
seconds excerpt with a sampling frequency of 44.1 kHz contains N = 1323000 samples, which is way
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Figure 4: Detected bursts for different values of λK and b: the vectors take value 1 when impulsive
noise is detected and 0 elsewhere.

too large for our method. Indeed, it is unrealistic to model several seconds of music with one single
AR model since the stationarity assumed by the model is only valid on a local scale. We need to
divide the audio signal into frames before processing it with the detection+interpolation algorithms.

As far as the frame processing is concerned, the signal is divided into overlapping frames of
length Nw with a hop size of Nh samples. In practice, we choose Nh = Nw/4, corresponding to a
75% overlap. In order to reconstruct the information provided by the different overlapping frames
which correspond to the same period, we use the overlap-add (OLA) procedure [10]. Note that
the estimation of the AR parameters and the calculation of dt requires that the first p samples of
the frame are left outside of the detection+interpolation process and that the interpolation method
assumes that no degradation is present in the last p samples (if it is not the case, the degradations
will be processed in the next frame thanks to the overlapping effect).

The whole process is summarized in Algorithm 1.

The whole process is likely to provide better results when iterated several times. Indeed, in
the first iteration the estimation of the AR parameters (which are used in both the detection and
interpolation steps) is actually performed on the degraded signal and is therefore necessarily biased
and may cause some distortions or mis-detections. The output of the first iteration, which hopefully
is cleaner that the input degraded signal, should provide better estimates and thus better results.
Of course, the number of iterations Niter should remain limited as at some point either the signal
has efficiently been de-noised and extra iterations are useless or the model does not fit the signal and
extra iterations would artificially force the signal to fit the model causing distortions.

5 Results

The method described in the previous section will be now tested on several examples.

Our detection+interpolation method depends on five parameters:
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Algorithm 1: Detection and removal of impulsive noise

Input: Degraded signal x, Parameters K, b, p, Nw, Niter

Output: Restored signal, set of samples detected as noise T
1 Do Niter times
2 Pad the signal with zeros: Nw zeros are added before and after the signal samples

3 Add
(
dN+Nw

Nh
eNh −Nw

)
−N zeros at the end of the signal so as to round up the number

of frames
4 Divide the signal into overlapping frames of length Nw with 75% overlap
5 Estimate the AR parameters â and σ̂e on each frame through the Levinson-Durbin

algorithm [16]
6 Calculate the criterion dt on each frame for t = p+ 1, · · · , N − p; use thresholds λK and b

for detecting the locations of the corrupted samples T
7 Reconstruct the corrupted samples on each frame with the interpolation method described

in [16] and the AR parameters calculated on Step 4
8 Multiply each frame with a Hamming window of size Nw

9 Add iteratively all the frames with a 75% overlap so as to reconstruct the signal

10 Remove the Nw first and the
(
dN+Nw

Nh
eNh

)
−N last samples

• The detection threshold λK = Kσ̂e

• The fusion parameter b

• The order of the AR model p

• The window length Nw

• The number of iterations Niter

The first two parameters are linked to the detection step, while the last three are common for
the detection and interpolation steps. In this article, we propose to use the default values for p
and Nw, as described in [16], i.e. p = 3Nmax + 2 and Nw = 8p, as this choice allows us to assume
that the interpolation process is optimized. In practice, the maximum length for a burst is around
Nmax = 100 samples, so we set p = 302 and Nw = 2416.

5.1 Influence of λK and b

Intuitively:

• If λK is high, the system is designed to only detect strong bursts and clicks with high amplitudes.
If λK is low, all clicks will be detected but it is likely that so will background noise.

• The parameter b indirectly controls the length of the detected bursts. Note that this parameter
also greatly influences the interpolation process: indeed, the results are not the same when
reconstructing two small bursts or one large burst (even if only 1 sample separates the two
bursts). Also, b should be large enough to create contiguous bursts of reasonable length but
unfortunately large bursts are also harder to reconstruct.
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We have tested these hypotheses on a 30 seconds degraded extract of classical music by Mus-
sorgsky2. This real-life extract is corrupted by clicks and crackles but also by some background
noise (hiss). The extract sounds like an old gramophone recording and exhibits a range of click-type
defects from huge “pops” to small crackles.

We have tried several values for λK (K = 1, 1.5, 2, 2.5 and 3) and b (all integer values between 1
and 30). We present in Figure 5 the number of samples detected by our method as noise (in % of the
total number of samples) and the average length of the detected bursts (in samples) in this case. We
confirm in this example that the combination of λK and b allows us to obtain various configurations
for our system that detect various numbers and shapes of bursts. Indeed, in this excerpt, the number
of noise samples varies from 1% to 82% while the average length varies from 1 to 230 samples (0.02 ms
to 5.2 ms). Even before hearing the reconstructed signals, we can see that some of the configurations
are unrealistic as in most of the cases it is assumed that impulsive degradations only corrupt up to
10% of the samples [8].
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Figure 5: Number of samples detected as noise (in % of the total number of samples) and average
length of the detected bursts for different values of K and b on a 30 seconds extract of classical music
by Mussorgsky.

The evaluation of all these configurations is purely subjective and depends on the original uncor-
rupted signal (which is unfortunately not available). In particular, if the original signal is distorted
then it is hard to distinguish the artifacts due to the reconstruction process (which tend to occur for
large bursts) and the original distortions. Yet, some basic hearing tests can bring insightful results.
For example:

• For K = 1 and b = 1, almost all the clicks are still present and the signal is slightly distorted
(musical noise).

• For K = 3 and b = 1, it seems like no processing has been done.

2This file was used by Godsill for the evaluation of his reconstruction methods http://www-sigproc.eng.cam.

ac.uk/~sjg/springer/index.html
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• For K = 1 and b = 30, all of the clicks are removed but the signal is highly distorted (musical
noise) and muffled.

• For K = 3 and b = 30, only some of the clicks are removed but the signal seems less distorted
than in the previous configurations.

From these results, we can conclude that the parameter b is essential to our system since the inter-
polation process is only efficient when the bursts last for at least several samples. The threshold K
allows us to control the intensity of the denoising process: nevertheless, we must remember that the
method presented in this article only aims to remove impulsive noise and is not designed to deal with
broadband noise.

Our tests on three other extracts (two jazz pieces by King Oliver and Louis Armstrong, one
classical piece by Mozart, also used by Godsill) showed that a good compromise (clicks removed/no
distortion) could be obtained with K around 2 and b around 20. For these 4 audio signals, the
system tuned with these parameters detects between 5 and 7 % of the samples as noise, which seems
realistic.

5.2 Influence of Niter

On our four extracts, we realized that by using K = 2, b = 20 and two iterations, all the clicks were
visibly removed without any obvious distortion. With three iterations the results were similar but
after four or five iterations musical noise appears. Figure 6 presents a restoration example on one
frame of classical music by Mussorgsky. We see in this example that after two iterations, most of
the clicks are removed: the remaining degradations are either clicks of low amplitude or background
noise.

We see in Figure 7 the details of the computation that can be found in the results page of the
demo. In the first iteration of the algorithm, 7.23% of the samples were detected as noise, while on
the second iteration, 7.54% were detected as noise. In all, 12.46% of the samples have been processed
(note that the overlap between the first and second iteration is rather small: 2.31%).

6 Conclusion

The algorithm presented in this article is a simple yet efficient technique to restore audio signals
corrupted by impulsive noise. The limited range of parameters and the fact that the detection and
interpolation phases share common parameters make it possible to quickly process signals in an
automatic way. The results show that our method is able to deal with different types of signals
(classical, jazz, vocal) and different types of degradations.
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