
Published in Image Processing On Line on 2015–07–20.
Submitted on 2013–02–12, accepted on 2015–05–30.
ISSN 2105–1232 c© 2015 IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
https://doi.org/10.5201/ipol.2015.69

2
0
1
5
/
0
6
/
1
6

v
0
.5
.1

IP
O
L

a
rt
ic
le

c
la
ss

An Analysis of the SURF Method

Edouard Oyallon1, Julien Rabin2
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Abstract

The SURF method (Speeded Up Robust Features) is a fast and robust algorithm for local,
similarity invariant representation and comparison of images. Similarly to many other local
descriptor-based approaches, interest points of a given image are defined as salient features from
a scale-invariant representation. Such a multiple-scale analysis is provided by the convolution
of the initial image with discrete kernels at several scales (box filters). The second step consists
in building orientation invariant descriptors, by using local gradient statistics (intensity and
orientation). The main interest of the SURF approach lies in its fast computation of operators
using box filters, thus enabling real-time applications such as tracking and object recognition.
The SURF framework described in this paper is based on the PhD thesis of H. Bay [ETH
Zurich, 2009], and more specifically on the paper co-written by H. Bay, A. Ess, T. Tuytelaars
and L. Van Gool [Computer Vision and Image Understanding, 110 (2008), pp. 346–359]. An
implementation is proposed and used to illustrate the approach for image matching. A short
comparison with a state-of-the-art approach is also presented, the SIFT algorithm of D. Lowe
[International Journal of Computer Vision, 60 (2004), pp. 91–110], with which SURF shares a
lot in common.

Source Code

The source code and the online demo are accessible at the IPOL web page of this article1. The
proposed implementation of the SURF algorithm is written in C++ ISO/ANSI. It performs
features extraction from digital images and provides local correspondences for a pair of images.
An epipolar geometric consistency checking may additionally be used to discard mismatches
when considering two pictures from the same scene. This optional post-processing uses the
ORSA algorithm by B. Stival and L. Moisan [International Journal of Computer Vision, 57
(2004), pp. 201–218].
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An Analysis of the SURF Method

1 Introduction

1.1 Context, Motivation and Previous Work

Over the last decade, the most successful algorithms to address various computer vision problems have
been based on local, affine-invariant descriptions of images. The targeted applications encompass,
but are not limited to, image stitching and registration, image matching and comparison, indexation
and classification, depth estimation and 3-D reconstruction. Like many image processing approaches,
a popular and efficient methodology is to extract and compare local patches from different images.
However, in order to design fast algorithms and obtain compact and locally invariant representations,
some selection criteria and normalization procedures are required. A sparse representation of the
image is also necessary to avoid extensive patch-wise comparisons that would be computationally
expensive. The main challenges are thus to keep most salient features from images (such as corners,
blobs or edges) and then to build a local description of these features which is invariant to various
perturbations, such as noisy measurements, photometric changes, or geometric transformation.

Such problems have been addressed since the early years of computer vision, resulting in a very
prolific literature. Without being exhaustive, one may first mention the famous Stephen-Harris
corner detector [9], and the seminal work of Lindeberg on multi-scale feature detection (see e.g. [12]).
Secondly, invariant local image description from multi-scale analysis is a more recent topic: SIFT
descriptors [15] –from which SURF [2] is largely inspired– are similarity invariant descriptors of an
image that are also robust to noise and photometric change. Some algorithms extend this framework
to fully affine transformation invariance [18, 28], and dense representation [26].

The main interest of the SURF approach [2] studied in this paper is its fast approximation of the
SIFT method. It has been shown to share the same robustness and invariance while being faster to
compute.

1.2 Outline and Algorithm Overview

The SURF algorithm is in itself based on two consecutive steps (feature detection and description)
that are described in Sections 4 and 5. The last step is specific to the application targeted. In this
paper, we chose image matching as an illustration (Sections 5.4 and 6).

Multi-scale analysis Similarly to many other approaches, such as the SIFT method [15], the
detection of features in SURF relies on a scale-space representation, combined with first and second
order differential operators. The originality of the SURF algorithm (Speeded Up Robust Features) is
that these operations are speeded up by the use of box filters techniques (see e.g. [25], [27]) that are
described in Section 2. For this reason, we will use the term box-space to distinguish it from the usual
Gaussian scale-space. While the Gaussian scale space is obtained by convolution of the initial images
with Gaussian kernels, the discrete box-space is also obtained by convolving the original image with
box filters at various scales. A comparison between these two scale-spaces is proposed in Section 3.

Feature detection During the detection step, the local maxima in the box-space of the “determi-
nant of Hessian” operator are used to select interest point candidates (Section 4). These candidates
are then validated if the response is above a given threshold. Both the scale and location of these
candidates are then refined using quadratic fitting. Typically, a few hundred interest points are
detected in a megapixel image.

Feature description The purpose of the next step described in Section 5 is to build a descriptor
of the neighborhood of each point of interest that is invariant to view-point changes. Thanks to
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multi-scale analysis, the selection of these points in the box-space provides scale and translation
invariance. To achieve rotation invariance, a dominant orientation is defined by considering the local
gradient orientation distribution, estimated from Haar wavelets. Using a spatial localization grid, a
64-dimensional descriptor is then built, based on first order statistics of Haar wavelets coefficients.

Feature matching Finally, when considering the image matching task (e.g. for image registra-
tion, object detection, or image indexation), the local descriptors from several images are matched.
Exhaustive comparison is performed by computing the Euclidean distance between all potential
matching pairs. A nearest-neighbor distance-ratio matching criterion is then used to reduce mis-
matches, combined with an optional RANSAC-based technique [21, 20] for geometric consistency
checking.

Outline The rest of the paper is structured as follows

– Section 2 SURF multi-scale representation based on box filters;

– Section 3 Comparison with linear scale space analysis;

– Section 4 Interest points detection;

– Section 5 Invariant descriptor construction and comparison;

– Section 6 Experimental validation and comparison with other approaches.

1.3 Notations

The main notations used throughout this paper are summarized in Table 1.

2 Multi-scale Analysis via Box Filters: the Box-Space

The scale invariant analysis is usually achieved by simulating Gaussian zoom-out of the considered
image. The corresponding linear scale-space representation is obtained by Gaussian convolutions
of the image at several scales [12, 15] (see [7] for a survey of Gaussian Convolution Algorithms).
To speed up this time-consuming procedure, the SURF approach [2] approximates the Gaussian
kernels and its spatial derivatives by uniform kernels with rectangular (thus separable) support,
referred to from now on as box filters. Although being a rough approximation, these filters may be
evaluated in linear time using the so-called integral image technique. By analogy, we will now refer
to this approximated scale-space, as the box-space. In SURF, the box-space is defined on the triplet
coordinates (x, y, L) ∈ Ω× L where L ∈ L ⊂ N is the scale parameter that characterizes the size of
the box filters involved in differential operators.

In this section, we first recall the definition of the integral image and the convolution property
of box filters. The various differential operators involved in SURF feature detection and description
are then defined.

2.1 Discrete Convolution

The SURF algorithm makes extensive use of discrete convolution with symmetric kernels. In our
discrete setting, kernels will be approximated by filters with a finite support. Therefore, the discrete
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Symbol Description Definition

u image on a continuous domain u : R2 7→ R

u Discretized image u : (x, y) ∈ Ω ⊂ Z2 7→ [0, 256[⊂ R

U Integral image Formula (1)

δ(a,b) Discrete Dirac δ(a,b)(x, y) =

{
1 if (x, y) = (a, b)

0 otherwise

∗ Convolution/Discrete convolution Section 2.1

DL
x ,D

L
y First order box filters, at scale L Section 2.3.1, Equation (6) & (7)

DL
xx,D

L
yy,D

L
xy Second order box filters, at scale L Section 2.3.2, Equation (10) & (11)

DoHL Determinant of Hessian, at scale L Section 4.1, Equation (24)

∆L Laplacian, at scale L Section 4.3, Equation (28)

Dx, Dxy, ... First and second order derivative operator

DoHσ
Scale normalized Determinant of

Hessian at scale σ
Section 3.3.3, Equation (22)

∆σ Scale normalized Laplacian, at scale σ Section 3.3.3, Equation (23)

J., .K Discrete interval Jn,mK = {n, n+ 1, . . . ,M},
∀n < m ∈ N

b·e Round Closest integer

XT Matrix transposition XT
i,j = Xj,i

1X Indicator function 1X(x) =

{
1 if x ∈ X
0 otherwise

Br(X) Ball of radius r, centered in X at Ω See Section 5

‖·‖ Norm See Sections 3.3 , 4.1, 5.3, and 5.4

∠ · Oriented angle with canonical vector
(1, 0)T , ∠ : R2 7→ [−π, π)

See Section 5.2

Rθ Rotation Matrix in R2 See Formula (41)

Table 1: List of main symbols and operators.
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→ →

Figure 1: Illustration of preprocessing to create symmetric border condition. (Left) original lena
image; (Middle) conversion in gray values and image dynamic stretching; (Right) extension by sym-
metrization.

convolution of a discrete function f : Z2 → R with a discrete filter g : Ω ⊂ Z2 → R with finite
support Ω is defined as

∀ (x, y) ∈ Z2, (f ∗ g)(x, y) :=
∑

(i,j)∈Ω

f(x− i, y − j) g(i, j). (1)

Borders condition In practice, an image f is known on a finite domain. As a result, bound-
ary conditions must be handled properly in order to lessen visual artifacts at the borders. In our
implementation, this difficulty is tackled through the use of symmetric boundary conditions. The
symmetrization of the input image is performed with respect to the first and last rows and columns,
so that there is no duplication of pixels at the boundaries. More precisely, the original image is
symmetrically extended on each side using the largest box filter size (see Figure 1) before computing
the integral image.

Image sub-sampling Contrary to many other multi-scale approaches that build Gaussian pyramid
combined with dyadic sub-sampling to save computation time, the integral image technique detailed
hereafter permits fast evaluation of differential operators at different scales without sub-sampling.
However, sub-sampling may still be used to speed-up feature detection at larger scales (which is
performed in the proposed implementation).

Image interpolation Note that, as suggested in [1, 2] to improve the accuracy of the SURF
method, the input image may be over-sampled and interpolated using a bilinear scheme. However,
in this article we chose not to implement it.

Image dynamic The last preprocessing consists in a simple affine stretching of the image dynamic
to J0, 255K.
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2.2 Integral Image and Box Filters

Let u be the processed digital image defined over the pixel grid Ω = J0, N−1K×J0,M−1K, where M
and N are positive integers. In the following, we only consider quantized gray valued images (taking
values in the range J0, 255K), which is the simplest way to achieve robustness to color modifications,
such as a white balance correction.

The integral image of u for (x, y) ∈ Ω is

U(x, y) :=
∑

0≤i≤x

∑
0≤j≤y

u(i, j). (2)

An illustration for u = δ(a,b) is shown in Figure 2. We now focus on the convolution of u with a 2-D
uniform function BΓ over the domain Γ ⊂ Ω:

BΓ(x, y) := 1Γ(x, y) =

{
1 if (x, y) ∈ Γ

0 otherwise
. (3)

When considering any rectangular domain Γ = Ja, bK×Jc, dK (meaning that the discrete domain Γ
is separable in rows and columns coordinates), the convolution of the box filter BΓ with the discrete
image u may be directly expressed from the integral image U

∀ (x, y) ∈ Ω, (BΓ ∗ u)(x, y) = + U(x− a, y − c) + U(x− b− 1, y − d− 1)

− U(x− a, y − d− 1) − U(x− b− 1, y − c).
(4)

As illustrated in Figure 3, and thanks to the previous formula, the pre-computation of an integral
image permits to convolve any image with a box filter in three operations and four memory accesses.
We assume from now on that the symmetric border condition is also applied to the integral image,
as described in Figure 1.

2.3 Differential Operators in SURF

In the SURF framework, differential operators are approximated using box filters at different scales.
Without going here into too much detail, the scale of these filters is parametrized by the variable
L ∈ N. More precisely, this parameter relates to the size of the first and second order box filters.
For more details on the sampling strategy of L, see Section 3.2.

2.3.1 First Order Box Filters

The finite difference operator of a discrete image u at scale L according to the first (respectively
second) coordinate is from now on referred to as DL

x (resp. DL
y ). It makes use of box filters with size

`(L) = d0.8Lc ∈ N. (5)

Recall that d·c denotes the rounding operation to the nearest integer. In order to lighten the notations,
we do not explicitly write the dependency of ` towards L in the following.

The first order box filters are defined as convolution filters:

DL
x u :=

(
BJ−`,−1K×J−`,`K −BJ1,`K×J−`,`K

)
∗ u, (6)

DL
y u :=

(
BJ−`,`K×J−`,−1K −BJ−`,`K×J1,`K

)
∗ u. (7)
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u = δ(a,b) U

Figure 2: Example of an integral image U built from a synthetic image u. (Left) An image u with
a single pixel whose value is non zero. (Right) Resulting integral image U.

See Figure 4 for an illustration. Observe that, when ` = 1, these filters correspond to the average
symmetric finite difference scheme at pixel scale

D1
x u =


1

1

1

×
[
1 0 −1

]
∗ u =


1 0 −1

1 0 −1

1 0 −1

 ∗ u.

We will refer to these filters as first order box filters, since they can be interpreted as a discrete
approximation of first-order derivative operators at a given scale `. We obtain the following explicit
formula for the impulse response of a DL

y operator (see Figure 4 for an illustration)

DL
y δ(x, y) =


1 if (x, y) ∈ J−`, `K× J−`,−1K

−1 if (x, y) ∈ J−`, `K× J1, `K

0 otherwise

. (8)

Computation using integral image Using formula (4) and the pre-computed integral image
U, we can easily evaluate these operators with only seven additions, regardless of the parameter
size `. For instance, considering Formula (4) with b = −a = `, and c = −`, d = −1 to compute
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xx− b− 1 x− a

y − d− 1

y − c +1

+1 -1

-1

Figure 3: Computation of the discrete convolution with box filter on a rectangular domain using
integral image. Only 3 operations and 4 memory accesses are required per pixel, according to
Formula (4).

BJ−`,`K×J−`,−1K, followed by c = +1, d = ` for BJ−`,`K×J1,`K, we get

∀ (x, y) ∈ Ω, DL
y u(x, y) = + U(x+ `, y + `) + U(x− `− 1, y)

− U(x+ `, y) − U(x− `− 1, y + `)

− U(x+ `, y − 1) − U(x− `− 1, y − `− 1)

+ U(x+ `, y − `− 1) + U(x− `− 1, y − 1).

(9)

Remark The original authors of SURF [2] simply claim to use Haar wavelets, but without giving
any implementation details about the actual form of the kernels. Given this indeterminacy, we
adopted anti-symmetric kernels (see Figure 4) because they do not introduce translation shifts.

2.3.2 Second Order Box Filters

In SURF, the multi-scale second order differential operators are again defined with box filters. These
filters are parametrized by a scale variable L ∈ N, which takes odd values. By analogy with second
order difference schemes, the second order operators DL

xx and DL
yy at scale L are defined as (see

Figure 5 for an illustration)

DL
xx u = (BΓ1 − 3BΓ2) ∗ u, and DL

yy u = (BΓ3 − 3BΓ4) ∗ u, (10)

where Γ1 =
q
−3L−1

2
, 3L−1

2

y
× J−(L− 1), (L− 1)K ,

Γ2 =
q
−L−1

2
, L−1

2

y
× J−(L− 1), (L− 1)K ⊂ Γ1

.
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`

2`+ 10

0

+1 −1

Figure 4: Illustration of the first order box filter. The differential operator DL
x (defined in Equa-

tion (6)) according to the first coordinate x is shown here at scale L = 6, which corresponds to the
size parameter `(L) = 5 using relation (5). This operator, similar to a Haar wavelet, is involved in
the construction of local SURF descriptors.

As illustrated in Figure 5, the first domain Γ1 is the support of the filter (delimited by white areas),
while the domain Γ2 corresponds to the central part (shown in black). By permutation of the first
and second coordinates, we getΓ3 = J−(L− 1), (L− 1)K×

q
−3L−1

2
, 3L−1

2

y
,

Γ4 = J−(L− 1), (L− 1)K×
q
−L−1

2
, L−1

2

y
⊂ Γ3.

Likewise, the second order mixed derivative operator DL
xy is written

DL
xy u =

(
BΓ++ + BΓ−− − BΓ−+ − BΓ+−

)
∗ u, (11)

where subscripts ++, −+, −−, +− indicates respectively North-East, North-West, South-West and
South-East quadrants

Γ++ = J1, LK× J1, LK , (North-East quadrant)

Γ−+ = J−L,−1K× J1, LK , (North-West quadrant)

Γ−− = J−L,−1K× J−L,−1K , (South-West quadrant)

Γ+− = J1, LK× J−L,−1K , (South-East quadrant)

.

The corresponding filters are respectively shown in Figure 5. We can again compute their explicit
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formula (impulse responses):

DL
xx δ(x, y) =


−2 if (x, y) ∈ Γ1 ∩ Γ2

+1 if (x, y) ∈ Γ1 \ Γ2

0 otherwise,

, DL
yy δ(x, y) =


−2 if (x, y) ∈ Γ3 ∩ Γ4

+1 if (x, y) ∈ Γ3 \ Γ4

0 otherwise,

(12)

and

DL
xy δ(x, y) =


−1 if (x, y) ∈ Γ+− ∪ Γ+−

+1 if (x, y) ∈ Γ++ ∪ Γ−−

0 otherwise.

(13)
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−1

−1+1

+1

DL
yy δ DL

xy δ

Figure 5: Illustration of second order box filters with scaling parameter L (here L = 5). (Left) DL
yy

from Equation (10). (Right) DL
xy from Equation (11).

Computation using integral image The convolution with DL
xx and DL

yy is easily computed in 8
operations using the integral image (using 2 box filters, one addition and one multiplication), and 15
operations for DL

xy (4 box filters and 3 additions). For obvious reasons, we do not give the explicit
formulas.

Figure 7 shows the responses of second order box filters on a digital image (Figure 6). As we can
see, these filters detect either horizontal, vertical or diagonal structures at large scale.

3 Comparison with Gaussian Scale-Space Representation

While not being used explicitly in SURF, we take interest here in the approximation of Gaussian
kernels by box filters to understand the advantages and the limitations of the SURF approach.
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Figure 6: Picture japan (image u), at resolution 481× 321 pixels.

3.1 Scale-Space Representation

Linear scale space The linear (Gaussian) scale-space representation of a real valued image u :
R2 7→ R defined on a continuous domain is obtained by a convolution with the Gaussian kernel

uσ := Gσ ∗ u, (14)

where Gσ is the centered, isotropic and separable 2-D Gaussian kernel with variance σ2

∀(x, y) ∈ R2, Gσ(x, y) :=
1

2πσ2
e−

x2+y2

2σ2 = gσ(x) gσ(y) and gσ(x) =
1√

2π · σ
e−

x2

2σ2 . (15)

The variable σ is usually referred to as the scale parameter.

Discrete scale space In practice, for the processing of a numerical image u, this continuous filter
is approximated using regular sampling, truncation and normalization:

∀i, j ∈ J−K,KK Gσ(i, j) =
1

CK
Gσ(i, j) , where CK =

K∑
i,j=−K

Gσ(i, j). (16)

The scale variable σ is also sampled, generally using a power law, as discussed later in Section 3.2.

Discrete box space Making use of the aforementioned box filter technique, such a multi-scale
representation can be (very roughly) approximated using a box filter with square domain Γ =
J−γ, γK× J−γ, γK

uγ :=
1

(2γ + 1)2
BΓ ∗ u. (17)

The question now is how to set the parameter γ ∈ N to get the best approximation of Gaussian
zoom-out.
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DL
yy u DL

xy u

Figure 7: Illustration of second order box filters. (Left) DL
yy u and (Right) DL

xy u, using the image
japan (Figure 6) at scale L = 17.

Second moment comparison One may for instance choose to match the second order moment
σ2 of the 1D Gaussian gσ and the variance of the corresponding box filter, as suggested by [8]. This
leads to the relation

σ2
γ =

γ∑
i=−γ

i2

2γ + 1
=

(2γ + 1)2 − 1

12
=
γ(γ + 1)

3
, (18)

where σ2
γ is the variance of the centered 1D box filter with width 2γ + 1. Thus, for large values of

filter size (γ � 1), we get approximately σγ ≈ γ√
3
≈ 0.58γ. Since γ ∈ N takes integer values, σγ

and σ cannot match exactly in general. Moreover, due to the anisotropy of the box filter in 2D, it is
impossible to match the covariance matrices.

SURF scale parameter analogy Note that box filters are only used to approximate the first
and second order of Gaussian derivatives in the SURF algorithm, and not to approximate Gaussian
filtering like in [8]. However, when considering the approximation of the second order Gaussian
derivative

DxxGσ(x, y) = Dxx gσ(x)× gσ(y) =
1

σ2

(
x2

σ2
− 1

)
gσ(x)× gσ(y)

by the second order box filter operator DL
xx (using either relation (10) or (12)), we can see that

the 1D Gaussian filter gσ(y) is approximated by the 1D box filter with parameter γ = L−1
2

(see
Figure 5 for an illustration). The authors of SURF claim that the corresponding Gaussian scale
is σ = 1.2

3
L ≈ 0.8γ for γ � 1, which is close but different to the value given by Formula (18):

σγ ≈ 0.58γ.
Other analogies could have been made for scale variables, for instance by considering zero crossing

of second order derivative of Gaussians, second moment of Gaussian derivatives, mean-square error
minimization, but each one provides different relations. In conclusion, defining a relation between
the box parameters (L and `(L)) and the Gaussian scale variable σ seems quite arbitrary.

Visual comparison Figure 8 illustrates the difference between the linear scale-space representation
obtained by Gaussian filtering (applied to the image in Figure 6) and the box-space, that is its
approximation by box-filters when using relation (18). While being roughly similar, the approximated
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scale-space exhibits some strong vertical and horizontal artifacts due to the anisotropy and the high
frequencies of the box kernels.

Again, whilst not being used explicitly in SURF, theses artifacts may explain some of the spurious
detections of the SURF approach that will be exhibited later on.

3.2 Box-Space Sampling

Because of the definition of first and second order box filters, the size parameter L cannot be chosen
arbitrarily. Table 2 shows the sampling values and the corresponding variables used to mimic the
linear scale space analysis. The following paragraphs give more detailed explanations.

o i σ(L) L 3L l(L) w(L)

1 1 1.2 3 9 2 0.9129

2 2.0 5 15 4 0.9487

3 2.8 7 21 6 0.9636

4 3.6 9 27 7 0.9718

2 1 2.0 5 15 4 0.9487

2 3.6 9 27 7 0.9718

3 5.2 13 39 10 0.9806

4 6.8 17 51 14 0.9852

3 1 3.6 9 27 7 0.9718

2 6.8 17 51 14 0.9852

3 10 25 75 20 0.9900

4 13.2 33 99 26 0.9924

4 1 6.8 17 51 14 0.9852

2 13.2 33 99 26 0.9924

3 19.6 49 147 39 0.9949

4 26.0 65 195 52 0.9962

Table 2: Box-space sampling values. The first two columns give the octave and level indexes. The
scale σ(L) defined in SURF by analogy to the linear scale space is given in the third column, using
Equation (20). The size parameter L = 2oi + 1 controls the width 2`(L) + 1 of first order box
operators DL

x and DL
y through the relation `(L) = d0.8Lc, and also the width 3L of second order

box filters DL
xx, DL

yy and DL
xy. The last column w(L) (Formula (26)) is required later to compute

the determinant of Hessian (Section 4.1). The rows highlighted in bold font correspond to the scales
values that are finally used to describe the image. Other rows are only required for computation
purpose.
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Figure 8: Comparison of the box space and the linear scale space. (Top) Convolution with squared
and centered box filters with radii γ = 5 and γ = 20 (respectively from left to right). (Middle)
Corresponding Gaussian filters with respective scales σ5 ≈ 3.16 and σ20 ≈ 11.83, according to
formula (18). (Bottom) Difference between Gaussian and Box filters (using a linear transform for
visualization). We can see here that the box space is a rough approximation of the Gaussian scale
space, that exhibits some artifacts due to the anisotropy and the high frequencies of the box kernels.
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Octave decomposition Alike most multi-scale decomposition approaches (see e.g. [14, 16]), the
box-space discretization in SURF relies on dyadic sampling of the scale parameter L. The box length
representation is therefore divided into octaves (similarly to SIFT [15, 14]), which are indexed by
parameter o ∈ {1, 2, 3, 4}, where a new octave is created for every doubling of the kernel size.

Note that, in order to save computation time, the filtered image is generally sub-sampled a factor
two at every octave, as done for instance by SIFT [15], so that the complexity remains the same
through scales. As pointed out by the authors of SURF [2], the computation time complexity does
not depend on scale when using box filters.

However, while not being explicitly stated in the original paper [2], but as done in most imple-
mentations we have reviewed (for instance, this approximation is used in [3] but not in [5]), we still
choose to use sub-sampling to speed-up the algorithm. More precisely, instead of evaluating the
multi-scale operators at each pixel, we use a sampling “step” which depends on the octave level (this
sampling is detailed in the next sections). Note that this strategy is consistent with the fact that
the number of features is decreasing with respect to scale.

Scale sampling Each octave is also divided in several “levels” (indexed here by the parameter
i ∈ {1, 2, 3, 4}). In the usual discrete scale space analysis, these levels correspond directly to the
desired sampling of the scale variable σ, which parametrizes the discretized Gaussian kernels Gσ (see
definition in Equation (16)). In SURF, the relation between scale L, octave o and level i variables is

L := 2o i+ 1 . (19)

These values are summarized in Table 2. Note that because of the non-maxima suppression involved
in the feature selection, only intermediate levels are actually used to define interest points and local
descriptors (i ∈ {2, 3}). The corresponding scales are indicated by rows with bold font in Table 2.

Scale analogy with linear scale space As discussed before in Section 3.1, we can define a scale
analysis variable by analogy with the linear scale space decomposition. In [2], the scale parameter
σ(L) associated with octave o and level i is obtained by the following relation

σ(L) :=
1.2

3
(2o × i+ 1) = 0.4L. (20)

Since the relation between the scale σ(L) of an interest point is linear in the size parameter L of box
filters operators, we shall speak indifferently of the former or the latter to indicate the scale.

Remark A finer scale-space representation could be obtained (i.e. with sub-pixel values of L)
using a bilinear interpolation of the image, as suggested in [2]. This is not performed in the proposed
implementation.

3.3 Comparison with Gaussian Derivative Operators

3.3.1 First Order Operators

The first order box filters DL
x and DL

y defined at scale L are approximations of the first deriva-
tives of the Gaussian kernel Gσ at the corresponding scale σ(L) (see Equation (20)), respectively
corresponding to

DxGσ(x, y) = − x

σ2(L)
Gσ(x, y) and Dy Gσ(x, y).

These operators are used for local feature description, detailed in Section 5. Figure 9 compares the
first order box filter impulse response with the discretized Gaussian derivative kernel.
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DL
x δ (Equation (6)) Dx Gσ(L)

Figure 9: Comparison of Gaussian derivative with first order box filter. Illustration of the discrete
derivative operator DL

x (defined in Section 2.3.1) and discretization of the Gaussian derivative kernel
Dx Gσ(L) when using scale relation σ(L) from Equation (20).

Figure 10: Comparison of second order box filters and second order derivative of Gaussian kernels.
(a) operator DL

yy; (b) discretized second order Gaussian derivative D2
y Gσ; (c) operator DL

xy; (d)
discretized second order Gaussian derivative Dxy Gσ; For comparison purpose, we used again the
scale relation σ(L) from Equation (20).

3.3.2 The Second Order Operators

Second order differential operators are computed in the scale-space for the detection of interest
points [12, 10]. In the linear scale-space representation, this boils down to the convolution with
second derivatives of Gaussian kernels

DxxGσ(x, y) =
1

σ2

(
x2

σ2
− 1

)
Gσ(x, y), Dyy Gσ, and Dxy Gσ(x, y) =

xy

σ4
Gσ(x, y). (21)

In the SURF approach, the convolution with these kernels are approximated by second order box
filters, previously introduced respectively as DL

xx, DL
yy (Equation 10), and DL

xy (Equation 11). A
visual comparison between second order derivatives and their analogous with box filters is shown in
Figure 10. These operators are required for the local feature selection step in Section 4.

3.3.3 Scale Normalization

According to [13], differential operators have to be normalized when applied in linear scale space in
order to achieve scale invariance detection of local features. More precisely, as it can be seen from
Equation (21), the amplitude of the continuous second order Gaussian derivative filters decreases
with the scale variable σ by a factor 1

σ2 .
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To balance this effect, second order operators are usually normalized by σ2, so that we get for
instance

• the scale-normalized determinant of Hessian operator:

DoHσ (u) :=

∣∣∣∣∣∣∣σ2

Dxx Dxy

Dyx Dyy

 ◦ uσ
∣∣∣∣∣∣∣ = σ4

[
Dxx uσ ·Dyy uσ − (Dxy uσ)2] ; (22)

• the scale-normalized Laplacian operator:

∆σ u := σ2∆ uσ = σ2∆ Gσ ∗ u = σ2(Dxx +Dyy)Gσ ∗ u = σ2(Dxx uσ +Dyy uσ) , (23)

where ∆σ Gσ(x, y) = σ2(Dxx +Dyy) ◦Gσ(x, y) =
(
x2+y2

σ2 − 1
)
Gσ(x, y) is the multi-scale Lapla-

cian of Gaussian. Observe that this operator can be obtained from the trace of the scale-
normalized Hessian matrix.

These two operators are widely used in computer vision for feature detection. They are also
approximated in SURF, as detailed in the next sections. As a consequence, such a scale-normalization
is also required with box filters to achieve similar invariance in SURF. To do so, the authors of
SURF proposed that the amplitude of operators DL

xx (Equation 10), DL
yy (Equation 10), and DL

xy

(Equation 11) should be reweighted so that the l2 norms of normalized operators become constant
over scales.

The quadratic l2 norm of operators are estimated from the squared Frobenius norm of impulse
responses

‖DL
xx‖

2

2 := ‖DL
xx δ‖

2

F = ‖DL
yy δ‖

2

F
=
(
1 + 1 + (−1)2

)
L(2L− 1) = 6L(2L− 1),

so that ‖DL
xx‖

2

2 ≈ 12L2 when L� 1, and

‖DL
xy‖

2

2
:= ‖DL

xy δ‖
2

F
=
(
1 + 1 + (−1)2 + (−1)2

)
L× L = 4L2.

This means that box filters responses should be simply divided by the scale parameter L to achieve
scale invariance detection.

4 Interest Point Detection

In the previous sections, second order operators based on box filters have been introduced. These
operators are multi-scale and may be normalized to yield scale invariant response. We will now
take interest in their use for multi-scale local feature detection. Once the integral image has been
computed, three consecutive steps are performed:

1. Feature filtering (Section 4.1) based on a combination of second order box filters;

2. Feature selection (Section 4.2) combining non-maxima suppression and thresholding;

3. Scale-space location refinement (Section 4.3) using second order interpolation.

This interest point detection task is summarized in Algorithm 1.
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Algorithm 1 Detection of interest points

input: image u
output: listKeyPoints
(Initialization)
U← IntegralImage(u) (Equation (1))
(Step 1: filtering of features)
for L ∈ {3, 5, 7, 9, 13, 17, 25, 33, 49, 65} do (scale sampling, according to Table 2)

DoHL(u)←Determinant of Hessian (U, L) (See Equation (24) and Algorithm 2)
end for
(Step 2: selection and refinement of keypoints)
for o := 1 to 4 do (octave sampling)

for i := 2 to 3 do (levels sampling for maxima location)
L← 2oi+ 1 (Equation (19))
listKeyPoints← listKeyPoints + KeyPoints(o, i,DoHL(u)) (See Section 4.2 and Algo-

rithm 3)
end for

end for
return listKeyPoints

4.1 Feature Filtering

The objective is to detect interesting features in the box-space which are highly discriminant, such
as corners, junctions (intersection of edges), blobs, etc. Taking inspiration from the previous works
of Lindeberg [12, 10, 11, 13] about scale-invariant detection, SURF [1, 2] uses scale-normalized
determinant of Hessian to detect saddle points in images. Note that other popular methods are the
normalized Laplacian detector (Equation (23)), scale invariant Harris corner detector [18], or affine
invariant blob detector [17].

Determinant of Hessian using box filters The scale-normalized determinant of Hessian matrix
operator proposed in SURF is defined as follows

DoHL(u) :=
1

L4

(
DL
xx u ·DL

yy u−
(
w DL

xy u
)2
)
, (24)

using the scaling relation L = 2oi + 1, and a constant weighting factor w = 0.912. As mentioned
earlier, the normalization factor 1

L4 is required to ensure scale invariance. The weighting factor w is
used to compensate the numerical approximation of the Hessian determinant by box filters. We will
discuss later on these two aspects. An illustration of this multi-scale structure detector is given in
Figure 11.

Computation using integral image At each point of the box-space, the computation of this
operator requires 36 operations: (8 × 2 + 15) to evaluate box filters, plus 4 multiplications and 1
addition. The method to compute the DoHL(u) at a given scale is described in Algorithm 2.

Sampling As mentioned before, it is not necessary to evaluate the Hessian determinant for every
pixel at large scale. To reduce computation time, the operator response is sampled according to the
octave level o, such that the number of points tested per octave is d M

2o−1 e × d N
2o−1 e. In Algorithm 2,

this sub-sampling strategy corresponds to a sampling step p = 2o−1.
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DoHL u (Equation (22)) DoHσ u (Equation (23))

Figure 11: Determinant of Hessian Operators applied to the images japan (top row) and lena (bot-
tom), either using box filters operator DoHL at scale L = 9 (left column) or Gaussian derivative
filter DoHσ at scale σ(L) = 0.4L = 3.6 (right column).

Normalization and analogy with continuous determinant of Hessian Recall that the Hes-
sian determinant based on box filters aims at approximating the DoHσ operator defined in For-
mula (22). The comparison of their impulse responses is shown in Figure 12. As previously stated,
the box filters are not isotropic, which may be source of strong horizontal and vertical artifacts: this
can be observed in Figure 11.

Moreover, recall that to achieve scale invariance, the multi-scale operator response has to be
normalized so that the l2 norm remains constant over scales. This is the role of the denominator L4

in (24). Indeed, from Section 3.3.3 we know that ‖Dxx
L‖2

2 = ‖Dyy
L‖2

2 ≈ 12L2 and ‖Dxy
L‖2

2 = 4L2

(see Section 3.3.3). On the other hand, we can show that

‖DxxGσ‖2
2 =

3

16πσ6
= 3‖DxyGσ‖2

2 . (25)

By simple analogy between the two approaches, for instance considering the normalized Gaussian
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Algorithm 2 Feature detection using determinant of Hessian operator

input: image u, integral image U, octave o, level i
output: DoHL(u)
function Determinant of Hessian (U, o, i)

L← 2oi+ 1 (Scale variable, Equation (19))
for x := 0 to M − 1, step 2o−1 do (Loop on columns)

for y := 0 to N − 1, step 2o−1 do (Loop on rows)
DoHL(u)(x, y)← Formula (24) (with (4), (10) and (11))

end for
end for
return DoHL(u)

end function

DoHL δ (Equation (24)) DoHσ δ (Equation (22))

Figure 12: Comparison of the Determinant of Hessian operators, based on box filters and Gaussian
filters. (Left) Impulse response of the SURF determinant of Hessian operator DoHL (Equation (24)),
based on second order box filters at scale L; (Right) Discretization of the continuous determinant
of Hessian operator DoHσ, using scale relation (20). A non-linear mapping has been used for
visualization purpose.

derivative, one has

‖σ2DxxGσ‖2
2 ∝ σ4 × 1

σ6
=

1

σ2
and ‖C(L)DL

xx‖2
2 ∝ C(L)2L2 ∝ 1

L2
if C(L) ∝ 1

L2
,

so that the scale normalization factor C(L) for second order box filters should be proportional to 1
L2 .

However, the previous normalization is only true when L� 1. Indeed, while we have
‖DxxGσ‖22
‖DxyGσ‖22

= 3

at any scale σ, this is not exactly true with box filters, where:

‖DL
xx‖

2

2

‖DL
xy‖2

2

=
3(2L− 1)

2L
≈ 3 when L� 1.

To account for this difference in normalization for small scales, while keeping the same (fast) un-
normalized box filters, the author of SURF introduced in (24) a weighting factor

w(L) =
‖DL

xx‖2

‖DL
xy‖2

· ‖DxyGσ‖2

‖DxxGσ‖2

=

√
2L− 1

2L
. (26)
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The numerical values of this parameter are listed in the last column of Table 2. As noticed by the
authors of SURF, the variable w(L) does not vary so much across scales. This is the reason why the
weighting parameter w in Equation (24) is fixed to w(3) = 0.9129.

4.2 Feature Selection

A point of interest is a point of the box-space that is approximately covariant to any similarity of
the initial image u. The term covariant implies here that the surrounding region covariantly changes
with the considered class of transformation. To design a descriptor invariant to similarities, the
selection of the interest point is jointly performed with the estimation of the similarity transform
parameters (location, scale and orientation).

In the SURF methodology, interest points are defined as local maxima of the aforementioned
DoHL operator applied to the image u. These maxima are detected by considering a 3 × 3 × 3
neighborhood, and performing an exhaustive comparison of every voxel of the discrete box-space with
its 26 nearest-neighbors. The corresponding feature selection procedure is described in Algorithm 3.

Algorithm 3 Selection of features

input: o, i,DoHL(u), tH (Determinant of Hessian response at octave o and level i)
output: listKeyPoints (List of keypoints in box space with sub-pixel coordinates (x,y,L))
function KeyPoints (o, i,DoHL(u))

L← 2oi+ 1
for x := 0 to M − 1, step 2o−1 do (Loop on columns)

for y = 0 to N − 1, step 2o−1 do (Loop on rows)
if DoHL(u)(x, y) > tH then (Thresholding, Equation (27))

if isMaximum (DoHL(u), x, y) then (Non-maximum suppression)
if isRefined (DoHL(u), x, y, L) then (Refinement by interpolation, Sec-

tion 4.3)
addListKeyPoints (x, y, L)

end if
end if

end if
end for

end for
return listKeyPoints

end function

Remark A faster method has been proposed in [22] to find the local maxima without exhaustive
search, which has been not implemented for the demo.

Thresholding Using four octaves and two levels for analysis, eight different scales are therefore
analyzed (see Table 2 in Section 3.2). In order to obtain a compact representation of the image -and
also to cope with noise perturbation- the algorithm selects the most salient features from this set of
local maxima. This is achieved by using a threshold tH on the response of the DoHL operator

DoHL(u)(x, y) > tH . (27)

Note that, since the operator is scale-normalized, the threshold is constant. In the demo, we set
tH = 103 assuming that the input image u takes values in the interval J0, 255K. This setting enables
us to have a performance similar to the original SURF algorithm [2, 1] (see Section 6 for more details).
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Figure 13 shows the set of interest points detected as local box-space maxima of the DoHL

operator after the thresholding step. For visualization purpose, the radii of the circles is set as 2.5
times the box scale L of the corresponding interest points.

Proposed implementation OpenCV 2.3.1

Figure 13: Illustration of interest point detection (without box-space refinement) of the japan
picture. On the left, the proposed implementation of SURF detects 1184 interest points, while the
implementation from OpenCV 2.3.1 selects 919 interest points. The major difference lies in the
management of the borders of the image and the threshold value tH on the DoHL operator.

Comparison with Laplacian operator As mentioned earlier, one could use the scale normalized
Laplacian operator instead of the determinant of Hessian. By analogy to Equation (23), and using the
fact that this operator can be defined as the trace of the Hessian matrix, we define the box-Laplacian
operator as follows

∆L(u) :=
1

L2

(
DL
xx + DL

yy

)
u . (28)

An illustration of this operator is given in Figure 14, along with a comparison with the Laplacian of
Gaussian kernel.

We can tell from Figures 11 and 14 that the advantage of the determinant of Hessian over the
Laplacian is that it does not respond to edges. In practice, this means that SURF does not require a
supplementary geometric criterion to discard interest points located on edges (like for instance in [15]).
Indeed, edge features are not discriminant for local image comparison. However, the Laplacian is
still used in SURF for local feature description, as explained in the next section.

4.3 Scale-Space Location Refinement

Taylor expansion For each local maximum of the DoHL operator, the localization of the corre-
sponding interest point X0 with coordinates X0 : (x0, y0, L0) in the box-space may be refined using
a quadric fitting. Indeed, considering a C2 function f : R3 7→ R, we have the following second order
Taylor expansion

X = X0 + ξ, f(X) = f(X0) + ξT ·Df(X0) +
1

2
ξT ·D2f(X0) · ξ +O(‖ξ‖3), (29)
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∆L (Equation (28)) ∆σ (Equation (23))

Figure 14: Trace of Hessian Operators applied to the images japan from Figure 6 (top row) and
lena Figure 1 (bottom), using ∆L from Equation (28) at scale L = 9 (left column) and ∆σ from
Equation (23) at scale σ(L) = 0.4L = 3.6 (right column). In comparison with the determinant of
Hessian (see Figure 11), the Laplacian operator yields strong response on edges, thus often requiring
a supplementary contour detector to discard interest points located on edges (see for instance [15]).

where Df is the gradient of f , and D2f is the Hessian matrix. Optimizing ξ to maximize the
quadratic expression, we get the following condition

0 = Df(X0) +D2f(X0) · ξ.
If the interest point X0 is not degenerate, the Hessian matrix is full rank so that we can solve the
corresponding linear system.

As advocated by [1, 2] and formerly proposed in [4], we can transpose this relation to the response
of the determinant of Hessian operator DoHL(u) in the box space, so that

X = X0 + ξ, where ξ =
(
ξx ξy ξL

)T
= −H−1

0 d0. (30)
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In the previous expression, L is the scale variable, and d0 and H0 are the discrete gradient and the
discrete Hessian of DoHL(u) at point X0 = (x0, y0, L0), respectively denoted as follows

d0 =


dx

dy

dL

 H0 =


Hxx Hxy HxL

Hxy Hyy HyL

HxL HyL HLL

 .

The numerical evaluation of the components of the gradient vector d0 and the symmetric Hessian
matrix H0 of DoHL0(u) at scale L0 and location (x0, y0) is obtained from finite difference schemes
in the box space, with a 3× 3× 3 centered neighborhood.

Finite difference scheme for gradient and Hessian matrix estimation Taking into account
that a sub-sampling is performed with a step parameter p = 2o−1 which is scale dependent, expressions
are quite straightforward for the derivative according to spatial coordinates, with ∀X0 ∈ Ω× L

dx(X0) =
1

2p

(
DoHL0(u)(x0 + p, y0)−DoHL0(u))(x0 − p, y0)

)
, (31)

Hxx(X0) =
1

p2

(
DoHL0(u)(x0 + p, y0) + DoHL0(u)(x0 − p, y0)− 2 DoHL0(u)(x0, y0)

)
, (32)

Hxy(X0) =
1

4p2

[
+DoHL0(u)(x0 + p, y0 + p) + DoHL0(u)(x0 − p, y0 − p)

− DoHL0(u)(x0 − p, y0 + p)−DoHL0(u)(x0 + p, y0 − p)
]
. (33)

Special care has to be given for the processing of the scale coordinate, since this time the sampling
is done (see Equation 19). Using the chain rule, and ∂L

∂i
= 2o = 2p, one thus has

dL(X0) =
∂i

∂L
di(X0) =

1

4p

(
DoHL0+2p(u)(x0, y0)−DoHL0−2p(u))(x0, y0)

)
, (34)

HxL(X0) =
1

8p2

[
+DoHL0+2p(u)(x0 + p, y0) + DoHL0−2p(u)(x0 − p, y0)

− DoHL0+2p(u)(x0 − p, y0)−DoHL0−2p(u)(x0 + p, y0)
]
, (35)

HLL(X0) =
1

4p2

(
DoHL0+2p(u)(x0, y0) + DoHL0−2p(u))(x0, y0)− 2 DoHL0(u)(x0, y0)

)
. (36)

Refinement rejection It is possible that the refined point X = X0 + ξ does not belong to the
neighborhood of X, i.e. max(|ξx|, |ξy|, 1

2
|ξL|) > p. This happens if the Hessian matrix is ill condi-

tioned. In practice, those interest points are not reliable for matching and are thus discarded, as
proposed in [4]. The location refinement procedure is described in Algorithm 4 and is illustrated in
Figure 15.
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Algorithm 4 Box-space location refinement

input: X0 : (x0, y0, L0) and DoHL(u) (Refinement in box-space of detected point X0 at scale
L0 = 2oi+ 1)
output: True/False & X : (x, y, L) (Is the interest point kept ? If so, return the position of
the refined detected point.)
function isRefined (DoHL(u), X0)

p← 2o−1 (Step parameter for finite different scheme)
H0 ← Formulas (32), (33), (35) and (36). (Hessian matrix)
d0 ← Formulas (31) and (34). (Gradient vector)
ξ ← −H0

−1 · d0 (Maximum refinement, see Equation (30))
if max(|ξx|, |ξy|, 1

2
|ξL|) < p then (Check precision improvement)

(x, y, L) ← (x0, y0, L0) + ξ (Refinement using 2nd order Taylor expansion, see Equa-
tion (29))

return True, X : (x, y, L)
else

return False

end if
end function

Proposed implementation OpenCV 2.3.1

Figure 15: Selected features after scale-space location refinement. (Left) the proposed implemen-
tation of SURF retains 946 interest points (among 1184); (Right) the SURF implementation from
OpenCV 2.3.1 selects 874 interest points from 919.

5 Interest Point Description

From the previous stage, we have obtained a set of P interest points in the box-space{
Xk : (xk, yk, Lk) ∈ [0,M − 1]× [0, N − 1]× [0, 65]

}
k=1,...,P

that corresponds to the most salient features of the input image. Observe that, because of the
refinement step, scale-space coordinates are continuous. In order to compare and find correspondences
between interest points from different images, a local descriptor of their neighborhood is encoded
for each of them. The goal is to obtain a geometric invariant representation, which is also robust to
various perturbations such as noise, illumination or contrast change.
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The scale space analysis already offers scale and translation invariance. To achieve similarity
invariance, one also needs rotational invariance. One way to achieve this consists in extracting for
each interest point a dominant orientation following the procedure detailed in Section 5.2. Then,
SURF features are built from the normalized gradient distribution in the vicinity of interest points
(Section 5.3). Finally, a method to compare SURF descriptors and find local correspondences between
images is exposed in Section 5.4.

5.1 Scale of an Interest Point

In the previous section, for the sake of simplicity, we have referred to L as the scale parameter of
the box-space. Let us now recall that the analogous relation between the box-filter size parameter
L and the equivalent scale variable σ from linear scale space is given by Equation (20). Thus, for a
given detected feature point Xk, one has the corresponding scale variable

σk = b0.4Lke. (37)

This scale variable is used thoroughly in the following sections to define various scale normalizations
involved in SURF descriptors. Note that the rounding operator b·e is only required for numerical
convenience.

5.2 Dominant Orientation of an Interest Point

Alike the SIFT method, the main orientations of SURF keypoints are computed from the local
distribution of the gradient orientation.

Weighted gradient computation For each interest point Xk, we first consider the neighborhood
B6σk(xk, yk) defined as the disk of radius 6σk with center (xk, yk). The computation of the gradient
at this scale σk, and in this neighborhood B6σk(xk, yk) is obtained by convolution with first order box
filters (see the corresponding definition of DLk

x (Equation (6)) and DLk
y (Equation (7))). To reduce

the impact of remote pixels, the gradient samples are weighted according to their distance from the
interest point, using a discrete Gaussian kernel (Equation (16)), with a standard deviation equal to
2σk. The weighted gradient at point (x, y) then writes (x and y being integer coordinates of the pixel
grid Ω)

∀(x, y) ∈ Ω ∩ B6σk(xk, yk), φk(x, y) :=

DLk
x

DLk
y

 ◦ u(x, y) ·G1

(
x− xk

2σk
,
y − yk

2σk

)
. (38)

Orientation score function Unlike the SIFT approach in which a histogram is built from gradient
samples to estimate the dominant orientation [15], SURF computes the following score vector Φ
according to the orientation θ

Φk(θ) =
∑

(x,y)∈B6σ
k

(x
k
,y
k

)

φk(x, y)× 1[θ−π
6
,θ+π

6
] (∠φk(x, y)). (39)

This vector sums all the weighted gradients in the considered neighborhood which have approximately
the same orientation θ (with a fixed tolerance of ±π

6
). Here, ∠φ ∈ [−π, π) denotes the angle between

vector φ ∈ R2 and canonical vector (1, 0)T 2. The orientation score function is defined as the l2

norm of this aggregated vector ‖Φk(θ)‖.
2 This corresponds to the C++ standard math library function atan2.
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Dominant orientation Finally, the orientation of the interest point Xk is defined as the global
maximum of the orientation score function

θk = ∠Φk(θ
?) where θ? ∈ argmax

θ∈Θ
‖Φk(θ)‖. (40)

In the proposed demo, we evaluate the orientation score function for 40 different angles, uniformly
sampled over the unit circle: Θ =

{
kπ
20
, k = 0, 1, . . . , 39

}
.

An example of dominant orientation estimation is given in Figure 16, in which the estimated
orientations are represented by segments. Algorithm 5 summarizes the computation of the main
orientation of an interest point.

Algorithm 5 Computation of the orientation

input: u, X : (x, y, L)
output: θ (Main orientation of the interest point neighborhood)
function Orientation (u, x, y, L)

σ ← d0.4Lc (Scale variable definition from Equation (37))
for i := −6 to 6 do (Span the keypoint neighborhood)

for j := −6 to 6 do
if i2 + j2 ≤ 36 then (Check that (x+ iσ, y + jσ) ∈ B6σ(x, y))

φ(i,j) =
(
DL
x ,D

L
y

)T ◦u(x+iσ, y+jσ)×G1

(
i
2
, j

2

)
(Using Equation (43), Equation (6)

and (7))
end if

end for
end for
for k := 0 to 39 do (Span the discrete set of tested angular sector Θ)

θk ← kπ
20

(Θ = {θk}k)
Φ(θk)← Formula (39) (Compute orientation score function for angular sector θk)

end for
θ? = argmax

θ∈Θ
‖Ψ(θ)‖ according to Formula (40)

return θ = ∠Φ(θ?)
end function

Sampling strategies Once again, as previously done for interest point detection, a sub-sampling
strategy is used to speed up the SURF descriptor construction. Indeed, the weighted gradient
operator is not computed in practice for all the pixels from the neighborhood, which would be com-
putationally prohibitive for large scales. Instead, pixel locations are sampled with a step parameter
equal to the scale of the interest point σk, as explicitly detailed in Algorithm 5. Another advantage
of this strategy is that the number of gradient samples used to estimate the main orientation is
consistent throughout the scales (approximately 100 samples in our implementation).

5.3 SURF Descriptors

A SURF descriptor is a 16×4 vector, representing normalized gradient statistics (mean and absolute
mean values) extracted from a spatial grid R divided into 4-by-4 regions. These subregions are
referred to as R = {Ri,j}1≤i,j≤4. For a given oriented interest point Xk : (xk, yk, Lk, θk), as illustrated
in Figure 17, the corresponding square grid is centered at (xk, yk), aligned according to θk and scaled
to have a normalized width of 20σk, using relation (37).
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Ipol logo (705× 323 pixels)

Proposed implementation of SURF

SURF algorithm from OpenCV 2.3.1

Figure 16: Illustration of interest points detection with dominant orientation. The radius of the
circle indicates the scale of the interest point and the segment shows the selected orientation based
on Algorithm 5. (Middle) 456 points are detected with the proposed implementation of SURF.
(Bottom) 478 interest point are selected with the SURF implementation of OpenCV 2.3.1.
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is used to build the SURF descriptor in the neighborhood of an interest point Xk : (xk, yk, Lk) with
orientation θk.
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Scale normalized sampling A subregion Ri,j is a square with side length equal to 5σk. Gradient
responses are regularly sampled, using a step equal to σk. Hence, 25 gradients are consistently used
in each subregion to build the SURF descriptor for any interest point.

Change of coordinates The coordinates of gradient samples according to the descriptor grid are
denoted by (u, v) whereas the coordinates on the pixel grid Ω are denoted (x, y). The similarity
transform between the two coordinate systems is then

Sk :

(
u

v

)
7→
(
x

y

)
= σk ·Rθk

(
u

v

)
+

(
xk
yk

)
, where Rα =

(
cosα − sinα

sinα cosα

)
. (41)

To span the grid R, one must take u, v ∈ J−10, 9K+ 1
2

(where the term 1
2

is used to ensure symmetry).
Since the coordinates (x, y) do not correspond exactly to pixel values, rounding is required (nearest
neighbor interpolation)

(x,y) = bSk(u, v)e = (bxe, bye) ∈ Ω. (42)

Note also that the coordinates of (u, v) implicitly depend on the subregion coordinates Ri,j (see
Algorithm 6 for more details).

Gradient normalization The gradient components are computed by convolution with first order
box filters DLk

x and DLk
y (see Formulas (6) and (7)). To avoid the use of interpolation due to the

orientation of the descriptor grid R, the gradients responses are first computed on the regular grid
Ω, and then rotated using rotation matrix R−θk to cancel the descriptor orientation.

In addition, as previously done for the dominant orientation selection, the gradient responses
are weighted according to the distance of the pixel from the interest point. This processing aims at
reducing the importance of distant pixels which are more sensitive to orientation or scale perturbation.
In SURF [2], the weights are defined by a discrete Gaussian kernel (Equation (16)), with a standard
deviation equal to 3.3σk.

Eventually, the weighted gradient at point (u, v) reads

∀ (u, v) ∈ R,

dx(u, v)

dy(u, v)

 := R−θk

DLk
x

DLk
y

u (x,y)×G1

( u

3.3
,
v

3.3

)
. (43)

Gradient statistics Similarly to SIFT, the SURF descriptor aggregates local gradient information
from subregions. However, whereas SIFT builds small histograms of gradient orientations (weighted
by gradient magnitude), SURF computes first order statistics on vertical and horizontal gradient
responses. The authors of SURF [2] claim that using the sum and the sum of absolute values yields
the best compromise between compactness and efficiency. The resulting statistical vector describing
subregion Ri,j corresponds to

∀ (i, j) ∈ J1, 4K2 , µk(i, j) =



∑
(u,v)∈Ri,j dx(u, v)∑
(u,v)∈Ri,j dy(u, v)∑

(u,v)∈Ri,j | dx(u, v) |∑
(u,v)∈Ri,j | dy(u, v) |


. (44)
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The SURF descriptor associated to the interest point Xk : (xk, yk, Lk, θk) is then simply obtained
by concatenating the 16 vectors µk(i, j) computed for every subregion

µk =
(
µk(i, j)

)
1≤i,j≤4

. (45)

Descriptor normalization The previous geometric normalization guaranties invariance to simi-
larity transforms. In practice, the use of local gradient information combined with a localization grid
R yields also robustness to small changes of viewpoint. In order to gain invariance to linear contrast
changes, the SURF descriptor is normalized to a unit vector, using Euclidean norm

surf(Xk) =
µk
‖µk‖2

. (46)

Besides, because of this l2 normalization, it is unnecessary to use scale-normalized first order box
filters.

The construction of such descriptor is summarized in Algorithm 6.

Sign of the Laplacian Eventually, for each interest point Xk, in addition to scale-space coordi-
nates (xk, yk, Lk) and orientation θk, the local sign of the Laplacian is also stored. The approximate
Laplacian operator response is obtained from ∆Lk u(xk, yk), using Formula (28). The goal is to ac-
celerate the comparison of of SURF interest points during the matching step (see Section (5.4) for
more details). The sign of the Laplacian response provides some information about the local contrast
of the interest point. Since this operator is the trace of the readily available Hessian matrix, this
operator only requires one additional operation.

Algorithm 6 Construction of SURF descriptor

input: Input image u, keypoint X : (x, y, L)
output: SURF Descriptor, orientation of keypoint and sign of Laplacian
function buildDescriptor (u, x, y, L)

θ ← Orientation (u, x, y, L) (See Algorithm 5)
for i := 1 to 4 do (Span the 4-by-4 subregions Ri,j of the oriented grid)

for j := 1 to 4 do
for u := −9.5 to 9.5 step 1 do (Span the subregions Ri,j coordinates (u, v))

for v := −9.5 to 9.5 step 1 do
(x, y) = S(u, v) (Change of coordinates, see Formula (41))
(x,y) = b(x, y)e (Nearest neighbor pixel, see Formula (42))
DLk
x u(x,y), DLk

y u(x,y) (Gradient response)
(dx(u, v), dy(u, v))← Formula (43) (Gradient correction)

end for
end for
µ(i, j)← Formula (44) (Compute subregion statistical descriptor ∈ R4)

end for
end for
µ← concatenate ({µk(i, j)}1≤i,j≤4) (16× 4 dimensional vector (Equation (45)))
surf(X)← normalize (µ) (l2 normalization (Equation (46)))
∆L(u)(x, y)← Formula (28) (Laplacian at scale L)
return surf(X), θ, Sign(∆L(u)(x, y))

end function
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5.4 Feature Matching

From the previous steps, a pair of images (u,v) to be matched is represented by two sets of interest
points ({Xk}k and {Yl}l) with their corresponding SURF descriptors ({surf(Xk)}k and {surf(Yl)}l).
Recall that a SURF descriptor X ∈ [−1, 1]64 is a 64-dimensional vector with unitary Euclidean norm:
‖X‖ = 1. The matching step is simply performed here as an exhaustive comparison of these vectors
using Euclidean distance, combined with a Nearest-Neighbor Distance Ratio (NN-DR) thresholding
technique.

Feature comparison For any query descriptor Xk from the first image u, we compute the Eu-
clidean distance d2

k,l = ‖Xk−Yl‖2
2 = 2(1−XT

k ·Yl) with all the candidate features Yl from the second
image v. Since around a thousand of SURF features are approximately extracted from a 1 megapixel
image, millions of scalar products are therefore computed.

To speed up the matching procedure, we first compare the signs of the Laplacian of SURF features
as advocated by the authors of SURF. If the signs of two descriptors are different, they are very
unlikely similar: the distance is therefore not computed and the potential match is discarded.

Besides, note that many other methods exist in the literature to accelerate the comparison of
vectors, either for exact or approximate Nearest-Neighbor search, based on data structure (such as
Kd-tree, Vector quantization, etc.). We did not use such techniques in the proposed source code.

Matching criterion Subsequently, one needs to extract the most significant correspondences from
within typically several millions of putative ones. In other words, taking only the similarity distances
dk,l into account, one has to separate the correct matches from the spurious ones. A classic paradigm
is the nearest neighbor matching, which consists in testing only correspondences between each query
descriptor Xk with its most similar candidate, denoted by Yl1 where

l1 ∈ argmin
l

dk,l .

The Nearest Neighbor Distance Threshold (NN-DT) is a straightforward technique to validate such
a putative correspondence based on a fixed threshold on the similarity measure. Inescapably, such a
matching criterion implies a compromise between the number of false positives and false negatives.

As done in SURF [2], we use instead the NN-DR matching criterion, a simple statistical method
proposed by Lowe [15] to discard mismatches, which has been shown (see e.g. [23]) to outperform
NN-DT. This method considers the ratio between the first and second nearest neighbors to measure
the quality of a correspondence between the query and the most similar candidate. Thus, we first
compute the closest Yl1 and second closest Yl2 candidates from the query feature Xk, such that

l2 ∈ argmin
l, s.t. dk,l≥dk,l1

dk,l.

and then compare the corresponding ratio of distances to a fixed threshold t, so that

if
dk,l1
dk,l2

≤ t ⇔ correspondence (Xk, Yl1) is validated.

Following [15], in our experiments, the threshold was set to t = 0.8.

Geometric consistency Finding local correspondences between two images is rarely an end in
itself. In practice, one wants for instance to find the geometric deformation between the two images
(image registration) or decide if they share a similar object (object detection and recognition). More-
over, the previous matching criterion is generally not sufficient to discard most mismatches. Thus,
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in the demonstration, we decided to incorporate an optional and additional matching criterion based
on the epipolar geometry consistency. To do so, we use the ORSA algorithm [21], which combines
the RANSAC [6] algorithm with hypothesis testing.

Without going into details (see for instance [20]) this supplementary criterion consists in finding
the most significant geometric relation between the two images to remove correspondences that are
not consistent with it. More specifically, we consider the two images as two different views of the
same scene (stereo-vision). The epipolar geometry enables to account for the perspective deformation
between the coordinates of corresponding interest points in the two images. Random subsets of
correspondences are iteratively drawn and used to estimate the related fundamental matrix. Given
a tolerance error, the matches that are consistent with the geometry are counted to select the best
geometric transformation between the two images.

This supplementary criterion is also given in the proposed source code and is used in the following
section for visualization purpose

6 Experiments

In this section, we illustrate the performance of the SURF algorithm for image matching. We first
evaluate the validity of the proposed implementation by checking the SURF properties: invariance to
similarity transform and robustness to small viewpoint changes. Secondly, some examples of image
pair matching are shown to illustrate the behavior (both success and failure) of the SURF method,
along with a comparison with some other competitive methods.

6.1 Performance Evaluation

An executable program has been released by the authors of SURF 3. Unfortunately, we were only able
to use it partially. So, in order to evaluate and validate our implementation of the SURF algorithm,
some of the benchmarks proposed in [2] have been reproduced.

In these benchmarks, performance curves are obtained from the experimental protocol from [19]
which provides several image sequences with geometric distortion (along with the ground-truth) and
the MATLAB code to compute scores. Two different types of performance measures are evaluated to
assess the quality of the feature detection and description: the repeatability score and the precision-
recall rate.

Repeatability The repeatability score represents the proportion of nearly identical features de-
tected in two different views of the same scene.

Let u be the image of interest, and u′ be the same reference scene from a different viewpoint,
so that the transform T between the two view is known (in practice, a homography combined with
a mask). For each point Xk selected in u, an ideal detector should find the same interest point X ′k
in u′, such that Xk = T (X ′k). The repeatability test consists in measuring how often this relation
is verified. In practice, due to numerical approximations (blur, noise, quantization, errors, etc) that
result in u ≈ T (u′), we have to test for each Xk if there is some detected point X ′i in u′ which is
close enough. To this end, and following [19], we consider the support region Rk of each keypoint
Xk, here defined as a disk Bs(xk, yk) centered on the point location and which radius s is fixed (30
pixels in [19]). Two keypoints Xk and X ′i are considered similar if the overlap error between the
two registered regions is small enough. We denote R′i the support region of the interest point X ′i
back-projected in u, which is an elliptic region obtained from the geometric transform T of the disk

3available at the following address: http://www.vision.ee.ethz.ch/~surf/.

208

http://www.vision.ee.ethz.ch/~surf/


An Analysis of the SURF Method

Bs′i(x′i, y′i). As advocated in [19], the radius s′i verifies
s′i
σ′i

= s
σk

to take into account the difference of

scale between the two interest-points. The overlap score is then defined as

overlap score (Xk, X
′
i) =

Rk ∩R′i
Rk ∪R′i

.

A minimum of 50 % overlap score is required to consider that a keypoint Xk in u is repeated in
u′. Simply speaking, the repeatability score is the proportion of keypoints in u that have a similar
keypoint in u′. For more details, please refer to [19, Section 4.1].

We have used two image sequences displayed in Figure 18: the ‘Graffiti’ database, where the same
(planar) scene is captured under different view angles (from 0◦ to 60◦), and the ‘Boat’ sequence, with
rotations and zoom-out (up to a scale change factor of 3). The repeatability score of the SURF
interest point detector is hence evaluated depending on the view angle and the scale factor. The
corresponding projective transform (homography) between the pictures is known, and used to define
correct local correspondences for every pair of images. Note that it is impossible to achieve 100%
repeatability score with scale change, since features which are detected at the smallest scale in a
given image cannot be detected in the zoom-out image.

Results are displayed in Figure 19 and are very similar to the original SURF (see Figures 16 and
17 in [2]). Observe that for very small perspective or rotation distortions, the repeatability score is
very high, while it progressively decreases for larger distortions.

Graffiti sequence

Boat sequence

Figure 18: Database from [19] for performance evaluation. (Top) The ‘graffiti’ image sequence.
(Bottom) The ‘boat’ image sequence.

Precision-Recall As described in Section 5.4, one uses in practice the NN-DR (Nearest Neighbor
Distance Ratio) criterion to select correct matches from all the putative correspondences between the
most similar SURF descriptors from a pair of images. This criterion relies on a threshold t ∈ [0, 1]
(which is fixed to 0.8 the rest of this experimental section), such that every tentative correspondence
is validated when fixing t = 1. For a given value of t in [0, 1], the precision and recall rates are
respectively defined as the proportion of correct matches among the set of selected matches (after
nearest neighbor selection), and the proportion of correct matches among the total number of correct
matches (i.e. including non-nearest neighbor matches). This boils down to the following rates

recall(t) =
#correct NN matches(t)

#correct matches(1)
∈ [0, 1], precision(t) =

#correct NN matches(t)

#NN matches(t)
∈ [0, 1].

(47)
The larger t, the better the recall rate. On the other hand, the precision is generally equal to one for
small values of t and roughly decreases for larger values of t. The ‘recall vs. precision’ curve (a.k.a.
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Figure 19: Evaluation of repeatability detection on the datasets displayed in Figure 18. (Left) using
the ‘graffiti’ image database, and (Right) using the ‘boat’ image database.

ROC curve) is hence built to illustrate this trade-off between recall and precision rate when tuning
the parameter t.

The precision-recall curve for the ‘Boat’ database is displayed in Figure 20. More precisely, we
used the images #1 and #3 of the sequence displayed in Figure 18. Let us observe that the recall
rate is in practice strictly lower than 1 since we only consider nearest neighbor matches. When t = 1,
the recall rate indicates the proportion of matches that are correct, which is here around 50%. In
comparison, using random assignment between N = 103 interest points would give in average a recall
rate of approximately 1

N
= 0.1%.
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Figure 20: Precision-recall curve for the ‘Boat’ image pair (using image #1 and #3).
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6.2 Comparison with SIFT Approach

As previously mentioned, the SURF method shares a lot of common features with the SIFT ap-
proach [15]. For a complete, in-depth analysis, we refer the reader to [24]. Some of the theoretical
aspects of multi-scale analysis have been already discussed in this Section 3. Let us recall that SIFT
detects features using multi-scale Gaussian derivatives and then builds similarity invariant descriptors
based on local histograms of gradient’s orientation. On the other hand, SURF uses fast second order
box filters for interest point detection and then computes first order gradient statistics to encode
local information.

In this section, we propose a small visual comparison of the matching results of these two methods.
The SIFT correspondences are obtained using the executable program of David Lowe 4. In order to
visually illustrate the suitability of the two approaches, a geometric consistency post-processing is
used (Optimized Random Sampling Algorithm from [21]) to discard a large amount of incompatible
correspondences. Results are displayed in Figures 21 and 22. The first image is stacked above the
second one, and the color lines indicates the correspondences between interest points. We can see
that both methods provide matching results that are located in similar regions (contrasted textures,
corners and blobs). However, it is noticeable that the SIFT method gives more dense correspondences.
In the meantime, it should be mentioned that SURF is faster to run, since the computation time
complexity is smaller for feature detection.

6.3 Failure Cases

We discuss in this paragraph some practical limitations of the SURF algorithm.

6.3.1 Feature Detectability

As it can be seen in the previous matching examples, the SURF detector yields a lot of interest
points in textured regions or contrasted geometrical structures, such as corners, junctions, blobs,
etc. However, interest points are hardly selected in low contrasted areas (see Figure 23). A similar
problem occurs with the SIFT approach.

Let us recall that interest point candidates are defined as local maxima of the determinant of
Hessian operator DoHL (see Section 4, Equation (24)). In order to discard candidates that are due
to noise fluctuation, a threshold tH is used (see Formula (27)). Unfortunately, the determinant of
Hessian response depends on the local contrast, so that the thresholding also discards low contrasted
features. An interesting work related to this issue consists in investigating the use of locally adapted
thresholds.

6.3.2 Robustness to Non-Affine Contrast Changes

The SURF descriptors are based on local gradient statistics, which yield invariance to any affine
contrast change, such as white balance correction. In Figure 24, we illustrate the impact of a non
linear contrast change. In this example, a different gamma correction (γ = 1

2
and γ = 4) is applied

to input images before using the SURF algorithm. This result is to be compared with Figure 21 (i.e.
without gamma correction). While the contrast change has little impact on feature detection, the
number of matches is greatly reduced (by almost a factor of 6 in this example).

4available at http://www.cs.ubc.ca/~lowe/keypoints/.
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SURF SIFT

Figure 21: Comparison of SIFT and SURF matching on ‘graffiti’ image pair. (Left) 215 corre-
spondences with the proposed SURF implementation. (Right) 668 correspondences with the SIFT
algorithm.

6.3.3 Robustness to Large Perspective Distortion

In order to comply with stereo-vision applications, invariance to similarity transformations is not
sufficient. As a matter of fact, such applications involve more general perspective deformations such
as affine transformations. We therefore investigate now if SURF descriptors are indeed robust to
small affine perturbations.

It is obviously the case when considering the two first images of the Graffiti sequence where the
angle is about α = 20◦ between viewpoints (Figure 21). But, when considering wide baseline stereo
(respectively α = 30◦, 40◦ and 50◦), as shown in Figure 25, we obtain fewer matches (resp. 75, 19 and
8). Moreover, almost all correspondences are incorrect when the viewpoint angle exceeds α = 40◦.
We know from the repeatability experiment (Figure 19) that this limitation is not due to the interest
point detector, but rather to the way SURF descriptors are built, using a similarity transform to
define the local grid R (see Equation (41)).

The same limitation occurs with the SIFT approach, as illustrated in Figure 26. In this exper-

212



An Analysis of the SURF Method

SURF SIFT

Figure 22: Comparison of SIFT and SURF matching on ‘boat’ image pair. (Left) 289 corre-
spondences with the proposed SURF implementation. (Right) 1433 correspondences with the SIFT
algorithm.

iment, it is interesting to observe that most of the correspondences found by SURF and SIFT are
located in the less distorted area of the second image. In comparison, the ASIFT technique [28]
-which is designed to tackle this kind of problem- manages to find 915 correspondences.

7 Conclusion

In this article, we have analyzed in detail the SURF [2] algorithm for local, compact and invariant
representation of natural images. This method achieves a performance comparable to other state-of-
the-art algorithms in image matching, such as SIFT [15], while being very fast. Its use is therefore
of great interest for computer vision.

The numerical performance of the proposed implementation of SURF is consistent with that
reported in [2], but also with other implementations, such as [3].
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SURF SIFT

Figure 23: Detection of SIFT and SURF features on a low contrasted image. Most selected interest
points are located on the most contrasted region of the image. The lower part of the image, which
has less contrasted regions, does not bear any SURF descriptor.

Figure 24: Detection and matching of SURF features on ‘graffiti’ sequence with gamma correction.
(Left) The first two images from the dataset are pre-processed with gamma correction (γ = 1

2
for

the first image, and γ = 4 for the second). (Middle) 4114 and 3798 interest points are detected with
the proposed SURF implementation. (Right) Only 37 correspondences are found after the matching
and the geometric consistency steps.
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Figure 25: SURF matching on ‘graffiti’ image pair with wide baseline. (Left) 75 (correct) corre-
spondences are found when the angle is about α = 30◦ between the views. (Middle) 19 (incorrect)
correspondences for α = 40◦. (Right) 8 (incorrect) correspondences for α = 50◦.

SURF SIFT ASIFT

Figure 26: Matching SURF and SIFT features for wide baseline image pair, in comparison with
ASIFT approach. When using similarity invariant methods (SURF and SIFT), most selected corre-
spondences are located on the less distorted region of the image, while ASIFT [28] -an affine invariant
generalization of SIFT- manages to detect much more correspondences.
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Image Credits

, from the K. Mikolajczyk standard database

Berkeley Segmentation Dataset5

provided by the authors
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