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Abstract

In the article ‘Image Noise Level Estimation by Principal Component Analysis’, S. Pyatykh, J.
Hesser, and L. Zheng propose a new method to estimate the variance of the noise in an image
from the eigenvalues of the covariance matrix of the overlapping blocks of the noisy image.
Instead of using all the patches of the noisy image, the authors propose an iterative strategy
to adaptively choose the optimal set containing the patches with lowest variance. Although the
method measures uniform Gaussian noise, it can be easily adapted to deal with signal-dependent
noise, which is realistic with the Poisson noise model obtained by a CMOS or CCD device in a
digital camera.

Source Code

The C++ implementation of the PCA noise estimator is the one which has been peer reviewed
and accepted by IPOL. The source code, the code documentation, and the online demo are avail-
able in the IPOL web part of this article1. The files which were peer-reviewed are: algo.cpp,
curve filter.cpp, PCANoiseLevelEstimator.cpp and their associated .h headers.

Keywords: noise estimation; PCA; signal-dependent noise; blind noise estimation

1 Introduction

Nowadays almost all images and movies are obtained using CMOS or CCD detectors. At the first
step of the camera processing chain (acquisition of the raw image) the value observed at each pixel
is a Poisson random variable whose mean is the ideal image. The difference between the observed
image and the ideal image is called “shot noise”.

This shot noise is of course undesirable and usually one wants to remove it. If several samples
of noisy images from different realizations of the random process are available, a naive but effec-
tive solution to reduce the noise would be to simply average the images. Indeed, this principle of
aggregation is used by many denoising methods. If just a single noisy sample is available (say, the
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noisy image itself), there exist other denoising methods which exploit the self-similarity property of
natural images to perform denoising by aggregation of similar patches.

All denoising methods need to know about the noise model corrupting the image. For example,
if the noise follows a Poisson distribution, the parameter λ of the distribution would be needed. The
process of obtaining the underlying noise model or its parameters (typically, its variance) using just
a single noisy image is known as blind noise estimation.

Many methods found in the literature focus on homoscedastic white Gaussian noise [3, 2, 9, 8,
10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22]. That is, the noise follows a normal distribution with
an unknown fixed variance. Note that this very simple noise model is not realistic in principle since
photon noise depends on the intensity of the signal. However we apply a technique [7] which allows
to adapt most of the block-based homoscedastic noise estimator to measure signal-dependent noise
(see Section 6.2).

This article discusses and evaluates a noise estimation method based on PCA [18], modified to
measure signal-dependent noise. The plan of the paper is the following: Section 2 defines precisely the
notation and mathematical operators used in the article, Section 3 presents the original homoscedastic
noise estimation method, Section 4 presents and discusses the implementation of the homoscedastic
method.

Section 6 presents the extensions proposed to the original homoscedastic method: extension to
signal-dependent noise and computing the optimal number of block groups depending on the intensity,
a filtering algorithm to reduce the overestimation of the variance because of the presence of textures,
and a method to discard saturated pixels when estimating the noise.

Section 7 contains the evaluation of the method, with three kinds of tests: homoscedastic Gaussian
noise, noise from real raw images, and tests of multiscale coherence. Section 8 completes the analysis
of the method by calculating the complexity of all the algorithms. Finally, Section 9 presents the
online demo, which allow the users to test the method with their own data and reproduce the results
presented in this article.

2 Notation and Terminology

This section prepares the detailed description of the noise estimation algorithm given in Section 4
by fixing its notation and terminology.

• x: the discrete noise-free image of size Nx ×Ny pixels.

• n: a discrete additive white Gaussian noise of variance σ2 and zero mean of size Nx×Ny pixels.

• y = x + n: the corrupted image resulting from adding the noise n to the noise-free image x.

• M = M1 ×M2: the size in pixels of the overlapping blocks; M1 = M2 = 5⇒M = 25.

• Q(p): the p-quantile of the list of the variances of the overlapping blocks in y.

• N = (Nx −M1 + 1)× (Ny −M2 + 1): the number of overlapping blocks.

• X: matrix of samples of a random vector made from realizations xi, i ∈ {1, . . . , N}. It can be
written in matrix notation as

X =


x1

x2
...

xN

 =


x11 x12 . . . x1M

x21 x22 . . . x2M
...

...
. . .

...
xN1 xN2 . . . xNM

 ,
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where each row of the matrix contains a different block, that is, a realization xi with i ∈
{1, . . . , N}.

• Var: operator which gives the variance of a random variable.

• E: operator which gives the expectation of a random variable.

• Y: matrix of samples of a random vector made from realizations yi, i ∈ {1, . . . , N}.

• Yj: samples of Y inside the j-th disjoint group of samples. The samples are classified according
to their mean intensity and we shall call bin each of these divisions. The samples in Yj are sorted
according to their variance, that is, Yj = {yi ∈ Y : Q(1−(j+1)∆p) < Var [yi] ≤ Q(1−j∆p)}.

• N: matrix of samples of a random vector made from realizations ni, i ∈ {1, . . . , N} such that
N ∼ NM(0, σ2I) and cov(X,Y) = 0, where N represents the normal distribution and I is the
identity matrix.

• SX and SY: the empirical covariance matrices obtained from X and Y, respectively.

• λX,1 ≥ λX,2 ≥ . . . λX,M : the eigenvalues of SX.

• λY,1 ≥ λY,2 ≥ . . . λY,M : the eigenvalues of SY.

• |.|: the cardinality of a set.

3 Principal Components in Natural Images [18]

The authors of [18] claim that information in a patch from a natural image can be expressed with fewer
values than the number of pixels in the patch. Formally, any patch lies in a sub-space VM−m ⊂ RM

whose dimension M −m is smaller than M , the number of pixels of the patch.

Assumption 1. Let X be the matrix of samples made of N rows, each describing a noise free patch of
size M . We assume that all realizations xi lie in a sub-space VM−m ⊂ RM whose dimension M −m
is smaller that the dimension M of the xi. Therefore, xi have zero variance along any direction
orthogonal to VM−m. That is, the eigenvalues (sorted in decreasing order) are

λX,M−m+1 = · · · = λX,M = 0. (1)

A necessary condition to fulfill this Assumption 1 is that

E
[∣∣λY,i − σ2

∣∣] ≤ Tσ2/
√
N, i = M −m+ 1, . . . ,M, (2)

where λY,i denote the eigenvalues of the covariance matrix SY, N the number of rows in Y and
T is a positive constant. By assuming the previous result the authors show that for noisy patch
observations Y the following results holds.

Theorem 1. Let Y = X + n, where n is additive white Gaussian noise of variance σ2. If Assump-
tion 1 holds and M is large enough, the variance of noise can be estimated from λY,M . Indeed, taking
N →∞ and the M-th eigenvalue λY,M leads to

lim
N→∞

E
[∣∣λY,M − σ2

∣∣] = 0. (3)
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This result provides a way to estimate the variance of the noise from the M -th eigenvalue λY,M
when the number of blocks N is large enough.

If we write the index of the eigenvalue as i = M − m + 1 (that is, m = 1 corresponds to the
smallest eigenvalue and m = M the greatest) the necessary condition to estimate the variance is

λY,M−m+1 − λY,M < Tσ2/
√
N. (4)

Assuming that M is large enough, Equation (3) states that λY,M ≈ σ2 and therefore Equation (4)
bounds the error of the estimated variance when using the eigenvalue at M −m+ 1.

The authors fix empirically the parameter m = 7 for blocks of M1×M2 = 5×5 pixels and T = 49
(see table II in [18], page 6). To ensure that most of the patches belong to a VM−m subspace, the
algorithm chooses a subset of patches defined as those with smallest variance. This means that the
authors choose to use the variance of the blocks in y as a measure of the distance of a block yi to
VM−m, i ∈ {1, . . . , N}. A simple strategy to select the subset of blocks B(p) for which Equation (4)
is verified consists in taking a small enough p-quantile Q(p) of the list of variances of the noisy blocks
and therefore to set

B(p) := {yi : Var [yi] ≤ Q(p), i ∈ {1, . . . , N}}. (5)

In practice, the authors propose an iterative strategy which reduces the quantile p while Equation (4)
is not satisfied.

4 Algorithm

The noise variance estimation algorithm (Algorithm 1) first obtains an upper bound of the variance
of the noise as σ2

ub = 3.1Q(0.0005,y), as given in [18]. This upper bound is also used as an initial
value for the iterative procedure which refines the estimated variance, implemented in the function
GetNextEstimate (see Algorithm 1). This procedure is iterated until the absolute difference between
the new variance and the previous one is negligible.

To test inequality (4) the function GetNextEstimate uses a noise variance initialization. The
eigenvalues of the set of patches are computed and checked to see if they satisfy Equation (4) with
σ = σest. The number of patches used for this estimation is reduced by decreasing p for the set of
blocks B(p) while inequality (4) does not hold. The iteration begins with p = 1 and p is decremented
by ∆p = 0.05 after each iteration. This is also the parameter used in [18].

5 Optimizing the PCA Computation

Computing the eigenvectors and the corresponding eigenvalues of the sample covariance matrix is a
time consuming operation which is called several times in function GetNextEstimate. The PCA is
computed on the set B(p) for different values of p. It is possible to use the nested structure of these
sets to avoid recomputing the covariance matrix at each step.

The (biased) sample covariance matrix can be written as

1

|B(p)|

 ∑
yi∈B(p)

yiy
T
i −

1

|B(p)|
∑

yi∈B(p)

yi
∑

yi∈B(p)

yTi

 . (6)

The number of operations needed to compute directly this matrix is proportional to |B(p)|M2.
The sets B(p) in Equation (5) satisfy

B(1) ⊃ B(1−∆p) ⊃ B(1− 2∆p) ⊃ B(1− 3∆p) ⊃ . . .
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Algorithm 1 PCA noise estimation.

1: PCA noise estimation - Compute noise variance.
Input y: list of blocks of the noisy image.
Output σ2

est: variance of the noise.

2: imax = 10
3: ε = 1e− 6

4: σ2
ub = 3.1Q(0.0005,y) . Function Q(p,y) gives the p-quantile of y

5: σ2
est = σ2

ub

6: for i = 1 . . . imax do
7: σ2

next = GetNextEstimate(y, σ2
est, σ

2
ub)

8: if |σ2
est − σ2

next| < ε then
9: return σ2

est

10: end if
11: σ2

est = σ2
next

12: end for
13: return σ2

est

1: GetNextEstimate - Refine current variance estimation
Input y: list of blocks of the noisy image.
Input σ2

est: current value of the estimated noise variance.
Input σ2

ub: upper bound of the noise variance.
Output σ2

next: next approximation of the estimated noise variance.

2: pmin = 0.005
3: ∆p = 0.05
4: M = M1 ×M2 = 5× 5 = 25
5: m = 7
6: T = 49

7: p = 1
8: σ2

next = 0
9: exit = False

10: while p ≥ pmin ∧ ¬exit do
11: λY,i = ApplyPCA(B(p)) . λY,i is the i-th eigenvalue of SY.
12: σ2

next = λY,M
13: exit = (σ2

next < 1e− 6) . Stop iterating if variance is already too low
14: if ¬exit then

15: if

(
λY,M−m+1 − λY,M <

Tσ2
est√
|B(p)|

)
∧ (σ2

next < σ2
ub) then

16: return σ2
next

17: end if
18: p = p−∆p
19: end if
20: end while
21: if σ2

next > σ2
ub then

22: σ2
next = σ2

ub

23: end if
24: return σ2

next
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Therefore, the set B(1 − j∆p) can be written as B(1 − j∆p) = B(1 − (j + 1)∆p) ∪ Yj where
Yj := {yi : Q(1− (j + 1)∆p) < Var [yi] ≤ Q(1− j∆p)}.
Since for disjoint sets X1 and X2 one has CX1∪X2 = CX1 + CX2 , then

CB(1−j∆p) = CB(1−(j+1)∆p) + CY .

Let CX :=
∑

yi∈X
yiy

T
i and cX :=

∑
yi∈X

yi. With this notation the expression (6) can be written
as

1

|B(p)|

(
CB(p) −

1

|B(p)|
cB(p)c

T
B(p)

)
. (7)

This strategy permits to use the covariance matrices of the previous iteration, but not the eigen-
value decomposition. With expression (7) the number of operations needed is proportional to M2.

6 Extensions to the Original Method

The original noise estimation method based on PCA by Pyatykh et al. [18] can be improved in order
to use it with real images and not only with simulated homoscedastic noise. We propose the following
chain:

1. discard saturated pixels, to avoid the possibility that particular isolated pixels produce an
incorrectly interpolated noise curve;

2. extend the method to measure signal-dependent noise. Note that at the very first step of the
camera processing chain (raw image acquisition) the noise is already signal-dependent (Poisson
distributed);

3. filter the obtained signal-dependent noise curve, to avoid the overestimation effect which occurs
when all the samples in a particular bin come from a texture.

6.1 Discarding Saturated Pixels

When the number of photons arriving to the CCD or CMOS device during the exposure time is too
high, its output saturates. Consequently, when the pixels are completely saturated the measured
variance is zero. If saturated pixels are taken into account when measuring the noise, the noise curve
is no longer reliable. Since the intensity of the saturated pixels is much higher than the intensity of
most of the pixels in the image, the noise curve shows typically a large gap between normal non-
saturated control points and the first saturated control point. To obtain intermediate values inside
the gap, any algorithm using the noise curve will need to interpolate the standard deviation values,
giving a large set of interpolated wrong values. Therefore, it is better to avoid taking into account
saturated pixels in the noise estimation, to prevent saturated control points in the noise curve.

The strategy used to discard saturated pixels is to avoid considering blocks which contain a
subgroup of four-connected pixels with exactly the same intensity, in any of the channels. This is
useful not only to discard saturated pixels, but also to avoid processing blocks whose pixels have
suffered other types of alterations that can be detected by finding these particular blocks. For
example, JPEG encoding with a high compression ratio sets to zero the value of high-frequency
coefficients in most of the 8×8 blocks in the image. Among other undesired effects like low frequency
artifacts and blocking patterns, it can also create smooth zones where the standard deviation of the
noise falls to zero. In natural images that have not been deeply compressed, the probability of
finding a set of four connected pixels sharing exactly the same value is very low, because of noise
and textures. The pseudocode and the details on what is exactly the four-connection of the pixels is
given in Algorithm 2.
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Algorithm 2 Detection of completely saturated pixels.

1: SAT DETECTION - Creates a mask of valid pixels. Input I: input image. Input Nx: width
of I. Input Ny: height of I. Input w: block side. Input num channels: number of channels of
I. Output mask: mask of VALID/INVALID pixels.

2: ε = 10−3

3: for i = 0 . . . Nx − 1 do
4: for j = 0 . . . Ny − 1 do . Check if the pixel is not too close to the image boundary
5: if i < Nx − w ∧ j < Ny − w then
6: for c = 0, . . . , num channels - 1 do
7: u = I.get channel(c) . Look if the 2× 2 block is constant
8: pixel status = (INVALID if c == 0 else mask[x,y]) . Try to validate pixel
9: if |u[i, j]−u[i+1, j]| > ε∨|u[i+1, j]−u[i, j+1]| > ε∨|u[i, j+1]−u[i+1, j+1]| > ε

then
10: pixel status = VALID
11: end if
12: mask[i, j] = pixel status
13: end for
14: else
15: mask[i, j] = INVALID
16: end if
17: end for
18: end for

6.2 Extension to Signal-Dependent Noise

Most noise estimation methods found in the literature assume that the noise in the image is additive,
signal-independent, and Gaussian. Note that in this context uniform means that the variance of the
Gaussian noise is fixed and does not depend on the intensity of the pixels of the noiseless image.
This assumption is not realistic because of the quantum nature of light itself and the way a CMOS
or CCD detector responds to light. It is well-known that the emission of photons by a body follows
a Poisson distribution. This distribution can be approximated by a Gaussian distribution when the
number of photons is large enough. For very dark regions of the image this assumption does not
hold. We consider an image pixel Ũ(x, y) as a Poisson variable with variance and mean x(x, y).
The Poisson noise has therefore a standard deviation of

√
x(x, y). (An image is nothing but a noise

whose mean would be the ideal image.) This noise adds up to a thermal noise and to an electronic
noise which are approximately additive and white. On a motionless scene with constant lighting, the
expected value x can be approximated by simply accumulating photons for a long exposure time, and
then by taking the temporal average of this photon count. Any noise estimation algorithm assuming
that the noise is uniform is unrealistic. Fortunately, most block-based methods are easily adapted to
signal-dependent noise.

Applying a variance stabilizing transform (VST) to the image in order to turn the noise into
homoscedastic is only possible when the noise model is known. For example, if the model is Poisson
there exists closed formulas for the VST [1, 14]. However, if the noise model is not known computing
the VST implies knowledge of the noise curve of the noise, which converts the issue in a chicken-egg
problem.

For a signal-dependent noise, a “noise curve” (also known as a “noise level function” or NLF in
the literature) must be established [7]. This noise curve associates with each image value x(x, y) an
estimation of the standard deviation of the noise associated with this value. Thus, for each block
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in the image, the mean values of the block are computed to estimate the noiseless signal x. The
means are classified into a disjoint union of variable intervals or bins, in such a way that each interval
contains a large enough number of elements. These measurements allow for the construction of a
list of block variances whose corresponding means belong to the given bin. Section 6.2.1 discusses
the procedure used to obtain the optimal number of samples/bin when adapting the PCA method
to signal-dependent noise.

Therefore, it is possible to apply the PCA noise estimation algorithm to each set of blocks
associated with a given bin. In this way, one obtains an estimation of the noise for the intensities
that belong to the considered bin. Since there is no gap between bins and a particular block can
only belong to an unique bin, is it possible to deduce by interpolation a curve that relates the means
of the blocks with their standard deviations, hence obtaining a signal-dependent noise curve. The
intensity associated to each bin is given by the mean intensity of the blocks whose variance is under
the p-quantile. The algorithmic description of the function building this histogram of block means
can be found in Algorithm 3. This algorithm works as follows:

1. It takes as input the number of bins that will be used (“bins” variable), the input data (the
variances of the blocks, “data” variable), the associated intensities of the input data (the
means of the blocks, “datal” variable) and the total number of samples (“N” variable). The
algorithm stores in the variable “samples per bin” the integer part of N/bins. In general,
samples per bin = 112000 samples/bin. Since the last bin contains the remaining samples, it
may contain less than samples per bin samples.

2. It returns for each bin b its intensity bounds (“limits begin[b]” and “limits end[b]” variables),
the list of variances that belong to bin b (“data bins[b]” variable) and the list of intensities
(block means) that belong to bin b (“datal bins[b]” variable).

3. For each bin b, the algorithm fills the data bins[b] and datal bins[b] buffers with the variances
and intensities of the blocks, sorted by their mean.

4. The lower and upper intensity bounds of the current bin b are stored into the variables lim-
its begin[b] and limits end[b]. Then, the next bin is processed.

6.2.1 Obtaining the Optimal Number of samples/bin

To be able to measure signal-dependent noise it suffices to classify all blocks of the image according
to their mean intensity and to apply the homoscedastic noise estimator method to each block that
belongs to a given bin. This is a general procedure which can be applied to most of the block-based
noise estimation methods [7], taking into account that the required number of samples per bin will
be different for each particular noise estimator.

To find the number of samples/bin that minimizes the RMSE of the obtained curve with the PCA
method compared to the ground-truth curve, we added signal-dependent simulated N (µ = 0, σ2 =
1+2x) noise on a set of noise-free images (Figure 1) of 1080×808 pixels each. The parameters of the
noise are chosen in order that the constant noise (of variance 1) is small with respect to the photonic
noise (variance 2x). As explained in Section 7.1, these images contain a negligible amount of noise,
but they will be assumed noise-free in practice. The mean SNR of these images can be calculated as

SNR = 10 log10

1

x

∫ maxx

0

x√
1 + 2x

dx (dB).

Since the maximum intensity for each pixel is 255, the mean SNR is 8.75 dB.
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Algorithm 3 Algorithm classifying blocks by their means.

1: CLASSIFY BY MEAN - Classifies the elements in the input list into bins according to their
mean. Input bins: number of bins. Input data: list of input data elements. Input N: number
of elements/bin. Input datal: list of means of the input elements. Output limits begin[b]:
the lower intensity bound for bin b. Output limits end[b]: the upper intensity bound for bin
b. Output data bins[b]: list of elements in bin b. Output datal bins[b]: list of means of the
elements at bin b. Each bin contains similar number of elements, with the exception of the last.

2: samples per bin = floor(N / bins) . Compute number of samples per bin
3: if N mod bins != 0 then
4: samples per bin++
5: end if
6: limits begin, limits end, num elements, data bins, datal bins = zeros(bins)
7: buffer, bufferl = array(N)
8: indices = argsort(datal, N) . Sort data by datal
9: elements count = 0

10: bin = 0
11: for idx = 0 . . . N − 1 do
12: buffer[elements count] = data[indices[idx]] . Keep loading . . .
13: bufferl[elements count] = datal[indices[idx]]
14: elements count = elements count + 1
15: if (idx == N-1) ∨ (elements count == samples per bin) then . Copy bin ← buffer
16: copy(data bins[bin], buffer, elements count)
17: copy(datal bins[bin], bufferl, elements count)
18: end if
19: limits begin[bin] = bufferl[0] . Write bin metadata
20: limits end[bin] = bufferl[elements count-1]
21: num elements[bin] = elements count

. Prepare for next bin
22: elements count = 0
23: idx = idx + 1
24: end for
25: limits end[bins-1] = max datal

Then the averaged RMSE for all the images in the set (Figure 2) was computed. The minimum
is attained when using 5 bins. However, since the error made when using 8 bins is not much worse
than the error using 5 bins and a noise curve with 8 control points is more informative than the
noise curve with 5 bins, we decided to use 8 bins for an image of 1080 × 808 pixels. Therefore, the
number of samples/bin is 1080×808

8
= 109080. Lastly, we fixed a minimum of 112000 samples/bin.

Empirically, this value gives accurate results for most natural images.

In other methods [6, 5] the minimum number of samples/bin obtained with this procedure is
smaller. The PCA methods needs twice the number of samples in order to obtain a similar perfor-
mance in terms of PSNR.

6.3 Filtering the Noise Curve

It may happen that all blocks assigned to a particular bin with Algorithm 3 belong to a highly
textured area of the image. In this case, it is not possible for the presented algorithm to separate
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Figure 1: Set of noise-free images (actually, assumed to contain a very low and negligible noise, as
explained in Section 7.1) used to determine empirically the optimal number of samples/bin needed
by the algorithm. Each image is 1080× 808 pixels. The parameters of the noise are chosen in order
that the constant noise (of variance 1) is small with respect to the photonic noise (variance 2x).

0 5 10 15 20
Number of bins

0
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M
ea

n 
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Mean RMSE vs. number of bins (σ 2
N  = 1.00 + 2.00 U)

Figure 2: Mean RMSE of the estimation of the signal-dependent simulated N (µ = 0, σ2 = 1 + 2x)
noise for all the noise-free (with negligible noise) test images in Figure 1. The images are encoded
in 8 bits and the mean SNR is 8.75 dB

properly the noise from the signal. In this situation, most of the blocks show a high variance which
is mostly explained by the geometry of the image and not by the noise. Thus, the estimated variance
would be over the real variance of the noise. A way to overcome this problem consists in filtering the
noise curve. Indeed, if the i-th bin contains most of its samples coming from textures but not the
(i− 1)-th and then (i + 1)-th bins, it is possible to filter the peak which appears in the noise curve
at bin i.

Given the i-th control point of the noise curve (µ̂i, σ̂i), the filtering algorithm considers the closed
intensity interval [µ̂i − D, µ̂i + D]. We use the hat notation when we refer to estimated values
of variance (or standard deviation) and mean intensity. For each intensity µ inside the interval
(assuming that µ ∈ [µ̂i − D, . . . , µ̂i + D] is incremented with step 0.05), the interpolated standard
deviation that corresponds to each intensity µ is obtained. To avoid an excessive smoothing caused
by interpolation, if µ̂i−D < µ̂0, then we use µ̂b− µ̂0 instead of the radius D. Also, if µ̂i +D > µ̂B−1
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(where B is the number of bins), instead of D, the value µ̂B−1 − µ̂b is used.
Since each estimated σ̂i can be seen as a perturbation around the true standard deviation, av-

eraging the noise curve within the interval [µ̂i − D, µ̂i + D] for each control point attenuates the
perturbations and puts them closer to the ground-truth. These perturbations occur since the vari-
ance is measured with a block of M1 ×M2 pixels and therefore the obtained values of estimation
can be modeled with a χ2

M distribution of M (the number of pixels in a block) degrees of freedom,
which has its own variance and zero mean. A large value of M implies less perturbations in the
measure of the variance of the noise, but it also increases the probability of capturing zones of the
image containing textures. Even if these perturbations can be attenuated, it still may happen that a
control point corresponds to a peak, thus causing a overestimation peak in the noise curve. In that
case, our strategy is to compute the average standard deviation within interval [µ̂i −D, µ̂i +D] and
to substitute the standard deviation σ̂i by that average only if it is lower than the average of the
intensities in the interval. In short, we only allow the control point of the curve to move down, never
up.

The filtering procedure is iterated five times. In the first three iterations the control points are
allowed to move up and down, thus canceling the perturbations around the ideal value. In the next
two iterations the control points are only allowed to go down, to attenuate the overestimation caused
by textures. The simple strategy presented here performs adequately for most natural images and
in general not more than five filtering iterations are needed to get a reliable estimation of the noise.
Applying more than five iterations does not improve the results significantly and for certain images
it could produce noise curves that are excessively smooth. A radius D = 7 is recommended. The
pseudo-code of the filtering is detailed in Algorithm 6. It uses Algorithm 5 to interpolate the standard
deviation corresponding to a given intensity. Algorithm 5 uses Algorithm 4 to get the corresponding
standard deviation by a simple affine transformation.
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Figure 3: Left: test image Lena used to compare the noise curves with and without filtering. Right:
noise curve for Lena. The color of the curves corresponds to the color channels of the image. The
non-filtered curve is drawn with solid lines and the filtered curve (five iterations) with dashed lines,
using D = 7, p = 0.5%, M1 = M2 = 5 and 5 bins. Note that the peak in the blue channel is corrected
after the filtering. The image has size 512× 512 and thus the optimal number of bins would be two.
However, using two bins is not enough and it is preferable to have more control points to have
information on the noise for several intensities, even if the accuracy at each bin is not optimal.

Figure 3 shows the noise curve for the test image Lena. The non-filtered curve is drawn with solid
lines and the filtered curve (five iterations) with dashed lines, using D = 7, p = 0.5%, M1 = M2 = 5
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and 5 bins. Note that the peak in the blue channel has decreased. The image has size 512 × 512
and thus the optimal number of bins would be two. However, using two bins is not enough and it is
preferable to have more control points to have information on the noise for several intensities, even
if the accuracy at each bin is not optimal.

Algorithm 4 Obtains a corresponding standard deviation by an affine transformation.

1: AFFINE. Input (µc, σc): current control point. Input (µe, σe): endpoint control point. Input
µ: intensity of the control points whose standard deviation is wanted. Output σ: standard
deviation attributed to the intensity µ.

2: ε = 10−6

3: if |µc − µe| < ε then . Avoid dividing by zero
4: s = 0
5: else
6: s = σc−σe

µc−µe
7: end if
8: σ = (µ− µe)s+ σe

Algorithm 5 Interpolates an affine standard deviation using the given reference control points.

1: INTERPOLATION. Input (µc, σc): known control points. Input µ: the intensity of the
point whose interpolated standard deviation is wanted. Output σ: the interpolated standard
deviation of the point whose intensity is µ.

. Find the nearest control point
2: i = argmini (µc[i]− µ|) . Use the smallest i if several give the minimum
3: m = µc[i]
4: if µ < m then . on the right of µ
5: if i = 0 then . Treat boundary
6: i = 1
7: m = µc[i]
8: end if
9: m1 = µc[i− 1]

10: m2 = m
11: s1 = σc[i− 1]
12: s2 = σc[i]
13: else . on the left of µ
14: N = len(µc) . Compute the length of the array
15: if i ≥ N − 1 then . Treat boundary
16: i = N − 2
17: m = µc[i]
18: end if
19: m1 = m
20: m2 = µc[i+ 1]
21: s1 = σc[i]
22: s2 = σc[i+ 1]
23: end if
24: return AFFINE(m1, s1,m2, s2, µ)
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Algorithm 6 Filters a noise curve.

1: FILTER CURVE Input (µc, σc): list of control points to be filtered. Input D: radius. Input
allow up: allows the points to go up and down. Otherwise, they are only allowed to go down.
Output σoc : list of filtered standard deviations

2: B = len(µc) . Compute the length of the array
3: σoc ← ∅
4: for b = 0, . . . , B − 1 do
5: mu current, std current = µc[b], σc[b]
6: left = mu current−D
7: right = mu current +D

. Adjust radius for the points near the boundary
8: if left < µc[0] then
9: dist = µc[b]− µc[0]

10: left = mu current - dist
11: right = mu current + dist
12: else
13: if right > µc[B − 1] then
14: dist = µc[B − 1]− µc[b]
15: left = mu current - dist
16: right = mu current + dist
17: end if
18: end if

. Add the interpolated control points inside the interval [left, right]
19: sum window = 0
20: L = 0
21: for µ = left . . . right (with step ∆ = 0.05) do
22: sum window += INTERPOLATION(µc, σc, µ)
23: L += 1
24: end for
25: std new = sum window / L . Compute mean
26: if allow up then
27: std filtered = std new
28: else
29: std filtered = std new if std new < std current else std current
30: end if
31: σoc ← std filtered
32: end for
33: return σoc

7 Evaluation of the Method

To evaluate the accuracy of the method, three kind of tests were performed.

• Tests for simulated uniform Gaussian noise using the images of Figure 4. In this case we have
taken seven bins to classify the blocks according to their means (see Section 6.2). The reason
to use seven bins and not two (the optimal value) is that a noise curve with only two bins is
not informative at all.
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• Tests for a set of real raw images (see Figure 5). The procedure explained in Section 6.2 was
used to get a noise curve. The results were compared to the ground-truth noise curve of the
camera.

• Test for multiscale coherence. The standard deviation of a Gaussian white noise is divided by
two when the image is down-scaled. By down-scaling the image we mean a sub-sampling of
the image where each block of four pixels is substituted by their mean. This test checks if the
measured noise is divided by two at each image down-scaling.

7.1 Evaluation with Simulated Uniform Noise

In this experiment, uniform noise was simulated and then added to a set of ten noise-free (actually,
with negligible noise) images. Since the noise model is perfectly known a priori, its noise level curve
can be used as a ground truth. One can therefore compute the RMSE of the standard deviation
estimations. Figure 4 shows a set of 704 × 469 pixels noise-free images that were used in this test.
To get the noise-free images, we have applied the following procedure. The pictures were taken with
a Canon EOS 30D reflex camera of scenes under good lighting conditions and with a low ISO level.
To further reduce the noise level, the average of each block of 5 × 5 pixels was computed, reducing
therefore the noise by a factor of 5. Since the images are RGB, the mean of the three channels was
computed, reducing the noise by a further

√
3 factor. Therefore the standard deviation of the noise

was reduced by a 5
√

3 ' 8.66 factor. Lastly, the images (which already had a good SNR before being
processed), can be assumed noise-free.

Figure 4: Set of noise-free images used to test the noise estimation algorithm with uniform noise.
Actually, they contain a negligible amount of noise, as explained in Section 7.1. From left to right
and from top to bottom: bag, building1, computer, dice, flowers2, hose, leaves, lawn, stairs and
traffic. The size of each image is 704× 469 pixels.

To measure the error made when estimating the standard deviation σ of the simulated noise of
bin b in image i, the RMSE for all the bins was used. This RMSE is denoted by E

(1)
i,σ and it is defined
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as

E
(1)
i,σ :=

√√√√ 1

|B|

|B|∑
b=1

|σ̂i,b − σ|2,

where i is the image index (1 ≤ i ≤ |I| and |I| is the number of images), |B| is the number of bins,
b is the index of the bin (1 ≤ b ≤ |B|), σ is the standard deviation of the simulated noise, and σ̂i,b
is the estimated noise for image i at bin b. Table 1 gives the obtained E

(1)
i,σ for each image i and

each σ of the simulated noise. To test the response of the algorithm to a pure white noise image
we used a constant image flat image where all the pixels have intensity 127. Three bins are used
since each is image is 704 × 469 pixels and at least 112000 samples/bin are needed for an accurate
estimation. Note that the PCA method is able to give an accurate estimation of the noise even if
σ = 1 when the image has large flat zones (building1, computer, dice, flowers2, traffic), but fails to
give a good estimation for very textured images (bag, hose, leaves, lawn). For very high noise levels
(σ = 50, σ = 80) the estimation is inaccurate. Surprisingly, the method behaves better for small
levels of noise. The result obtained with the constant image is worse when the algorithm is forced
to use several bins. The reason is that in such a constant image a single bin should be used. In
this extreme case, noise will make that the empirical mean of the noise blocks is different from the
noise-free constant image, and the classification will be biased. The blocks in the bins will have a
similar mean because of the noise, not because of the underlying signal.

The last row is the average RMSE obtained for a given σ and all the images. It is denoted by
E

(2)
σ and defined as

E(2)
σ =

√√√√ 1

|B||I|

|I|∑
i=1

|B|∑
b=1

|σ̂i,b − σ|2 =

√√√√ 1

|I|

|I|∑
i=1

(
E

(1)
i,σ

)2

.

For completeness, the results corresponding to the estimation using just a single bin are shown
in Table 2, although this model of signal-independent noise using a single bin is not realistic at all.
Table 3 gives the obtained E

(2)
σ RMSE depending on the number of the iterations of the noise curve

filter (see Section 6.3). Using one filtering iteration improves slightly the accuracy whereas more
than five is useless.

7.2 Evaluation Comparing the Noise Curve of the Raw Image with the
Ground Truth

In this evaluation, each noise curve obtained with the proposed algorithm for the raw images in
Figure 5 (12 bits/channel, ISO 1600, t=1/30 s) was compared to the corresponding “ground truth”
of the camera. The ground truth was obtained by computing, for each pixel, the standard deviation
of a large burst [4] of fixed snapshots of the same calibration pattern (Figure 6).

To obtain the ground truth of the camera, we fixed the ISO sensitivity (in this case at ISO 1600)
and used four exposure times, t ∈ {1/30s, 1/250s, 1/400s, 1/640s}. For each exposure time about two
hundred pictures of the calibration pattern were taken (see Figure 6). After cropping the area of the
image that does not contain the calibration pattern, the final size of the raw image was 1352× 1952.
Since each 2× 2 block of the CFA2 contains one sample of the red channel, two samples of the green
channel and one sample of the blue channel, it is possible to discard one of the two green channels
and combine the rest of the channels to obtain an RGB image of size 676× 976 pixels. The position
of the camera was fixed when taking the snapshots of the image. We assume that the lighting is

2Color Filter Array.
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Image / E
(1)
i,σ σ = 1 σ = 2 σ = 5 σ = 10 σ = 20 σ = 50 σ = 80

bag 0.65 0.49 0.29 0.27 0.40 6.04 22.98
building1 0.18 0.10 0.21 0.46 0.65 2.17 2.38
computer 0.14 0.11 0.17 0.37 0.67 1.10 3.43
dice 0.13 0.06 0.09 0.30 0.59 1.81 3.77
flowers2 0.17 0.10 0.07 0.22 0.81 2.78 9.28
hose 0.76 0.66 0.35 0.28 0.25 9.61 26.78
lawn 0.87 0.62 0.46 0.57 0.32 13.71 29.49
leaves 1.16 0.71 0.35 0.31 0.40 3.67 17.83
stairs 0.55 0.55 0.50 0.53 1.01 17.15 33.67
traffic 0.14 0.23 0.34 0.59 0.59 0.58 3.36
Flat image 0.58 1.18 2.90 5.85 11.59 28.92 46.80

E
(2)
σ 0.49 0.44 0.52 0.89 1.57 7.96 18.16

Table 1: This table shows the PCA E
(1)
i,σ average RMSE after adding simulated noise to the set of

noise-free images (Figure 4 shows the images, actually with negligible noise) with several values of

standard deviation σ. The last row is the E
(2)
σ RMSE using the estimated σ̂i,b of all the images. Note

that the PCA method is able to give an accurate estimation of the noise even when σ = 1 when
the image has large flat zones (building1, computer, dice, flowers2, traffic), but fails to give a good
estimation for very textured images (bag, hose, leaves, lawn). For very high levels of noise (σ = 50,
σ = 80) the estimation is inaccurate. Surprisingly, the method behaves better for small levels of
noise. Three bins are used.

Image / E
(1)
i,σ σ = 1 σ = 2 σ = 5 σ = 10 σ = 20 σ = 50 σ = 80

bag 0.55 0.40 0.21 0.08 0.35 0.15 1.27
building1 0.17 0.08 0.08 0.12 0.18 1.48 1.83
computer 0.11 0.05 0.12 0.28 0.25 0.69 3.03
dice 0.11 0.07 0.07 0.26 0.52 1.71 3.76
flowers2 0.14 0.09 0.02 0.08 0.54 1.87 2.76
hose 0.32 0.25 0.08 0.20 0.18 0.91 2.83
lawn 0.33 0.12 0.15 0.32 0.38 1.97 1.65
leaves 1.02 0.62 0.06 0.18 0.18 0.29 2.34
stairs 0.38 0.24 0.24 0.44 0.29 1.25 2.61
traffic 0.25 0.28 0.17 0.33 0.29 0.03 2.99
Flat image 0.04 0.08 0.20 0.40 0.85 2.47 3.22

E
(2)
σ 0.31 0.21 0.13 0.25 0.37 1.17 2.57

Table 2: This table shows the E
(1)
1,σ RMSE after adding simulated noise to the set of noise-free images

(Figure 4, with negligible noise) with several values of standard deviation σ. The last row is the E
(2)
σ

RMSE using the estimated σ̂1,b of all the images. A single bin is used.

constant during the acquisition of the burst. Therefore, the variance of every given pixel can only be
explained by the noise. Therefore, it is possible to create an association mean→standard deviation
(the ground truth) for the camera noise curve, given the ISO and exposure time. The noise curves
corresponding to the same calibration pattern but with different exposure times share the same noise
model and actually they overlap. Therefore, we use from short to large exposure times in order to
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Image / E
(2)
σ σ = 1 σ = 2 σ = 5 σ = 10 σ = 20 σ = 50 σ = 80

No filtering 0.49 0.44 0.52 0.89 1.57 7.96 18.16
1 iteration 0.49 0.42 0.48 0.82 1.46 7.22 16.90
2 iterations 0.49 0.41 0.46 0.78 1.39 6.66 15.93
3 iterations 0.49 0.41 0.45 0.76 1.35 6.23 15.17
4 iterations 0.48 0.40 0.45 0.75 1.34 6.25 15.19
5 iterations 0.48 0.40 0.45 0.75 1.34 6.26 15.20
6 iterations 0.48 0.40 0.45 0.74 1.33 6.27 15.21
7 iterations 0.47 0.40 0.45 0.74 1.33 6.28 15.23

Table 3: This table gives the obtained E
(2)
σ RMSE values depending on the number of iterations of

the noise curve filtering and the standard deviation of the noise (see Section 6.3). Three bins are
used. Five iterations is the recommended value, since using more iterations does not improve the
result significantly and it could smooth too much the noise curves for certain images.

Figure 5: Set of raw images used to test the noise estimation algorithm using 25 bins and without
any noise curve filtering. The images are 3500 × 3200 pixels, raw 12 bits/channel, ISO 1600 and
exposure time t=1/30 s. From left to right and top to bottom: images 1, 2, 3, 4, 5, 6, 7, and 8.

Figure 6: One of the pictures of the calibration pattern used to build the ground truth noise curve
of the camera.
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cover a wide intensity range and later we combine these overlapping curves to obtain a single ground
truth curve which depends only on the ISO, as shown in Figure 7.

0 500 1000 1500 2000 2500
Mean

0

10

20

30

40

50

60

St
an

da
rd

 d
ev

ia
tio

n

Mean noise curve, canon, ISO=1600
R

G1

G2

B

Figure 7: Ground truth of the Canon EOS 30D camera with ISO=1600.

Given an estimated (respectively a ground truth) noise curve A (respectively G) of a test image
i, its control points are the pairs (µ̂A,i,b, σ̂A,i,b) ∈ A (respectively (µG,v, σG,v) ∈ G) where µ̂A,i,b is the
mean intensity for bin b and image i in A and σ̂A,i,b is the corresponding standard deviation value for
bin b and image i in A. The abscissas of the noise curve A and those in G do not necessarily coincide;
that is, µ̂A,i,b 6= µG,v for most (b, v) pairs. To solve this problem, instead of using G, a new ground
truth curve G̃i is used. This G̃i curve has the same means µ̂A,i,b as A (and therefore the same number
of bins), and its standard deviation values are obtained by a simple proportionality rule. Therefore,

the control points in the new curve G̃i are (µ̂A,i,b, σ̃Gi,i,b) =
(
µ̂A,i,b,

σG,v+1−σG,v

µG,v+1−µG,v
(µ̂A,i,b − µG,v+1) + σG,v

)
where v is the index of the bin in the curve G such that µG,v ≤ µ̂A,i,b < µG,v+1 (see Figure 8).

The error between the ground truth noise curve G and the test noise curve A for image i and bin
b is defined as

E
(3)
G,A,i,b := |σ̃Gi,i,b − σ̂A,i,b| =

∣∣∣∣(σG,v+1 − σG,v)(µ̂A,i,b − µG,v+1)

µG,v+1 − µG,v
+ σG,v − σ̂A,i,b

∣∣∣∣ .
Table 4 shows that that error is worse for those images that are highly textured and better for those
that contain large flat zones.

Img. 1 Img. 2 Img. 3 Img. 4 Img. 5 Img. 6 Img. 7 Img. 8
0.984 1.107 3.577 1.640 2.103 1.010 0.788 1.381

Table 4: Values of E
(3)
G,A,i,b measuring the error between the noise curve A obtained for each test

image i (Figure 5) and the ground truth curve G with ISO 1600. The error is worse for those images
that are highly textured (see image 3) and better for those that contain large flat zones (see images
6 and 7).

To test the average behavior of the algorithm in all the bins of any test image, we define a mean
error function E

(4)
G,A,b as the mean of the E

(3)
G,A,i,b values over the |I| images for each of the |B| bins,

that is,

E
(4)
G,A,b =

1

|I|

|I|∑
i=1

E
(3)
G,A,i,b.

382



Analysis and Extension of the PCA Method, Estimating a Noise Curve from a Single Image

0 1 2 3 4 5 6
Intensity

0

2

4

6

8

10

12

14

St
an

da
rd

 d
ev

ia
tio

n

(
µ̂A,i,b,σ̂A,i,b

)

(
µ̂A,i,b,σ̃Gi ,i,b

)
(µG,v,σG,v)

(µG,v+1,σG,v+1)

Comparing a noise curve (red) with the ground truth (green)

Ground truth
Tested curve

Figure 8: Checking a noise curve A (red) against the ground truth G (green), where i is the index
of the image, b is the index of the bin, (µ̂A,i,b, σ̂A,i,b) are the control points of the noise curve A,
(µG,v, σG,v) are the control points of G, and σ̃Gi,i,b is the standard deviation value projected from A
on G.

Figure 9 shows the error E
(4)
G,A,b for all the 25 bins of the test images in Figure 5 for the first green

channel.
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Figure 9: Mean error E
(4)
G,A,b for the 25 bins of all the eight tests images of Figure 5.

7.3 Evaluation of the Multiscale Coherence of the Result

Consider the down-scaling operator S that tessellates the image into 2×2 pixels blocks, and replaces
each block by a pixel having the mean of the four previous pixels as new value. If x̃ is an image
whose pixels are i.i.d. realizations of a Gaussian random variable with standard deviation σ, then
S(x̃) has standard deviation σ

2
.
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This test aims at testing if the estimated standard deviation divides by two each time the image
is down scaled by a factor two.

Set: E
(5)
A0,Ak,i,b

=

∣∣∣∣ σ̃A0,i,b

σ̂Ak,i,b

− 2k
∣∣∣∣ =

∣∣∣∣(σ̂A0,i,v+1 − σ̂A0,i,v)(µ̂Ak,i,b − µ̂A0,i,v+1)

σ̂Ak,i,b(µ̂A0,i,v+1 − µ̂A0,i,v)
+
σ̂A0,i,v

σ̂Ak,i,b

− 2k
∣∣∣∣ ,

where

• Ak is the noise curve corresponding to the i-th input image (denoted as x) after applying the
down-scaling operator k times. For example, if k = 2 then A corresponds to the curve of the
noise estimation of SSx̃.

• i is the image index, for the raw images in Figure 5, 1 ≤ i ≤ |I|, where |I| is the number of
images. |I| = 8 images were used.

• b is the bin index, 1 ≤ b ≤ |Bk| where |Bk| is the number of bins of the noise curve at scale k.
For the test images |B0| = 49, |B1| = 12 and |B2| = 3 bins are used.

• v is the index of the bin in the curve A0 such that µ̂A0,i,v ≤ µ̂Ak,i,b < µ̂A0,i,v+1 (see Figure 10).
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Figure 10: Checking a noise curve Ak at scale k (red) against the noise curve A0 of the same image
at scale 0 (green), where i is the index of the image, b is the index of the bin, (µ̂Ak,i,b, σ̂Ak,i,b) are
the control points of the noise curve of the sub-scaled image, (µ̂A0,i,v, σ̂A0,i,v) are the control points
of the noise curve of the image at scale 0, and σ̃A0,i,b is the standard deviation value projected from
Ak onto A0.

Remark: since the noise should be divided by two when the operator S is applied and an ideal

noise estimator is used, the relation
σ̃A0,i,b

σ̂Ak,i,b
between the standard deviation estimations at scale 0 and

scale k (applying k times S) should be equal to 2k. The error E
(5)
A0,Ak,i,b

measures, for the tested noise

estimator, the absolute deviation from the ideal value 2k at each bin. To get a mean estimation of
the error E

(5)
A0,Ak,i,b

for all the test images and bins in Figure 5, we define another error function as

E
(6)
A0,Ak

:=
1

|I||Bk|

|I|∑
i=1

|Bk|∑
b=1

E
(5)
A0,Ak,i,b

.
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A method has a perfect scale coherence if E(6) is zero. Table 5 gives the obtained mean down-scale
error E

(6)
A0,Ak

for the raw images in Figure 5 depending on the scale k. The measurements are done for
one of the two green channels of the raw images. The results are significantly worse than those given
by the Ponomarenko et al. [6] and the Percentile [5] methods. The reason is that the PCA method
needs 112000 samples/bin while Ponomarenko et al. and the Percentile need 42000 samples/bin (see
Section 6.2). When the image is down-scaled it becomes too small for the PCA method to get an
accurate estimation, since the minimum number of samples/bin is not attained and only one bin is
used for the third and fourth scales.

k 1 2 3

E
(6)
A0,Ak

0.627 2.407 4.997

Table 5: Evaluation E
(6)
A0,Ak

for the raw images in Figure 5 depending on the scale k. The measure-
ments are done for one of the two green channels of the raw images.

8 Complexity Analysis of the Algorithms

In function GetNextEstimate (in Algorithm 1) the most expensive part is the ApplyPCA function
that is iterated several times until convergence is reached. The ApplyPCA function consists of:

• Computing the sample covariance matrix (Equation (6)). If computed directly, it comprises
about |B(p)|M2 operations. Note that we divide by |B(p)| instead of |B(p)| − 1 and thus (6)
is a biased estimator of the variance. Since the number of samples is finite, it should be better
to use an unbiased estimator, but we do not want to change the original method and thus we
keep the same formulas and code used in [18].

• Computing the eigenvalues of the sample covariance matrix. Without any optimization, the
number of operations is proportional to M3, where we recall that M is the number of pixels in
each patch. Again, since M is fixed, the cost of this step is constant, O(1).

With the optimization explained in [18], the (biased) sample covariance matrix can be expressed
as

1

|B(p)|

(
CB(p) −

1

|B(p)|
cB(p)c

T
B(p)

)
,

where we recall that CX :=
∑

yi∈X
yiy

T
i and cX :=

∑
yi∈X

yi.
Since the optimized algorithm first pre-computes the matrix CB(1−j∆p) and the vector cB(1−j∆p)

for j = n−1, . . . , 0, if the worst case is considered (j = 0), then B(1−j∆p) = B(1), that is, all the N
blocks in the images would be used. The matrices and vectors are computed at most 1

∆p
= 1

0.05
= 20

times. To get the subsets of B(1 − j∆p) according to j it suffices to call just once the argsort
function, implemented with the Quicksort algorithm, that has a complexity O(N logN). Assuming
that the matrices CB(p) and vectors cB(p) and computed 20 times in the worst case scenario, i.e.
p = 1, we have that CB(p) = CB(1) =

∑
yi∈B(1) yiy

T
i is executed with complexity O(|B(1)|) = O(N).

Similarly, we obtain that CB(1) is computed in O(N). In summary, the computation of the sample
covariance matrix consists in the execution of the argsort operation with complexity N logN and then
looping at most 20 times through a loop that executes operations with complexity O(N). Therefore,
the complexity of function GetNextEstimate (in Algorithm 1) is N logN , being N the number of
overlapping M ×M blocks in the image.

385



Miguel Colom, Antoni Buades

Algorithm 3 first executes the argsort (implemented with the Quicksort algorithm) operation
with complexity O(N logN). The loop simply copies pixel values, and has linear complexity O(N).
Therefore, Algorithm 3 is executed with complexity O(N logN). Algorithm 4, is simply an if com-
parison and simple arithmetic operations. Therefore, Algorithm 4 is executed in constant time O(1).
Algorithm 6 loops over the number of bins of the noise curve and inside the loop Algorithm 4 is
called. Since Algorithm 4 is executed in constant time O(1), Algorithm 6 has a linear complexity
O(|B|), where |B| is the number of bins. Algorithm 2 loops over all possible pixels in the image
(with the exception of the boundary of the image). The loop iterates through all the channels of
the image and looks for groups of four connected pixels. Therefore, the inner loop is executed in
linear time with the number of channels, O(num channels). Since the number of channels is small,
it can actually be considered executed in constant time O(1) once the number of channels has been
fixed. The complexity of Algorithm 2 is given by its main loop, that is executed in linear time with
complexity O(N).

9 Online Demo

An online demo is available for this algorithm in the IPOL web part of this article3. The users can
upload any image to measure its noise. The demo also offers several types of pre-uploaded images to
test the algorithm:

• Raw images obtained by splitting the raw channels R,G1, G2, B and leaving out the G2 channel.
Then, an RGB image is formed by using the R,G1, B channels. Since in the raw image no
gamma correction has been done yet, the values of the image are multiplied by 32 to increase
their dynamics and screen visibility. The colors of these images are not quite adapted to human
visualization, because no white balance has been applied to them.

• The JPEG versions of the same raw images, as they are encoded by the camera.

• Various JPEG images.

• High SNR raw images, down-scaled by a factor eight with their color channels averaged, so
that they are nearly noiseless. In the demo they are referred to as “no noise” images.

Once an image has been chosen the following parameters can be configured:

• Treatment of groups (2 × 2) of equal pixels. It allows to choose between ignoring the
blocks that contain a group of four equal pixels in any channel (default), or using all the blocks
(see Section 6.1) unconditionally.

• Curve filter iterations. It indicates the number of filtering iterations that are applied to
filter the noise curve (see Section 6.3). Default: five iterations.

• Number of bins. It is the number of bins in the noise curve (see Section 6.2). If it is set to
automatic selection, each bin will contain approximately 112000 samples/bin.

• A and B noise parameters. Add a simulated noise with variance A+Bx to the input image.
If A = B = 0 no noise will be added. If B = 0 uniform noise with variance A will be added.
Default: A = B = 0.

Note: since normally the last bin contains less samples than the other bins, to prevent a bad
estimation with the chosen number of bins, the demo estimates the noise with an extra bin, which
is discarded at the end.

3https://doi.org/10.5201/ipol.2016.124
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9.1 Subtraction of the Quantization Noise

In the online demo, all the images are encoded using 8 bits/pixel/channel. An error is added when
the continuous value is encoded (truncated) using an integer. For example, if the real value of
the intensity is 123.45, it would be encoded as 123.00, or if the real value is 123.78, it would be
encoded as 124.00. This error can be understood as a noise whose distribution is uniform. This
quantization error over the noise being estimated must be subtracted, since it represents an added
extra noise which is introduced when encoding the image. Thus, this correction is only applied to
the demo, not in the noise estimator code. Indeed, the variance of a uniform random variable is

σ2
q =

1
2∫
− 1

2

(x − x̄)2 dx =

1
2∫
− 1

2

x2 dx =
[
x3

3

] 1
2

− 1
2

= 1
12
. This is the variance of the quantization error that

must be subtracted at each scale. The standard deviation of the noise is computed at each bin as
the square root of the noise variance computed directly by the algorithm minus the variance of the
(independent) quantization error. At each scale k the variance is divided by 4k and thus the corrected
standard deviation of the noise given by the demo is

σ̃k =

√
σ̂2
k −

σ2
q

4k
=

√
σ̂2
k −

1

4k12
.

9.2 Example: Raw Image IMG 0177 (ISO 1250, t=1/30 s)

The results of this example can be reproduced by estimating the noise of the raw image without
adding any noise (set A = B = 0) and choosing the raw image IMG 0177. The rest of the parameters
are the default parameters of the demo. Figure 11 shows the input noisy image. Figure 12 shows the

Figure 11: Input noisy raw image IMG 0177.

noise estimated in the two first scales of the signal-dependent noise in IMG 0177 image. Left: scale
S0 (original image). Right: scale S1. Note that, as expected, the noise standard deviation is divided
by approximately two when down-scaling the image by two.
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Figure 12: The noise estimated for the two first scales of the noisy raw image IMG 0177. Left: scale
S0 (first scale, original image). Right: scale S1.

Image Credits

Test image obtained from the USC-SIPI Image Database4.

Rest of images, CC-BY by Miguel Colom.
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