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Abstract

In a stereo image pair, the fundamental matrix encodes the rigidity constraint of the scene. It
combines the internal parameters of both cameras (which can be the same) and their relative
position and orientation. It associates to image points in one view the so-called epipolar line in
the other view, which is the locus of projection of the same 3D point, whose particular position
on the straight line is determined by its depth. Reducing the correspondence search to a 1D line
instead of the 2D image is a large benefit enabling the computation of the dense 3D scene. The
estimation of the matrix depends on at least seven pairs of corresponding points in the images.
The algorithm discarding outliers presented here is a variant of the classical RANSAC (RANdom
SAmple Consensus) based on a contrario methodology and proposed first by Moisan and Stival
in 2004 under the name ORSA. The distinguishing feature of this algorithm compared to other
RANSAC variants is that the measure of validity of a set of point pairs is not its sheer number,
but a combination of this number and the geometric precision of the points.

Source Code

The open-source code is available at the IPOL the web page of this article1. Most of the
code is shared with the companion article by the same authors [12] dealing with a contrario
estimation of a homography. This emphasizes the generality of the methodology and its simple
specialization to different geometric problems.
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1 The Fundamental Matrix

1.1 The Epipolar Constraint

The fundamental matrix of a stereo pair, first discovered by Luong [10], is a simple extension of the
essential matrix discovered a decade earlier by Longuet-Higgins [8]. However, its importance exceeds
highly the essential matrix, since its usage does not require the knowledge of the internal parameters
of the cameras, and the constraints for a valid fundamental matrix are much easier to handle than
those of the essential matrix. This matrix encodes all the geometric constraints linking both views
and can be computed using only point correspondences between the views.

Figure 1: Configuration of two pinhole cameras with a 3-D point X projected at XL and XR in the
two views.

Figure 1 illustrates the configuration: we have two pinhole cameras, qualified arbitrarily as left
and right views, with respective optical centers OL and OR. A space point X is viewed at XL and
XR. The plane OLORX intersects the image planes along two straight lines, called epipolar lines.
Notice that whatever the point X, epipolar lines go through the intersections eL and eR of the line
OLOR with the image planes. The mapping from a point XL or XR to the corresponding epipolar
line is encoded in the essential matrix. Let us take as world coordinate system the left camera frame,
of origin OL, and suppose the right camera frame is related by the translation T = OLOR and by the
rotation matrix R expressing the orientation of the principal axes of the right camera relative to the
left camera. We observe that the three vectors OLXL, ORXR and OROL are coplanar. The vector
ORXR has coordinates RXR, so that we can write the coplanarity condition of the three vectors as

det
(

XL T RXR

)

= 0, (1)

which we can rewrite using the matrix [T ]× of the cross-product2 with T as

XT
L [T ]×RXR = 0, i.e., XT

LEXR = 0 with E = [T ]×R. (2)

E is the essential matrix. In the uncalibrated case, the vectors XL and XR (with real-world units)
are not directly known, but their pixel coordinates counterparts xL and xR are: we have xL = KLXL

and xR = KRXR with equality in homogeneous coordinates, that is up to a scalar factor for each.
Substituting these expressions in (2) yields

xT
LFxR = 0, (3)

where
F = K−T

L EK−1
R = K−T

L [T ]×RK−1
R (4)

2If T =





T1

T2

T3



, we have [T ]× =





0 −T3 T2

T3 0 −T1

−T2 T1 0



 so that T × x = [T ]×x for any 3-vector x.
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is the fundamental matrix. From the formula (4) of F , it should be apparent that its rank is 2, but
the reverse is also true: a 3 × 3 matrix of rank 2 is a fundamental matrix, see Appendix A. The
exception is when T = 0 (no parallax), in which case F = 0 and the constraint xT

LFxR = 0 is trivially
verified whatever xL and xR. When T 6= 0, we interpret the fundamental equation as:

• xL is on the epipolar line of equation FxR (in the left image) associated to xR;

• xR is on the epipolar line of equation F TxL (in the right image) associated to xL;

• from eL = KLT , homogeneous coordinates of the left epipole, that is, the projection of OR in
the left image, we get eTLF = 0, showing that any epipolar line FxR goes through eL;

• symmetrically, eR = KRR
−1T represents the right epipole, FeR = 0 and any epipolar line F TxL

goes through eR.

Alternative, more algebraic derivations of the formula for F are in Appendix A.

Remark. Notice that the scalar equation xT
LFxR = 0 can also be written xT

RF
′xL = 0 with F ′ = F T ,

notably in the influential book of Hartley and Zisserman [7], but we prefer our convention where left
coordinates xL go to the left and right coordinates xR go to the right of F . Given F , the reader
must be careful of which convention is used, and consider F T instead if it does not match his own
convention.

1.2 Estimation of the Fundamental Matrix

The knowledge of F is very important, be it for external calibration (extraction of T and R from (4)
knowing the internal calibration KL and KR), or for epipolar rectification as a preliminary step to
the computation of the disparity map, see for example [14]. In most instances, the computation of
F from its formula (4) is not an option, as rotation and translation are usually not known, and even
the internal calibration matrices KL and KR may be unknown. In that case, we note that (3) can be
interpreted as a linear homogeneous constraint on F if a pair of matching points (xL, xR) is known.

Writing xi
L =

(

xi yi 1
)T

and xi
R =

(

x′
i y′i 1

)T
for the i-th correspondence (xi

L, x
i
R), (3) becomes

AT
i f = 0 with AT

i =
(

xix
′
i xiy

′
i xi yix

′
i yiy

′
i yi x′

i y′i 1
)

, (5)

and f is the vector of the coefficients of F ,

f =
(

F11 F12 F13 F21 F22 F23 F31 F32 F33

)T
. (6)

Stacking 8 such equations for so many correspondences (xi
L, x

i
R), we see that f is in the kernel space

of the 8× 9 matrix A of rows the AT
i . Since the trivial solution f = 0 is not interesting and the scale

of f is indifferent (λf with any λ ∈ R represents an equivalent fundamental matrix), any non-null
element of the kernel of A fits. There is however no guaranty that the resulting F has rank 2. An
alternative to this 8-point algorithm is the 7-point algorithm, which enforces this constraint.

In the 7-point algorithm, A is of dimensions 7× 9, so it normally should have a kernel of dimen-
sion 2. Taking a basis f1, f2 of this kernel, we know that f should be written f = (1− t)f1+ tf2 with
t ∈ R. Writing

detF = det ((1− t)F1 + tF2) = 0 (7)

results in a polynomial of degree at most 3 of which t is a real root. Therefore there are at most 3
possible values for t. The correct one cannot be determined directly from the 7 correspondences, but
additional ones can be used to check.
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The input of our algorithm is a set M of putative pairs of matching points (and the dimensions
of the images), the output a fundamental matrix F and the subset Min of M that was taken into
account to estimate F . Indeed, starting from a pair of images, we need two preliminary steps before
computing F :

1. Detecting a set of keypoints in each image, PL and PR;

2. Matching the two lists of keypoints, resulting in a set M ⊂ PL × PR.

Numerous variants exist to achieve the above steps, most ot them based on the famous SIFT al-
gorithm [9, 17], which we use also. However, some putative pairs of matching points issued from
the second step may be mismatches and should be discarded from the estimation of F . This paper
describes an algorithm which does simultaneously the necessary tasks:

1. Filter the list of matching keypoints Min ⊂M ;

2. Estimate the fundamental matrix F from Min.

2 A Contrario RANSAC

The 7-point algorithm can be used as minimal solver when incorporated into RANSAC [5] or one of
its variants, whose goal is to discriminate inliers and outliers among the n correspondences (xi

L, x
i
R).

At each iteration of the algorithm, a sample of 7 correspondences is drawn and supposed to be
composed of inliers. From this sample, up to three fundamental matrices are obtained, and the
compatibility of the rest of the correspondences is checked. In this regard, the 7-point algorithm is
much preferred to the 8-point algorithm, since the chance of having a wrong correspondence among
the sample is significantly lower when its cardinality is 7 instead of 8.

In the ORSA [13] (Optimized RANSAC) variant of RANSAC, the identification of inliers is not
based on a fixed distance threshold and the best model on the number of inliers; instead, different
thresholds, based on the distribution of errors of remaining correspondences, are tested, and the best
model is measured by the Number of False Alarms (NFA), which depends on the threshold and the
number of errors below that threshold. The NFA is computed based on the a contrario principle,
introduced by Desolneux et al. [3]. Let us recall the generic formula (1) from the companion article [12]

NFA({ǫi : i = 1, . . . , n}, k) = Noutcomes(n−Nsample)

(

n
k

)(

k
Nsample

)

(ǫdkα0)
k−Nsample . (8)

Here the ǫi are the errors of the correspondences with respect to the currently tested model (a
fundamental matrix), increasingly ordered, and therefore k is the tested error threshold, with only
correspondences exhibiting an error at most k being considered as inliers. Therefore the best model
is the one verifying

F = argmin
F

min
k=Nsample+1,...,n

({ǫi(F )}, k). (9)

For the fundamental matrix estimation, the parameters are:

• Nsample = 7 since we use the 7-point algorithm;

• Noutcomes = 3 since up to three fundamental matrices are tested by sample;

• the exponent d = 1 since the error is uni-dimensional, that is, a point to line distance;

• α0 = 2
√
w′2 + h′2/(w′h′).
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Here w′ × h′ are the dimensions of the right image. α0 is an upper bound of the probability of a
random point uniformly drawn in the right image area to fall within 1 pixel to a fixed line. The
numerator is twice the diagonal length of the image and the denominator its area. Notice that this
relies on a background hypothesis H0 where a random correspondence is a pair of points drawn
uniformly and independently in their respective image. A more sophisticated background hypothesis
H′

0, adapted to the observed distribution of points, yields sometimes better results [4] but this is out
of the scope of this article. The ORSA algorithm follows faithfully Algorithm 1 in the companion
article [12], with the point to line distance defined as

ǫF (xL, xR) =

∣

∣xT
LFxR

∣

∣

√

(xT
LFe1)2 + (xT

LFe2)2
, (10)

where e1 and e2 are the first two vectors of the canonical basis of 3-row vectors.
In the traditional RANSAC algorithm [7, Section 4.7.1], the number of iterations is adjusted

dynamically with the formula establishing the probability of having a good sample. Suppose there
are k inliers. The probability of drawing a good sample of Nsample inlier points is (k/n)Nsample . We
require the probability of having only Niter bad samples to be below some fixed quantity β (for
example, β = 1%)

(

1− (k/n)Nsample
)Niter ≤ β, (11)

so that

Niter ≥
⌈

log β

log(1− (k/n)Nsample)

⌉

. (12)

Initially, k is not known, so that Niter is set according to the computation effort we can afford,
but each time a model with more supporting inliers is found, Niter is lowered to its minimal value
satisfying (12). In comparison, ORSA stops when a meaningful set is found (NFA < 1), at which
point it adds a few iterations to optimize the model by trying to find a better sample among the
estimated inliers.
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Figure 2: Number of iterations to handle with 99% confidence (β = 1%) a given inlier ratio k/n. For
a 90% confidence level (β = 10%), this number of iterations must be divided by 2. Left: traditional
formula (12) with 7- and 8-point algorithm. Right: the exact formula (14) (i.e., excluding repetitions
in the samples) for the 7-point algorithm with different values of n.

The advantage of using 7-samples over 8-samples, despite the increased complexity of the 7-point
algorithm compared to the 8-point algorithm, is illustrated in Figure 2: A visibly higher outlier ratio
can be handled with good confidence (99% chance of success) with the same number of iterations.
Notice however that the traditional formula (12), found in the book by Hartley and Zisserman [7]
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and in numerous publications, is optimistic: it assumes that each element of the sample is drawn
independently but that repetitions are allowed. Actually, if a correspondence is repeated in the 7-
sample, the equation system is underdetermined and the model cannot be estimated. Therefore only
good samples with no repetition should be considered as a good evaluation for the model. With the
same sample drawing algorithm, that is, drawing with replacement, the probability of a good sample
with no repetition is

(k)7
n7

:=
k · (k − 1) · · · (k − 6)

n7
= (k/n) · (k/n− 1/n) · · · (k/n− 6/n), (13)

and the exact formula updating (12) is

Niter ≥
⌈

log β

log(1− ((k)7/n7))

⌉

. (14)

When n is large, this exact formula (14) does not sensibly differ from (12). However, when n is a few
tens, Figure 2 shows that Niter must be significantly increased over the traditional formula to handle
the same outlier ratio with the same confidence level. The code fixes Niter = 10, 000 and we see
that it is notably insufficient to handle cases with less than 30% inliers. This is in contrast with the
companion article [12] that illustrates successful homography evaluations with as few as 10% inliers.

3 Implementation and Demo

3.1 Implementation

The core implementation of the a contrario RANSAC (ORSA) is the same as with the companion
article [12], only parts specific to the fundamental matrix are changed. The only change in the generic
part is that we found that we could get some error threshold ǫk = 0 in (8) for correspondences not
in the sample set. Such noiseless detection happens only with synthetic data, and it yields NFA = 0,
which is optimal, with a null inlier/outlier threshold. This is not sensible for normal data, and we
just take a tiny but strictly positive minimal value for ǫk.

3.1.1 Normalization

As in the homographic case ([12], Section 4.2), we normalize the point coordinates by premultiplying
by the matrix





1/σL 0 −wL/(2sL)
0 1/σL −hL/(2sL)
0 0 1



 , (15)

where σL =
√
wLhL is an average scale of the left image, and similarly for points in the right

image with normalization matrix NR. If we find a fundamental matrix F̃ relating normalized points
(x̃i

L, x̃
i
R) = (NLx

i
L, NRx

i
R) we have

(NLx
i
L)

T F̃ (NRx
i
R) = (xi

L)
T (NT

L F̃NR)x
i
R, (16)

so that we identify the denormalization formula F = NT
L F̃NR. This normalization is considered

crucial [6], and we check numerically that it is so. We take a stereo pair of images of size 640× 480
and we normalize corresponding SIFT points by premultiplying with the matrix

N =





σ 0 0
0 σ 0
0 0 1



 , (17)
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and look at the condition number of the 8×9 matrix A built by stacking the equations issued from (5)
for different samples of 8 correspondences. This condition number κ is the ratio of the highest and
smallest singular values of A: κ = σ1/σ8. Figure 3 shows that we have a best condition number
(i.e., lowest value) when −3 ≤ log(1/σ)/ log 10 ≤ −2. We have log(1/σL)/ log 10 = −2.7 in this
case, showing that it is a judicious choice. The scale factor magnitude σ has the most influence on
numerical stability; the effect is much lower when the centering values are changed (N13 and N23).
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Figure 3: Condition number κ of matrix A in the 8-point algorithm for various samples of 8 point
correspondences in images of size 640×480, as a function of the normalization factor σ (x- and y-axes
in log10 scale).

3.1.2 7-Point Algorithm

The matrix A is of size 7×9, we use the singular value decomposition (SVD) to find two independent
vectors f1 and f2 in its kernel. We then have to find the values of t satisfying (7), which we can also
write

det(F1 + t(F2 − F1)) = 0. (18)

Let us decompose the matrices into their columns

F1 =
(

c1 c2 c3
)

F2 − F1 =
(

d1 d2 d3
)

. (19)

Equation (7) amounts to
at3 + bt2 + ct+ d = 0, (20)

with

a = det(F2 − F1) b = det
(

d1 c2 c3
)

+ det
(

c1 d2 c3
)

+ det
(

c1 c2 d3
)

, (21)

d = detF1 c = det
(

d1 d2 c3
)

+ det
(

d1 c2 d3
)

+ det
(

c1 d2 d3
)

. (22)

The value of d is obtained by letting t = 0 and the value of c as the first derivative at 0 of det(F1 +
t(F2−F1)). We used the property, based on multi-linearity and continuity of determinant function,

d

dt
det

(

f(t) g(t) h(t)
)

= det
(

f ′(t) g(t) h(t)
)

+ det
(

f(t) g′(t) h(t)
)

+ det
(

f(t) g(t) h′(t)
)

,

(23)
when f , g and h are derivable functions of t and the prime denotes derivative function. For the
values of a and b we notice

det(F1 + t(F2 − F1)) = t3 det

(

(F2 − F1) +
1

t
F1

)

, (24)
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and noting t′ = 1/t we just need to take the derivative with respect to t′ of the determinant to derive
formulas analogous to (22), just inverting the roles of F1 and F2 − F1.

To find the roots of the cubic polynomial, we use an algorithm detailed in Appendix B. In this
algorithm, the coefficients are first divided by a so as to have a leading coefficient of 1. To diminish
the risk of trouble when a could be almost null, we check if |d| > |a|. If this is the case, we just
swap F1 and F2 − F1, a and d, and b and c. Notice that this does not rule out the possibility that
a = d = 0, or almost. Actually, it is even possible to have a = b = c = d = 0, that is, having a plane
in the cone of non-invertible matrices. For example, with the following matrices

F1 =
1

2





1 0 1
0 1 1
0 0 0



 F2 =
1

2





0 1 −1
1 0 1
0 0 0



 . (25)

We have ‖f1‖ = ‖f2‖ = 1 and fT
1 f2 = 0, showing that {f1, f2} could be an orthonormal basis of the

kernel of A. The last row of any linear combination of F1 and F2 is null, so that all determinants
are 0. We do not take any additional precautions for such unlikely cases: if infinity or NaN (“not
a number”) are generated due to division by 0, this leads just to a model with no inlier, which is
rejected, and we proceed with the next iteration.

3.1.3 8-Point Algorithm

The 8-point algorithm, often used as minimal problem solver in RANSAC since its implementation
is easier than the 7-point alternative3, can be used with more points to refine the estimation. After
the matrix F with lowest NFA in (8) has been found, it is still estimated from a minimal sample
of 7 points. To distribute the error more equally among all the inliers, the simplest method is to
minimize the algebraic error

∑

i((x
i
L)

TFxi
R)

2 where the index i spans the inliers. This value is equal
to ‖Af‖2 = fTATAf where we incorporate in k × 9 matrix A all the rows built from the k inliers
in (5). The solution is the right singular vector f associated to the least singular value of A, that is
the 9-th column of V in the SVD of A = USV T . Since this does not constrain F to be of rank 2, we
impose it a posteriori, by taking the SVD of F = USV T , and replacing F by

US





1 0 0
0 1 0
0 0 0



V T , (26)

that is forcing the lowest singular value to 0. This standard procedure, called the Direct Linear
Transform (DLT) [7], amounts to projecting the initial F on the manifold of matrices with null
determinant, using the Frobenius norm, F =

√
trF TF . Notice that this projection does not give any

control on the amount of error it involves. In our implementation, we choose to ignore the result of
the 8-point algorithm, and stick to the F found by the 7-point algorithm, if its RMSE of point-to-line
distance in the right image gets higher than the maximum error in the 7-point algorithm.

3.2 Online Demo

Figure 4 shows an image pair, and Figure 5 the resulting images with the default parameters. The
top image shows in green the endpoints of inliers with only a segment of their epipolar line, to
improve readability. In red are the endpoints of outliers. The middle image joins the endpoints
of inliers. The bottom image shows the outliers with their corresponding epipolar line according

3The 8-point algorithm involves solving simply a linear system compared to finding the null-space of matrix A and
finding cubic polynomial roots.
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Figure 4: A pair of stereo images from USAC [16] (fundmatrix/test1).

to the estimated fundamental matrix. In order to associate the endpoints to their epipolar line,
the orthogonal segment issued from the endpoint to the line is drawn. For example, an erroneous
correspondence (a, a′) links the third window in the left image to the second window in the right
image. This is a small error, and we can check that epipolar lines A and A′ go through the correct
matching point. More flagrant is the correspondence (b, b′) linking a point at the boundary of the
lawn and the tiled floor (left image) to a façade (right image). To see where the correct point should
be located, we follow visually the red segment to the right image (incorrect endpoint b′), go down the
yellow segment until reaching the orthogonal epipolar line B. This tells that the correct endpoint
should be on this line, which looks plausible. Naturally, the same process can be applied to the right
endpoint b′, though the correct matching point would lie outside the image on line B. Another wrong
match (c, c′) links points on different roofs. The intersection of lines {A′, B′, C ′} and {A,B,C} are
the epipoles eL and eR, here slightly out of the image frame.

The text output of the software program is displayed below:

sift:: 1st image: 1332 keypoints

sift:: 2nd image: 1391 keypoints

sift:: matches: 105

Remove 6/105 duplicate matches, keeping 99

nfa=-108.516 inliers=96 precision=11.7253 im2 (iter=0,sample=14,15,69,85,86,92,97)

nfa=-121.73 inliers=95 precision=7.71844 im2 (iter=3,sample=85,22,55,64,7,50,34)

nfa=-162.213 inliers=92 precision=2.05903 im2 (iter=8,sample=7,40,41,79,19,1,92)

nfa=-174.362 inliers=96 precision=2.13442 im2 (iter=16,sample=16,31,58,28,95,76,60)

Before refinement: Average/max error: 0.775217/2.13442

After refinement: Average/max error: 0.830378/2.73219

F=[ -9.69806e-09 -6.73975e-07 0.000298566;

7.49243e-07 7.5501e-09 -0.000804739;

-0.000344953 0.000883091 -0.00859197 ]

This tells us that 99 unique SIFT correspondences are found. The model with best NFA is found
at iteration 16 with 96 inliers and a precision of ǫk = 2.1. The indices of the correspondences in the
7-pair sample are displayed (16, 31, . . .). Next come the average geometric error in the right image
(RMSE) and the maximum error for all inliers

RMSE =

√

∑

i∈I ǫF (x
i
L, x

i
R)

2

|I| (27)

with I the set of inlier indices. Before refinement, the maximum error is naturally ǫk = 2.1 pixel;
after the 8-point algorithm is applied to all the inliers, the errors slightly increase in this case because:
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Figure 5: Output images of the algorithm run on the pair of Figure 4: endpoints of correspondences
with partial epipolar lines for inliers (green points), inliers, outliers with estimated epipolar lines.
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Figure 6: Stereo pair with interactive display of epipolar lines. Line numbers are associated to the
same point numbers in the other image (these numbers do not appear in the online demo).

1. The refinement, that is, the DFT, minimizes the algebraic error ‖Af‖2, not the geometric error
of (27);

2. The a posteriori projection (26) brings no control over the final error increase.

The resulting F is displayed. The demo also allows clicking in one image and seeing corresponding
epipolar lines in the other image, as in Figure 6.

4 Examples

The example datasets4 are issued from the software package associated to the Universal RANSAC
(USAC) [16], which is a RANSAC algorithm incorporating the best of breed of many variants. Still,
USAC depends on a fixed inlier/outlier threshold. Our tests show that using the putative correspon-
dences provided by USAC yields good results with our algorithm, except for quasi-degenerate cases
(see below), because we do not make any provision for dealing with those.

4.1 The Epipolar Constraint

The epipolar constraint is not a very strong constraint, because it is one-dimensional, in contrast to
the case of homography estimation for example, where the constraint on a match is two-dimensional.
It is frequent in artificial environments that the translation direction is parallel to aligned struc-
tures. This is the case in aerial photography when the flying vehicle follows the streets, so that roof
boundaries are aligned to the epipolar direction, or as in Figure 7 in street level imagery, where the
camera moves horizontally, one of the main directions of alignment of features. For example, the
correspondence numbered 274 matches the wrong window, but is still considered as inlier. Inliers
243 and 262 are plainly wrong but still satisfy the epipolar constraint.

It can even happen that a meaningful matrix F is found between fairly unrelated images. This is
the case in Figure 8, where the wrong façades of a same building are matched. This is due to archi-
tectural consistency, yielding wrong correspondences due to repeated structures, yet geometrically
consistent. Despite the fact that almost all concern coplanar points, which could be detected, such
errors would still be possible with non-degenerate structures.

4USAC datasets are composed of image pairs and sets of putative correspondences. Unless otherwise stated, we do
not use the provided correspondences but replace them with the output of the SIFT algorithm.
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Figure 7: Example of wrong matches still considered as inliers because the epipolar constraint is
not very discriminative (pair and correspondences from USAC [16], fundmatrix/test3). The top
images show all inliers and outliers according to the algorithm. The bottom images show 3 wrong
correspondences (243, 262 and 274) that still satisfy the epipolar constraint, and are thus wrongly
classified as inliers.

Figure 8: Incorrect estimated model between different façades of the Orangerie de Sceaux, with a
threshold of 1.1 pixel.
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Figure 9: Up: stereo pair provided with the USAC code [16] (fundmatrix/test4). Bottom: 301
found inliers and outliers, with threshold of 0.8 pixel, among the provided 1516 putative correspon-
dences.

4.2 The Chirality Constraint

As observed by Chum et al. [1], the chirality constraint (see Appendix A) helps in discarding F
models right away, before their inlier support is evaluated. For example, for the fundmatrix/test4
dataset of the USAC code (see Figure 9, with the provided putative 1516 correspondences), using the
chirality constraint allows eliminating 158 of the first 173 estimated models, at which step the first
meaningful model is found (NFA < 1). After that, since additional samples are drawn among inliers,
the rejection rate decreases a lot: 70% of models estimated later satisfy the chirality constraint.

The absence of the chirality constraint can even cause a dramatic failure. This is for example
the case for the image pair fundmatrix/test3 of USAC,5 see Figure 10. Among the 21 found
inliers, only 6 points are involved in the right image. This happens because the SIFT criterion
was not applied symmetrically, so that one point xR in the right image is matched with 16 others
in the left image. The minimal sample drawn selects two of these (incompatible) matches and
the computed matrix F has xR as right epipole, FxR = 0. The other 5 correspondences impose
5 constraints on F that can be accurately satisfied, since the equation system FxR = 0 leaves 5
degrees of freedom for F : the constraint detF = 0 is already a consequence of FxR = 0. Therefore,

5with recalculated SIFT correspondences and a SIFT ratio of 1; the failure does not happen with the correspon-
dences provided by USAC.
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Figure 10: Wrong model found when the chirality check is disabled. A point in the right image
is matched with 16 others in the left image, and a model F taking this point as right epipole can
accommodate accurately all correspondences shown in green.

the 16 correspondences involving xR satisfy perfectly the epipolar constraint, and the NFA is quite
meaningful as the inlier/outlier threshold can be chosen very low (around 10−12 here).

4.3 Degeneracy

The most common degenerate case for the computation of the fundamental matrix is when the
observed points are coplanar, as shown in Appendix A. Detecting this configuration during the
RANSAC procedure requires an explicit test, as in the DEGENSAC algorithm [2]. This algorithm
tries to detect a set of correspondences consistent with a homography H among the inliers and
then initiates a sub-procedure of RANSAC with modified sampling: two correspondences are drawn
among the outliers of the homography H to estimate F with no ambiguity. The Universal RANSAC
(USAC) integrates this test and provides data exhibiting the degenerate behavior, but most RANSAC
implementations do not. Our implementation does not provide such an enhancement and may get
trapped in a degenerate configuration, see Figure 11.
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Figure 11: A quasi-degenerate case where our algorithm gets trapped in the degenerate model due to
coplanar points (data from USAC [16], fundmatrix/test8). The few matches outside the foreground
book, although most of them correct, are rejected because they are not consistent with the estimated
fundamental matrix, which is any matrix consistent with the dominant plane homography.

4.4 A Failure Case

In a few instances, the algorithm can fail for complex reasons. In dataset fundmatrix/test5 of
USAC, using recalculated SIFT points and a SIFT ratio of 1, a meaningful F is found with a high
threshold of 41 pixels. It involves 175 inliers among 437 correspondences, see Figure 12. A good
proportion of these points lie close to the (wrongly estimated) right epipole, and for these points the
constraint to be within 41 pixels of their epipolar line is not a strong constraint. Notice that the
distance of points to their epipolar line is clearly not low in the right image, on average 23 pixels;
this is dramatic in the left image, where some epipolar lines seem to lie alone in the sky. This is not
a contradiction since we use the asymmetric point-to-line distance, in the right image. Using the
symmetric error parameter fixes this, but then no meaningful model is found. The “refined” model
with all inliers yields in this case a dramatic failure, with an average error of 76 pixel and a maximum
of 589! This refinement is nevertheless rejected by our code since the average error of the refinement
is above the maximum error based on the initial sample. Several factors can be identified, leading to
a wrong estimation:

• The background model assumes points uniformly distributed in the images. In this case, a
good portion of the image is the sky, in which no interest point is detected. The use of a more
sophisticated background model, learned based on the observed distribution of points, would
be helpful [4].

103



Lionel Moisan, Pierre Moulon, Pascal Monasse

Figure 12: A failure case of the algorithm (data from USAC [16], fundmatrix/test5), with an
inlier threshold of 41 pixels.

• Many correspondences involve points at the top of the statue, among them some good corre-
spondences but also many erroneous ones. Placing the right epipole close to them and having
a not too strong inlier threshold satisfies many of these correspondences. (Even though our
chirality test prevents the epipole from being very close to one data point in the sample, the
threshold is too low for this case). The distance to the epipolar line is maybe not a very ap-
propriate criterion in this case: since all epipolar lines go through the epipole, this constraint
is very weak for points close to the epipole. A better criterion would be the surface spanned
between the epipolar line and the line joining the point and the estimated epipole. Notice that
such a case can occur when an estimated epipole is inside the image frame.

5 Conclusion

The fundamental matrix estimation has been the subject of an abundant literature, so as the
RANSAC algorithm. The most successful ideas were included in the Universal RANSAC, USAC [16],
yet the automatic estimation of the inlier/outlier threshold was overlooked. This is a pity as having
such an automatic estimation is shown to be beneficial in structure from motion [15]. The openMVG
software6 is open-source and relies heavily on the a contrario RANSAC considered in this article.
In comparison to USAC, all datasets are handled successfully, except the ones including a quasi-
degenerate configuration (dominant plane), which USAC handles with the DEGENSAC algorithm.
An adaptation of this algorithm to the a contrario methodology will be the subject of another article.

6http://imagine.enpc.fr/~moulonp/openMVG/
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A The Fundamental Matrix

A.1 Two Algebraic Derivations

We present here two more algebraic proofs of the fundamental matrix formula. In the left camera
coordinate frame, we can write

λxL = KLX µxR = KRR
−1(X − T ), (28)

with λ, µ > 0 if the last row of the K matrices is
(

0 0 1
)

, ensuring that image point x is in front
of the camera iff xT e3 > 0. Isolating X from the second equation and substituting in the first one,
we get

λK−1
L xL = µRK−1

R xR + T. (29)

Taking the cross-product with T of each side yields

λ[T ]×K
−1
L xL = µ[T ]×RK−1

R xR, (30)

and the dot product of each term with K−1
L xL gives the epipolar equation

µxT
LK

−T
L [T ]×RK−1

R xR = 0. (31)

The proof above is the standard one, but another one is interesting as it generalizes to multi-view
stereo. It interprets the six equations of (28) as a linear system

(

KL 03 −xL 03
KRR

−1 −KRR
−1T 03 −xR

)









X
1
λ
µ









= 0 (32)

and therefore the left-hand side 6× 6 matrix must have determinant 0. Multiplying the first column
(a 6× 3 matrix) by K−1

L xL and adding it to the third column does not change the determinant

det

(

KL 03 03 03
KRR

−1 −KRR
−1T KRR

−1K−1
L xL −xR

)

= 0. (33)

Since KL has full rank, it amounts to the vanishing 3× 3 determinant

det
(

−KRR
−1T KRR

−1K−1
L xL −xR

)

= 0. (34)

This also stands when multiplying each column of the matrix by RK−1
R from the left, hence

det
(

−T K−1
L xL −RK−1

R xR

)

= 0, (35)

which can be rewritten as (31) by the standard definition of the cross-product. As written above,
this method generalizes nicely to more than two views, and rank considerations exhibit the trifocal
tensor and show that all multi-linear constraints are combinations of 2- and 3-views constraints [11].

A.2 Chirality

Between (30) and (31), we just used the fact that λ 6= 0 6= µ, but we lost the constraint that
they should be positive, as noted by Chum et al. [1]. Notice that this stands in oriented projected
geometry, that is, image points xL, xR in front of the camera have positive third coordinate and K
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matrices have positive determinant. We can still recover this information as follows. Multiplying
each side of (30) by K−T

L yields

λK−T
L [T ]×K

−1
L xL = µK−T

L [T ]×RK−1
R xR, (36)

and using the identity [Ax]× = det(A)A−T [x]×A
−1 on the left-hand side and (4) on the right-hand

side

λ[KLT ]×xL = µ det(KL)FxR. (37)

Recognizing KLT = eL the left epipole, we get

eL × xL
+∼ FxR, (38)

with
+∼ meaning equality up to positive scale. In practice, eL and F are computed up to an unknown

scale that can be negative, so we cannot use directly the positivity in (38). But once eL and F are
fixed, we can just replace eL by −eL if we observe that (38) is not satisfied for a particular pair
(xL, xR); then all other correspondences should satisfy (38). One issue often overlooked, including in
the USAC source code [16], is the possibility that xL = eL or xR = eR, in which case the standard
inlier test makes no sense, because there is no epipolar line associated. The right correspondence is
naturally (eL, eR), and this could be checked, but we find it simpler to just reject such cases. For
performance reasons, we only proceed with the chirality test for the correspondences in the minimal
sample. We reject the sample if one of the terms of (38) is close to 0, scale of the data being accounted
in the test. The chirality test is summed up in Algorithm 1. Notice that to compute the left epipole,
an SVD of F could be performed, but it is actually simpler to just take the cross-product of two
independent columns of F : assuming they are the first two columns F1 and F2, noting e = F1 × F2,
we have

eT
(

F1 F2 αF1 + βF2

)

=
(

eTF1 eTF2 eT (αF1 + βF2)
)

= 0. (39)

It is possible for one column (but at most one) of F to be null, so we keep the cross-product of two
columns with maximal norm, see Algorithm 2.

Algorithm 1: Chirality test of correspondence sample. The threshold 10−5 rejects correspon-
dences where one endpoint is close to the epipole.

Input: Sample of correspondences (xi
L, x

i
R)i=1,...,7, candidate epipolar matrix F with ‖F‖ = 1

Output: Validity test of F (a boolean)
for i = 1 to 7 do

vL ← eL × xi
L // Left hand side of (38)

vR ← Fxi
R // Right hand side of (38)

d← vL · vR // Scalar product of both

t← ‖xL‖‖xR‖
if d ≤ 10−5t then

if i = 1 and d < −10−5t then
eL ← −eL

else
return false

return true
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Algorithm 2: Function leftEpipole, returning a unit vector representing the left epipole.

Input: 3× 3 matrix written in columns F =
(

F1 F2 F3

)

‖eL‖ ← −1
for pairs (i, j) ∈ {(1, 2), (1, 3), (2, 3)} do

if ‖Fi × Fj‖ > ‖eL‖ then
eL ← Fi × Fj

Output: left epipole eL/‖eL‖

A.3 Rank 2 Constraint

The necessary condition of rank 2 for a fundamental matrix is also sufficient: any 3× 3 matrix F of
rank 2 is a fundamental matrix. Writing the SVD of such a matrix

F = U





σ1 0 0
0 σ2 0
0 0 0



V T = U





σ1 0 0
0 σ2 0
0 0 1









1 0 0
0 1 0
0 0 0



V T = M





1 0 0
0 1 0
0 0 0



V T , (40)

and using QR decomposition of MT = QK−1 with unitary matrix Q and upper triangular matrix K
with positive diagonal elements, we get

F = K−TQT





0 1 0
−1 0 0
0 0 0









0 −1 0
1 0 0
0 0 1



V T

= K−T



QT





0 1 0
−1 0 0
0 0 0



Q







QT





0 −1 0
1 0 0
0 0 1



V T



 . (41)

The left parenthesized part is skew-symmetric, which can be written [T ]×, and the right parenthe-
sized part is composed of orthogonal matrices, so it is an orthogonal matrix R. We recognize the
fundamental matrix formula with KL = K and KR the identity matrix.

A.4 Degeneracy

It is well known that the fundamental matrix cannot be estimated uniquely when only planar points
are observed. Indeed, in that case left and right points are related by a homography H such that
xR = HxL. We can then rewrite the epipolar constraint (3) as

xT
LFHxL = 0, (42)

which is always satisfied if FH is skew-symmetric. For a fixed H, the skew-symmetry of FH imposes
only 6 linear constraints on F . The condition detF = 0 is already a consequence of these linear
constraints, since det(FH) = (detF )(detH) = 0 implies that detF = 0, as detH 6= 0. That means
there are two undetermined degrees of freedom in F . Another way to see this is to rewrite (5) as

AT
i =

(

x2
i xiyi xi yixi y2i yi xi yi 1

)





HT 0 0
0 HT 0
0 0 HT



 . (43)

The 9× 9 matrix on the right has full rank, so the rank of A only depends on the dimension of the
space spanned by the vectors on the left. The second and fourth columns are the same, so as the
third and the seventh, the sixth and the eighth. This shows that in general A has rank 6, except
when the points xi

L are on a conic curve, in which case the rank is at most 5.
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B Cubic Polynomial Root Solver

In the 7-point algorithm, we need to find the real roots of a degree 3 polynomial. This section details
the solver used and highlights some numerical considerations. We write the polynomial as

P (x) = x3 + ax2 + bx+ c, (44)

with a, b, c some real numbers. Obviously, the equation P (x) = 0 has between 1 and 3 real solutions,
the roots of the polynomial. A classical step is the change of variable x→ x+ a/3, which eliminates
the quadratic term

P (x) = (x+ a/3)3 + (b− a2/3)(x+ a/3) + 2(a/3)3 − ab/3 + c. (45)

Writing a′ = a/3, we get

Q(x) := P (x− a′) = x3 + 3px+ 2q (46)

with

p = (b− 3a′2)/3 q = (2a′3 − a′b+ c)/2. (47)

The roots of P are deduced from the roots of Q by subtracting a′, so we study the polynomial Q.
Its derivative Q′ is Q′(x) = 3(x2 + p). If p > 0, we have Q′ > 0, Q is strictly increasing and has a
single root. If p = 0, we have the single root x = (−2q)1/3, with multiplicity 3 if q = 0. If p < 0,
Q has a local maximum at x− = −√−p and a local minimum at x+ =

√−p. We get 3 real roots
(counting multiplicity) if and only if Q(x−) ≥ 0 ≥ Q(x+). Since Q is decreasing in [x−, x+], the
latter condition amounts to Q(x−)Q(x+) ≤ 0. We have

Q(x±) = 2
(

q ∓ (−p)3/2
)

, (48)

hence

Q(x−)Q(x+) = 4d with d = q2 + p3. (49)

B.1 Cardano’s Formula (Case d > 0)

Notice that the case p > 0 discussed above is included in the case d > 0, so as the case p = 0 6= q.
The method credited to Gerolamo Cardano decomposes the root x as a sum x = u+ v. This yields

u3 + v3 + 3(uv + p)(u+ v) + 2q = 0. (50)

A sufficient condition is to have the two equations

u3 + v3 = −2q uv = −p. (51)

Taking the cube of the latter equation, we find that u3 and v3 are roots of the polynomial x2+2qx−p3,
whose discriminant is 4d ≥ 0. This amounts to writing the root x of Q as

x = (−q +
√
d)1/3 + (−q −

√
d)1/3. (52)
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B.2 Viète’s Method (Case d ≤ 0)

The method of François Viète relies on the trigonometric identity

cos 3θ = 4 cos3 θ − 3 cos θ. (53)

Writing the roots x of Q as x = k cos θ with k < 0, we get

k3 cos3 θ + 3pk cos θ + 2q = 0. (54)

Comparing with (53), an appropriate choice of k satisfies k3 = −4pk and therefore k = −2√−p,
which makes sense since p3 ≤ d ≤ 0. This yields (−p)3/2 cos 3θ = q and the roots of Q are

xi = −2
√−p cos cos

−1
(

q/(−p)3/2
)

+ 2iπ

3
(i = 0, 1, 2). (55)

B.3 Numerical Considerations

The distinction between cases d > 0 and d ≤ 0 is numerically fuzzy when d is barely positive. In
this case, we give preference to the 3-root case (d ≤ 0) in order to avoid missing a possible double
root. That means we assimilate the case where d is slightly positive with d ≤ 0. In view of (47),
we consider that each term of the sum may involve an error factor of (1 + ǫ), hence we define the
tolerance factors

τp = max(|b|, 3a′2) τq = max(2|a′|3, |a′b|, |c|), (56)

and consider that p and q can be respectively p+ǫτp/3 and q+ǫτq/2, with ǫ the smallest floating-point
increment to unity, i.e., 1 + ǫ > 1 (generally ǫ = 2−23 for single precision floating point). Ignoring
higher order terms in ǫ, we have

(p+ ǫτp/3)
3 ∼ p3 + ǫp2τp (q + ǫτq/2)

2 ∼ q2 + ǫqτq, (57)

and we take as tolerance threshold for d the value

τd = ǫmax(p2τp, |q|τq). (58)

We apply Cardano’s formula (52) only when d > τd.

Equation (55) only makes sense when p < 0 and d ≤ 0. Since we go into that situation whenever
d ≤ τd, we must take precautions in case d is slightly positive. First, if p is close to 0, q must also
be close to 0, and we have the value 0 as triple root. If p is not close to 0, we still explicitly check
if q′ = q/(−p)3/2 is between −1 and 1 because numerical approximations may fail this test. We
replace the cos−1 by π if q′ ≤ −1 and by 0 if q′ ≥ 1. To discriminate the case p ∼ 0 (triple root) and
p < 0 (three roots), we compare p with −ǫτp/3. Notice that no root in (55) can exceed 2

√

|p|, and
we consider that p ≥ −ǫτp/3 entails an acceptable error bound of 2

√

ǫτp/3 compared to the triple
root 0.

Also worth considering, one of the terms −q ±
√
d of (52) is subject to dramatic cancellation if

p is small compared to q. In any case, the term t1 = (|q| +
√
d)1/3 is safe to compute and the term

t2 = (|q| −
√
d)1/3 is better evaluated as t2 = −p/t1. Now we observe that if q ≤ 0, x = t1 + t2 and if

q > 0, x = −(t1 + t2).
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B.4 Numerical Tests

The unit test cubicRoots test.cpp chooses random roots in the range [−25, 25]. We then apply
the formulas (59) below to build P and look at the errors of the evaluated roots. We test all cases:
single real root, three distinct roots, one double root (and one distinct single root) and a triple root.
Noting zi the (possibly complex) roots of P , we have

a = −(z1 + z2 + z3) b = z1z2 + z2z3 + z3z1 c = −z1z2z3. (59)

A root x with multiplicity one is considered a function of the coefficients a, b and c in the implicit
equation

x(a, b, c)3 + ax(a, b, c)2 + bx(a, b, c) + c = 0, (60)

and we can compute the gradient of this function

∇a,b,cx = − 1

3x2 + 2ax+ b

(

x2 x 1
)T

. (61)

A sensible tolerance around x for the estimated root r is a solution to (60) with a, b and c perturbed
by amounts up to 3×25ǫ, 6×252ǫ and 3×253ǫ. These amounts are obtained from (59) by considering
that each term zi can vary up to a factor 25ǫ (25 is the maximum value of any zi) and ignoring higher
order terms in ǫ. Therefore, we accept r as a good estimation of x if

|x− r| ≤ 25ǫ(3x2 + 6× 25x+ 3× 252)/|3x2 + 2ax+ b|. (62)

This analysis is not valid near a double or a triple root since then 3x2 + 2ax + b = 0. In this case
we just check that any root satisfies |P (r)| ≤ 0.01, even though this does not ensure that r is close
to the double root. Notice that the double root case is tricky since a small perturbation may tip
the balance between one and three solutions. For this reason, we do not consider it a mistake if the
double root is missed by the algorithm, still we require the third root (with multiplicity one) to be
found.

We show in Figure 13 the cumulated histograms of error distribution over 105 simulations of each
situation. The error scale goes geometrically after 10−5 to better visualize larger errors. We compare
our implementation to the GNU Scientific Library (GSL) solver7. We notice that the single and
three roots situations yield fairly equivalent precision8, but that we get much better treatment of
double and triple roots. The main difference is due to the use of τp = τq = τd = 0 by the GSL. In
the case of a double root, our algorithm detects it in 96.6% of cases (51.8% for GSL), and in 0.5% of
cases (4.2% for GSL) do we misinterpret a triple root as three single roots. Overall, we have only 5
instances of the test (62) failing, all with a value of x close to 0.
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8with a small advantage for GSL in the three single roots case, due to one intermediate value computed in double
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Figure 13: Cumulated histograms of error distributions (single floating point precision) with our
cubic polynomial root solver in comparison to the one of the GNU Scientific Library (GSL). The
horizontal progression of error is geometrical after 1.0e-5. Both perform equally with a single root,
the GSL solver is a bit more accurate when three roots are present, while our implementation is
significantly more accurate with singular cases including a double or a triple root.
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https://tel.archives-ouvertes.fr/tel-00549134/.

[11] Y. Ma, K. Huang, R. Vidal, J. Košecká, and S. Sastry, Rank conditions on the multiple-
view matrix, International Journal of Computer Vision (IJCV), 59 (2004), pp. 115–137. http:
//dx.doi.org/10.1023/B:VISI.0000022286.53224.3d.

[12] L. Moisan, P. Moulon, and P. Monasse, Automatic homographic registration of a pair of
images, with a contrario elimination of outliers, Image Processing On Line (IPOL), 2 (2012),
pp. 56–73. http://dx.doi.org/10.5201/ipol.2012.mmm-oh.

[13] L. Moisan and B. Stival, A probabilistic criterion to detect rigid point matches between two
images and estimate the fundamental matrix, International Journal of Computer Vision (IJCV),
57 (2004), pp. 201–218. http://dx.doi.org/10.1023/B:VISI.0000013094.38752.54.

[14] P. Monasse, Quasi-euclidean epipolar rectification, Image Processing On Line (IPOL), 1
(2011). http://dx.doi.org/10.5201/ipol.2011.m_qer.

[15] P. Moulon, P. Monasse, and R. Marlet, Adaptive structure from motion with a contrario
model estimation, in Proceedings of the 2012 Asian Conference on Computer Vision (ACCV),
vol. 7727 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2013, pp. 257–270.
http://dx.doi.org/10.1007/978-3-642-37447-0_20.

112



Fundamental Matrix of a Stereo Pair, with A Contrario Elimination of Outliers

[16] R. Raguram, O. Chum, M. Pollefeys, J. Matas, and J. Frahm, USAC: A universal
framework for random sample consensus, IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), 35 (2013), pp. 2022–2038. http://dx.doi.org/10.1109/TPAMI.2012.

257.

[17] I. Rey Otero and M. Delbracio, Anatomy of the SIFT method, Image Processing On Line
(IPOL), 4 (2014), pp. 370–396. http://dx.doi.org/10.5201/ipol.2014.82.

113


	The Fundamental Matrix
	The Epipolar Constraint
	Estimation of the Fundamental Matrix

	A Contrario RANSAC
	Implementation and Demo
	Implementation
	Normalization
	7-Point Algorithm
	8-Point Algorithm

	Online Demo

	Examples
	The Epipolar Constraint
	The Chirality Constraint
	Degeneracy
	A Failure Case

	Conclusion
	The Fundamental Matrix
	Two Algebraic Derivations
	Chirality
	Rank 2 Constraint
	Degeneracy

	Cubic Polynomial Root Solver
	Cardano's Formula
	Viète's Method
	Numerical Considerations
	Numerical Tests


