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Abstract

Recent years have seen a surge of interest in deep neural networks fueled by their successful ap-
plications in numerous image processing and computer vision tasks. However, such applications
typically come with huge computational loads. In this article, we explore the possibility of using
small neural networks to denoise images. In particular, we present SSaNN (Self-Similarity and
Neural Networks), a denoising algorithm which combines the strength of BM3D on large-scale
structured patterns with that of neural networks on small-scale texture content. This algorithm
is able to produce a better overall recovery than both BM3D and small neural networks.

Source Code

The source code and an online demo are accessible at the IPOL web page of this article1.
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1 Introduction

Multilayer neural networks have recently ignited much interest in the signal processing community
thanks to their broad range of successful applications [1]. For example, it has been shown that a
multilayer neural network, when endowed with sufficient capacity, could be trained to deliver state-
of-the-art performance in denoising [2, 8] as well as in demosaicing [5, 9, 7].

This superior performance does come at a price. Because of its non-convex structure, no efficient
algorithm exists to solve a typical empirical risk minimization program involving a multilayer neural
network as the regression function. As a result, stochastic gradient descent becomes the de facto tool
of choice although it implies an enormous computational cost. Moreover, as far as image denoising
is concerned, a large observation window is required of a neural network to achieve an acceptable
image denoising performance, because natural images typically have a great many smooth or highly
structured areas. This again translates into a high time complexity when such a trained neural

1https://doi.org/10.5201/ipol.2016.150
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network works on noisy images due to its wide hidden layers and deep architecture. Indeed, despite
their performance, the neural networks presented in [2] need tens of millions of operations per pixel
when denoising gray-scale images.

SSaNN (Self-Similarity and Neural Networks) [6] observes that while self-similarity is a funda-
mental property of natural signals in general, its range of application is affected by the signals’ finite
resolution inherent to their respective acquisition process. It is thus not surprising that self-similarity
based algorithms like BM3D [3, 4] work less well on small-scale textures than on regular patterns of
a scale larger than the algorithm’s fixed patch size. On the other hand, it can be argued that approx-
imating a Bayesian optimal filter, neural networks may be relatively insensitive to scale variation as
long as the scale is small relative to the neural network’s input size.

2 Image Denoising Neural Networks

We do not detail the training of our denoising neural networks as it has already been documented [7].
The only difference is that following [2], we collected the training and validation patches from Pascal
VOC2012 2 and processed them according to Algorithm 1 before feeding them to the neural networks.

Algorithm 1 Generating a Supervised Pair

1: Input: a clean patch p ∈ Rd.
2: Output: a supervised pair.
3: Parameter: Gaussian noise level σ.
4: Create a noisy copy of the input patch p̃ = p+ σn with n distributed as N (0, Id).
5: Normalize both p and p̃ pixel-wise with the linear transform L(x) = 51−1x− 2.5.

Three neural networks of the same architecture have been trained under Gaussian noise levels set
to 10, 25 and 35 respectively. Observing a 7-by-7 noisy patch, they attempt to predict the clean state
of its central 3-by-3 block. These neural networks have 3 hidden layers composed of 147 non-linear
encoding units each. During their 4× 108 round training, the neural networks were tested every 104

rounds on a validation dataset comprising 104 examples from 100 randomly selected images of Pascal
VOC2012 (see Figure 1). Its remaining 17025 images served as the training dataset.

Denoising with the trained neural networks is straightforward (see Algorithm 2 and Figure 3).
Interestingly, we can also inspect the features that these neural networks acquired during the training
and are thus deemed as important for the denoising task (see Figure 2). Regardless of input noise
level, most of them turn out to be either oriented edges of varying lengths or rather localized blobs.
But having many input features in common does not make one neural network similar to another [8].

Algorithm 2 Neural network denoising

1: Input: a gray-scale image affected by Gaussian noise of standard deviation σ.
2: Output: a denoised image.
3: Parameter: a neural network trained to handle the same level of Gaussian noise.
4: Decompose the noisy image into overlapping 7-by-7 patches with spatial offset equal to 1.
5: Normalize these patches with the linear transform in Algorithm 1 and run them through the

neural network to form estimated patches.
6: Apply the inverse linear transform pixel-wise L−1(x) = 51(x+ 2.5) to the estimates.
7: Aggregate patches with equal weights to form the final image.

2http://host.robots.ox.ac.uk:8080/pascal/VOC/voc2012/index.html
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Figure 1: The validation RMSE (root mean square error) of the three neural networks trained under
Gaussian noise level 10 (left), 25 (middle) and 35 (right) was recorded every 104 backpropagation
iterations during their respective 4 × 108 round training. The top row corresponds to the first 108

round training and the bottom row the second 108 rounds. The horizontal axes are all plotted in the
logarithmic scale. Two more training cycles had been carried out until their performances stabilized.

3 SSaNN

As stated in the introduction, SSaNN seeks to improve BM3D on small-scale textures where self-
similarity cannot be meaningfully exploited for denoising purposes (see Figure 3). Some of these
areas can be detected by Algorithm 3. They tend to be bright and thus having a high signal-to-noise
ratio. Based on the output of this texture detector, SSaNN (Algorithm 4) assembles a new image
by taking values from the neural network restored image only if the pixels in question are part of
small scale texture patterns. The results as shown in Table 1 and Figure 3 and 4 indeed indicate
that for images rich in texture content, a better recovery can be obtained by complementing BM3D
with small neural networks. A visual comparison is given in Figure 5.

As to the parameters used in the texture detector, we set h=7, κ=12, n=3 and

β =


1.7, σ = 10

1.2, σ = 25

1.1, σ = 35

,

to reflect a decreasing signal to noise ratio.

Finally, note that one might be tempted to apply the same technique on noisy color images.
However, a naive approach with the same patch size would triple the input data size. As a result,
the number of computing units at each layer, if not the number of hidden layers itself, needs to be
adjusted accordingly. It results in a polynomial growth in the neural network’s runtime complexity.
Compounding the difficulty is that it also becomes more difficult to train a larger neural network.
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Figure 2: The learned input features of three image denoising neural networks trained under Gaussian
noise level 10 (left), 25 (middle), 35 (right) respectively. Note that regardless of input noise level,
most of them depict oriented edges and localized blobs. Having features in common, however, does
not mean that these neural networks trained under different noise levels are interchangeable.

Figure 3: Noisy valldemossa (σ=25) recovered by the neural network (left) and BM3D (right). The
RMSEs of both recoveries are close and around 12.32. But the sky and building facade restored by
BM3D is much cleaner, indicating a better recovery. This fact also implies that the neural network
does a better job on other parts of the image.

In response, we have tried some data reduction techniques using color transforms and PCA, though
without success.
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Algorithm 3 Texture detector

1: Input: a noisy image and a reference patch.
2: Parameter: Gaussian noise standard deviation σ, patch size h, search window size κ, similarity

threshold β, required number of similar neighbors n.
3: Compute the difference between the reference patch and its surrounding patches in the search

window. Declare a neighboring patch similar if its `2-distance is smaller than
√

2βσh.
4: Label the reference patch as structure if more than n similar patches have been found.

Algorithm 4 SSaNN

1: Input: noisy image Ĩ.
2: Output: denoised image.
3: Parameter: Gaussian noise standard deviation σ.
4: Denoise Ĩ with BM3D and the neural network to get IB and IN .
5: Extend Ĩ to Ī so that Ī’s 7-by-7 patches form a one-to-one mapping with Ĩ’s pixels.
6: Use Algorithm 3 to classify Ĩ’s patches (hence Ī’s pixels) into either structure or texture. Form

a matrix TS of the same size as Ī with TS(x, y) set to 1 if Ī(x, y) is labeled structure and 0
otherwise.

7: Return IN ◦ (1− TS) + IB ◦ TS where ◦ denotes the element-wise product.

Figure 4: SSaNN forms a new image (left) by replacing texture pixels in BM3D’s restored image
with those estimated by the neural network. Pixels identified as part of the texture are marked in
black in the right image. This combination enables a RMSE reduction from 12.34 to 12.15.

Figure 5: A visual comparison between BM3D and SSaNN: from left to right, we have respectively
the original image, its noisy version affected by Gaussian noise with level 25, and its restoration by
BM3D (RMSE = 19.23) and SSaNN (RMSE = 19.16).
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σ=10 NN BM3D SSaNN
computer 4.85 4.66 4.59
dice 2.60 1.82 1.82
flower 3.22 2.86 2.83
girl 2.95 2.36 2.35
traffic 5.68 5.68 5.60
valldemossa 6.56 6.63 6.51
average 4.31 4.00 3.95

σ=25 NN BM3D SSaNN
computer 8.85 8.19 8.13
dice 4.89 3.12 3.12
flower 5.68 5.13 5.11
girl 5.14 3.67 3.67
traffic 10.24 10.03 9.92
valldemossa 12.30 12.34 12.15
average 7.85 7.08 7.02

σ=35 NN BM3D SSaNN
computer 10.89 9.92 9.91
dice 6.35 3.79 3.79
flower 7.04 6.37 6.35
girl 6.53 4.47 4.47
traffic 12.29 11.88 11.78
valldemossa 14.82 14.76 14.56
average 9.65 8.53 8.48

Table 1: Algorithm comparison in RMSE on six IPOL images. The best results are marked in bold.
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