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Abstract

We present in this article a detailed analysis and implementation of the cartoon+texture de-
composition algorithm proposed in [A. Buades, J.L. Lisani, “Directional filters for color car-
toon + texture image and video decomposition”, Journal of Mathematical Imaging and Vision,
2015]. This method follows the approach proposed by [A. Buades, T. Le, J-M. Morel, L. Vese,
“Cartoon+Texture Image Decomposition”, IPOL 2011], based on low/high-pass filtering, but
replaces the isotropic filters by a bank of low-pass directional filters. The cartoon image is
obtained by filtering in the direction that leads to the largest local total variation rate reduc-
tion. This permits to improve the performance of the decomposition near image discontinuities,
where an halo effect was produced by the previous method.

Source Code

The source code and an online demo are accessible at the IPOL web page of this article1.

Keywords: cartoon; texture; filtering; directional filters

1 Introduction

The cartoon+texture problem refers to the problem of decomposing a digital image into a cartoon
(piecewise-smooth) component and a textural (oscillatory) part. More precisely, if we denote the
image by f 2, we are interested in decomposing f into two components f = u + v. The image u is
the cartoon or geometric component of f while v is the textured component, which should contain
essentially the noise and the texture.

We propose a non-linear filter that decomposes the image into a geometric and a oscillatory part
depending on a single scale parameter. The use of non-linear filters for image decomposition was
introduced in [3]. The algorithm in [3] computes a non-linear low-high frequency decomposition by

1http://dx.doi.org/10.5201/ipol.2016.165
2A grayscale (resp. color) image is represented by a function f : (x, y)→ IR (resp. IR3), where Ω is an open subset

of IR2, typically a rectangle or square. The image is defined on a continuous domain by interpolation of the values on
a discrete set of pixels.
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using isotropic filters. We illustrate that the use of these filters produces halo effects near strong
edges of the image.

In [5] we introduced a new algorithm using directional filters improving the decomposition in the
proximity of edges. In this article we give a complete account of the algorithm and display several
results for different values of its only parameter.

The article is organized as follows: Section 2 introduces isotropic non linear filter pairs for image
decomposition. The new method is described in Section 3; several results of the proposed method
are displayed in Section 4; finally some conclusions are provided in Section 5.

2 Cartoon+Texture with Isotropic Non-Linear Filters

The cartoon+texture decomposition f = u + v is analogous to the classical signal processing low-
pass/high-pass filter decomposition. However, the cartoon part of an image actually contains strong
edges, and therefore all frequencies, up to the high ones, while a texture can also contain middle and
high frequencies. Thus, linear decomposition algorithms cannot make a clear cut separation between
cartoon and textures. As a result, edges are blurred in the cartoon part while some texture is still
present. Y. Meyer [9] proposed to solve the problem using a variational formulation containing two
norms: the right decomposition is the one where the cartoon part u has minimal total variation while
the oscillatory component has a minimal norm in a dual space of BV. Many variants proposed in the
literature consider various functional spaces for the textural part. In particular, strong mathematical
geometric arguments are put forward in favor of the TV -L1 model [6, 8]. An extensive mathematical
analysis of Meyer’s model in a bounded domain is performed in [1] while a model classification can
be found in [2].

In [3, 4] a fast approximate solution was proposed to the original variational problem obtained by
applying a non-linear low-pass/high-pass filter pair. A local indicator was built to decide at each point
x whether it belongs to a textural region or to a cartoon region. The main characteristic of a cartoon
region is that its total variation does not decrease by low-pass filtering. The main characteristic of a
textured region is its high total variation due to its oscillations. This total variation decreases very
fast under low-pass filtering. Formalizing these remarks the local total variation (LTV) at x was
defined

LTVσ(f)(x) := Lσ ∗ |Df |(x), (1)

where Lσ is a low-pass filter (a Gaussian kernel) with standard deviation σ.

The relative reduction rate of LTV was defined by a function x 7→ λσ(x), given by

λσ(x) :=
LTVσ(f)(x)− LTVσ(Lσ ∗ f)(x)

LTVσ(f)(x)
, (2)

which gives the local oscillatory behavior of the function f . If λσ is close to 0 then it means that
there is little relative reduction of the local total variation by the low-pass filter. If instead λσ is
close to 1, the reduction is important, which means that the considered point belongs to a textured
region. Thus, a fast nonlinear low-pass and high-pass filter pair was proposed, defined by weighted
averages of f and Lσ ∗ f depending on the relative reduction of LTVσ

u(x) = w(λσ(x))(Lσ ∗ f)(x) + (1− w(λσ(x)))f(x),

v(x) = f(x)− u(x),
(3)

where w(x) : [0, 1]→ [0, 1] is an increasing function that is constant and equal to zero near zero and
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constant and equal to 1 near 1. The soft threshold function w was defined by

w(x) =


0 x ≤ a1
(x− a1)/(a2 − a1) a1 ≤ x ≤ a2
1 x ≥ a2

, (4)

where the parameters a1 and a2 were respectively fixed to 0.25 and 0.5. If λσ(x) is small, the
function f is non-oscillatory around x and therefore the function is BV (or cartoon) around x. Thus
u(x) = f(x) is the right choice. If instead λσ(x) is large, the function f is locally oscillatory around
x and locally replaced by (Lσ ∗ f)(x).

Figure 1 displays the results of the filter pair for σ = 1.5. In this figure, and throughout the paper,
the texture image is displayed by linearly mapping the [−20, 20] range to [0, 255] and saturating values
outside this range.

Figure 1: Decomposition of Barbara gray image (left) in cartoon (center) and texture (right). The
result was obtained with the non-linear filter pair using Lσ (σ = 1.5) proposed in [3].

3 Directional Filters for Cartoon+Texture

The filter pair proposed in [3] efficiently separates the smooth parts of the image from the texture
components. However, as shown in Figure 2 in the proximity of edges the cartoon and texture are not
well separated and the noise and micro-texture are kept in the cartoon part. The reason is that the
value of LTVσ in these regions depends mostly on the sharpness of the nearby edge, which doesn’t
change too much after the low-pass filtering. Therefore, the value of λσ is small and u ≈ f in those
pixels.

We propose in this section a new approach that overcomes this problem. This approach is based
on the use of a bank of low-pass directional filters Lσ,θi , that replace the Lσ isotropic filter. Let us
define Lσ,0 as

Lσ,0(x, y) =

{
CLσ(x, y) x ≥ 0

Ce−
x2

2α2Lσ(x, y) x < 0
, (5)

where Lσ is a low-pass filter (Gaussian kernel) with standard deviation σ and C is a normalization
constant that guarantees that Lσ,0 integrates to 1. Lσ,0 is identical to Lσ for positive values of the
x coordinate and decreases exponentially for negative values of x. The spread of the decreasing
function is controlled by α, which has been fixed to 0.75 in all of our experiments.

The bank of filters Lσ,θi is then defined as a set of rotated versions of Lσ,0 around its center. The
set of rotation angles is {θi = i · θs, i = 0, · · · , b360

θs
c}, where θs is the angular step (fixed to θs = 8o

in all of our tests). Figure 3 displays an example of directional filter, for θi = 45o.

77



Antoni Buades, Jose-Luis Lisani

Figure 2: Zoom on the cartoon part of Figure 1 for the non-linear filter decomposition in [3]. Left,
original image. Right, cartoon result. Due to the use of an isotropic kernel, the noise and micro-
texture are kept in the cartoon part in the proximity of edges (halo effect).

"filterDn45.txt" u 1:2:3
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Figure 3: Example of directional filter used for cartoon + texture classification.

The relative reduction of the local total variation rate λσ is now defined as

λσ(x) = max{λσ,θi(x), i = 0, · · · , b360

θs
c}, (6)

where

λσ,θi(x) :=
LTVσ,θi(f)(x)− LTVσ,θi(Lσ,θi ∗ f)(x)

LTVσ,θi(f)(x)
, (7)

and
LTVσ,θi(f)(x) := Lσ,θi ∗ |Df |(x). (8)

With this definition, for a pixel x in the proximity of an edge oriented along the θi direction,
λσ,θi(x) shall not be affected by the edge and therefore, if the pixel belongs to a texture, the value of
λσ,θi(x) shall be high. In consequence, λσ(x) will also be high, indicating that the pixel belongs to
the textural component of the image.

Figure 4 displays the values of λσ, for increasing values of σ, at various locations of the image
Barbara. The left column shows the selected pixel, the second column displays λσ computed with
the isotropic kernel (Equation (2)) and the third column displays the new value of λσ (computed
with Equation (6)). We observe that in regions far away from an edge (either smooth or texture
regions, rows 1 and 2) the original and new values are very similar. However, in the proximity of
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edges (rows 3 and 4) the new values are higher. As a consequence, those pixels shall be considered
as texture by the proposed algorithm and therefore filtered out from the cartoon component.
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Figure 4: Display of plots λσ(x) for several pixels in the Barbara gray image and different σ. Second
column, isotropic filter. Third column, directional filters.

The cartoon and texture images are recovered using Equation (3). For color or multispectral
images f = (f1, · · · , fn), the algorithm is applied on each channel, although the oscillatory indicator
function is computed as

LTVσ,θi(f)(x) := Lσ,θi ∗ |Df1|(x) + · · ·+ Lσ,θi ∗ |Dfn|(x). (9)

That is, all channels collaborate at the same time in the identification of oscillatory parts of the
image. The final weighted average uses for each pixel the same weight for all channels, leading to
a coherent color image decomposition. For variational methods the fidelity and regularity terms of
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multivalued functions rewrite as the sum of the same terms in each channel, which is equivalent to
the minimization of the variational formulation independently for each channel.

The method keeps the scale σ of the texture as the only method parameter. There is no clear
definition of what a cartoon-texture decomposition should be. We argue that such a definition cannot
be proposed without fixing a certain scale or delivering a set of cartoon images for a complete range
of scales. A textured pattern can be perceived as smooth when viewed from a long distance (e.g. the
striped pants in Barbara image, Figure 1-left); conversely, an apparently smooth object can display
textural details when viewed at a close range (e.g. the carpet in Barbara image, Figure 2-left). That
is, scale is naturally linked to a cartoon-texture definition. For a fixed scale, the proposed cartoon
decomposition is invariant to contrast, that is, no parameter is necessary if image contrast is modified.
This requirement should be extensive to any other decomposition method, for the current approach
it led to comparing the relative decreasing of the total variation and not its absolute one.

The whole method is described in Algorithm 1. Remark that in the description of the algorithm
an optional step has been added: the possibility of including the isotropic Gaussian filter in the filter
bank. The reason is that in uniform regions of the image (i.e. far from an edge) the results of the
original method in [3] were already good. By adding the Gaussian kernel to the bank of filters we
ensure that our results will be at least as good as those obtained with the isotropic filter pair. In all
the tests displayed in the next section, and also in the online demo, we have used this option.

Cartoon+Texture Decomposition of Video Sequences. In [5] it is argued that the proposed
method is better suited for frame by frame processing of video sequences than other state of the
art methods [6], [7] and [10]. Two factors explain this performance: first, the proposed method
slightly smoothes the edges as an anisotropic filter would do, making them more coherent in time.
For the rest of methods the shape of the boundaries is more dependent on small oscillations or noise
at the contours. A second reason is that our algorithm behaves as a Gaussian convolution far from
object boundaries and in presence of isotropic textures. This convolution is actually translation
invariant and thus more suitable for frame by frame processing. This is not the case for variational
or thresholding methods.

4 Results

Figure 5 compares the results of the isotropic and directional filters described in the previous sections.
Both methods have been applied on the same image and some details are displayed. We observe that
artifacts near the edges have been reduced.

In the rest of this section we show the effect, for the images in Figure 6, of increasing the scale
parameter σ in the obtained cartoon and texture images. The results are shown in figures 7 to 10.
As expected, when σ increases textural details are added to the texture image, since their relative
size with respect to the scale parameter decreases and they are no longer assigned to the cartoon
image by the low-pass filter. These figures illustrate at which scale patterns become oscillatory.

5 Conclusions

We have presented a new filter based approach for image decomposition that avoids artifacts of
previous filter based algorithms. Our method replaces the isotropic filters used in previous approaches
by a bank of low-pass directional filters. The cartoon image is obtained by filtering in the direction
that leads to the largest local total variation rate reduction. This permits to improve the performance
of the decomposition near image discontinuities, where an halo effect was produced by previous
methods. Several results are presented and various values of the parameter have been tested.
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Algorithm 1: Cartoon+Texture Decomposition using Directional Filters

input : Original image f , scale parameter σ
output: Cartoon and texture images u, v

begin
//Create bank of directional filters. θs = 8o (angular step)
Lσ ← ∅ // Initialization

Lσ,0 ←

{
CLσ(x, y) x ≥ 0

Ce−
x2

2α2Lσ(x, y) x < 0
(α = 0.75, Lσ: Gaussian kernel)

for i = 0, · · · , b360
θs
c do

θi ← i · θs //set of angles
Lσ,θi ← rotate Lσ,0 θi degrees around its center
Lσ ← Lσ ∪ Lσ,θi // Add kernel to filter bank

//Optional: add isotropic kernel to filter bank
Lσ ← Lσ ∪ Lσ
//Compute local directional total variation rates
for K ∈ Lσ //For each kernel in the filter bank do

//Compute Local Total Variation with respect to kernel K, at each pixel x

LTVK(f)(x)←

{
K ∗ |Df |(x) gray level images

K ∗ |Df1|(x) + · · ·+K ∗ |Dfn|(x) color images

//Local Total Variation Rate for kernel K

λK(x)← LTVK(f)(x)− LTVK(LK ∗ f)(x)

LTVK(f)(x)

//Total Local Variation rate at each pixel x
λσ(x)← max{λK(x), K ∈ Lσ}
//Optimum kernel at pixel x
K∗ ← argmaxK∈Lσ{λK(x)}
//Cartoon component
u← w(λσ)(K∗ ∗ f) + (1− w(λσ))f //w defined as in Equation (4)
//Texture component
v ← f − u

Future research might potentially investigate the automatic adjustment of the scale parameter
σ. As observed in Figure 4, the value of λσ(x) in textured regions tends to a constant value as σ
increases. This hints to the possibility of automatically setting σ to the smallest value attaining
this constant. In cartoon regions however the value of λσ(x) follows an increasing trend and further
research should be conducted to establish the optimal value of σ. Observe that this line of research
would lead to several local scale parameters, instead of the single global one used so far.
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Figure 5: Results on Barbara gray image of the methods described in sections 2 and 3 with the same
scale parameter (σ = 3). Left, isotropic filter. Right, directional filter. Bottom, details corresponding
to the red squares marked on the top images. Remark that the halo effect in the proximity of edges
has been reduced with the proposed method.
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Figure 6: Original images used to test the proposed algorithm.

Image Credits

Standard test image.

Kodak database.
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Figure 7: Cartoon decomposition obtained with the proposed algorithm for different values of σ.
From top to bottom σ = 2, 3, 4, 6. When σ increases textural details are added to the texture image,
since their relative size with respect to the scale parameter decreases and they are no longer assigned
to the cartoon image by the low-pass filter.
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Figure 8: Cartoon decomposition obtained with the proposed algorithm for different values of σ.
From top to bottom σ = 2, 3, 4, 6.
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Figure 9: Cartoon decomposition obtained with the proposed algorithm for different values of σ.
From top to bottom σ = 2, 3, 4, 6.
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Figure 10: Cartoon decomposition obtained with the proposed algorithm for different values of σ.
From top to bottom σ = 2, 3, 4, 6.
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