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Abstract

This article presents an implementation of the ‘Midway Equalization’ method for videos. This
technique allows us to modify the image histograms so that they present similar luminances. We
propose two algorithms: the first one based on histogram inversion and the second one on the
sorting of images intensities. The former computes the histograms and then finds the contrast
change functions by convolving the inverse histograms with a Gaussian function. The latter
starts by sorting the pixels of each image by intensity; the temporal signals, composed of all gray
levels of the same rank, are then convolved with a Gaussian function. In this sorting method, the
resulting histograms are more similar and homogeneous. Nevertheless, the histogram strategy
is faster and provides good results in general. The algorithms include a ‘dithering’ option for
reducing quantization artifacts. The whole implementation depends on a single parameter,
the standard deviation, that is used for Gaussian convolutions. The experiments show several
examples, including the quantization artifacts that appear in some situations and the benefits of
dithering. We observe that these artifacts are usually more important in the histogram method.

Source Code

The reviewed source code and documentation for this algorithm are available from the web page
of this article1. Compilation and usage instruction are included in the README.txt file of the
archive.

Keywords: histogram matching; midway equalization; dithering method

1 Introduction

Midway equalization [3] is a method for assigning the same intermediate histogram to a pair of
images. It permits to remove some types of brightness changes in image pairs. It is especially useful
for equalizing two images of a scene taken from the same camera with different exposure times. This
method is implemented for two images in [8].

1https://doi.org/10.5201/ipol.2017.181
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Midway equalization belongs to the class of global histogram equalization (GHE) methods [7],
which applies a unique contrast change function to the whole image. These methods are interesting
because of their simplicity, but they usually present several shortcomings, such as the difficulty to
achieve a well-balanced enhancement over different image parts, the appearance of unpleasant visual
artifacts or the change in the average image luminance [18].

Adaptive histogram equalization (AHE) techniques [15, 1, 17], on the other hand, compute several
change functions for different parts of the image. They usually enhance the contrast in each pixel
depending on the information of its local neighborhood, with the aim of isolating the effects on dark
and bright regions. Local image contrast methods are usually based on human perception, like, e.g.,
the multiscale retinex method [9, 13].

In this work, we extend the implementation proposed in [8] to a sequence of images, following
the method proposed in [4]. The implementation is similar to [8], with the histogram of the frames
modified according to the information of several images in a temporal window. We describe two
implementations: the sorting method [16], based on the sorting of the images intensities; and the
histogram method, based on the matching of normalized cumulative histograms.

The sorting method orders the pixels of the images by intensity; then, it temporally convolves
all intensities of a given rank with a Gaussian function; and finally, it rearranges the pixels in their
original locations. This method allows for a finer control on the equalization, which results in more
similar and homogeneous histograms. It is the base for exact histogram specification [2]. In the
histogram method, the contrast change functions are computed using inverse cumulative histograms.
This method is faster but definitely more sensitive to quantization artifacts.

In order to work with color images, we convert them to grayscale levels. The color channels are
modified according to the rate of change between the gray values before and after the equalization in
each pixel independently. It is also possible to treat the channels separately, but this may introduce
important color changes in the sequence.

This type of equalization works correctly when the relative intensity of the objects is preserved in
the scene. However, when the appearance of the scene changes, or when the illumination changes do
not preserve the order of the intensities, severe artifacts may appear after the equalization. Section 4
shows successful examples, but also illustrates potential artifacts.

2 Midway Equalization for Video

We define a set of color images as Ii, i := 1, . . . , Nf , with Nf the number of frames in the input
video. At the beginning of the process, the methods convert the color images to gray levels as
Ig := 0.2989× IR + 0.5871× IG + 0.1140× IB. They also add white noise if the dithering option is
chosen. In this case, since the intensities of the images are expected to be in the range [0, 255], we
add a small amount of noise, with a standard deviation of σd := 2.

2.1 Method Based on Histograms

Given a set of gray level images, {Ii}, defined on the same discrete domain, Ω = {1, . . . , n} ×
{1, . . . ,m}, their cumulative normalized histograms are defined by

Hi(λ) :=
1

|Ω|
|{(i, j) ∈ Ω/Ii(i, j) ≤ λ}| , (1)
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where |Ω| denotes the cardinal of the set Ω. In the midway video equalization [4], the contrast change
functions fi are calculated through a temporal convolution with a Gaussian function as

fi(µ) :=
i+k∑

j=i−k

Gσ(j − i)H−1

j (Hi(µ)), (2)

with Gσ(s) := We
s2

2σ2 and W := 1/
∑i=k

i=−k e
i2

2σ2 a normalizing coefficient. The image intensities are
then modified as

Ii(x) := fi(Ii(x)). (3)

The method first computes the cumulative normalized histograms Hi as in Equation (1). Then, it
estimates the contrast change functions fi based on temporal Gaussian convolutions (Equation (2)).
Finally, it transforms the images according to Equation (3). Algorithm 1 includes these steps with
the initial conversion to gray levels and the dithering option.

Algorithm 1: Main Algorithm

input : {I}, σ, dithering
output: {I}
Convert images {I} to grayscale {Ig}
if dithering then

Add white noise to {Ig} with σd := 2

for i← 1 to Nf do

Normalize Histogram(Ig(i), H(i)) // Algorithm 2

Compute Contrast Changes Functions({H}, σ, {f}) // Algorithm 3

Apply Contrast Change({I}, {Ig}, {f}) // Algorithm 4

Algorithm 2 computes the cumulative normalized histogram for an image. This function initializes
the histograms bins to zero and increases the count of the histogram positions for each corresponding
intensity value. Constant BIN RATE is used for converting intensity values to histogram positions.
At the end, the histogram is normalized and accumulated. Np is the number of pixels per image,
Np := n×m.

These algorithms use the following constants:

• PIXEL RANGE: Defines the range of intensity values or color depth. For 8 bits, it is equal to 256.
For color images of 24 bits, it should also be defined as 256 (channels are treated separately).
It is usually a power of 2 (28, 210, 212 or, e.g., 216).

• BIN SIZE: Defines the histogram resolution. If it is equal to PIXEL RANGE, then each bin
corresponds to each intensity level. Nevertheless, it is typical to use higher resolutions, such as
1024 or 2048, in order to have a finer control over the contrast change.

• BIN RATE: Is the rate BIN SIZE/PIXEL RANGE and is used to convert image intensities to his-
togram positions.

The constant PIXEL RANGE depends on the format of the images and can be read from the files.
BIN SIZE determines the number of bins in the histogram. Choosing a constant BIN SIZE larger than
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Algorithm 2: Normalize Histogram

input : I, H
output: H
// initialize histogram

for i← 1 to BIN SIZE do

H(i)← 0

// compute histogram

for i← 1 to Np do

p← round(BIN RATE× I(i))
if p < 1 then

p← 1

else if p > BIN SIZE then
p← BIN SIZE

H(p)← H(p) + 1

// normalize histogram

for i← 1 to BIN SIZE do

H(i)← H(i)/Np

// accumulate histogram

for i← 2 to BIN SIZE do

H(i)← H(i) +H(i− 1)

PIXEL RANGE does not have any effect on gray level images. However, it matters for color images
since we interpolate the color channels.

Algorithm 3 calculates the contrast change functions. For each image, it selects the corresponding
gray levels in the cumulative normalized histograms of the neighbor frames and applies a Gaussian
smoothing. Variable radius defines the number of frames used in the Gaussian convolutions. It
is chosen as radius := 2 σ, which provides a good precision in general. In order to accelerate the
method, we use an array, p2, to find the correspondences for each gray level in the neighbor frames.
We use two separate loops for finding the intensity values in the previous and following frames. The
Gaussian weights are computed at the same time.

Finally, Algorithm 4 applies the contrast change to the images. The color channels are transformed
according to the ratio of the original and equalized gray levels in each position. Function gray2rgb
scales the color pixels, given in I(i, j), by the factor post/Ig(i, j). This function controls that the
intensity values remain inside the limits of the allowable intensity range, through a scaling of the color
channels. This is the strategy followed by other IPOL articles, such as [10, 11]. Another alternative
is to project these values in the RGB cube in order to preserve the Hue value of the original color, like
in [14]. Constant BIN RATE, and its inverse, are used for converting image intensities to histogram
positions and vice-versa.

The overall computational complexity of this method is O(NfNp). The first and third steps go
through the images once. The second step depends on the size of the histogram bins (BIN SIZE),
which is typically much smaller than the image dimensions.

2.2 Method Based on the Sorting of the Pixels

The first step of the sorting method is to sort the pixels of each image by intensity. This creates a
new volume where intensities with the same rank, in different frames, are temporally aligned in the
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Algorithm 3: Compute Contrast Changes Functions

input : {H}, σ
output: {f}
radius← round(2 σ)
for i← 1 to Nf do

min← i− radius
max← i+ radius
if min < 1 then

min← 1

if max > Nf then

max← Nf

for j ← 1 to 2 radius+ 1 do

p2(j)← 0

for p1 ← 1 to BIN SIZE do

// variables for the Gaussian convolution

sum← p1
weight← 1
// compute contrast change function with respect to previous frames

for j ← min to i− 1 do

k ← j −min+ 1
// find the corresponding level in histogram H(j)

while p2(k) ≤ BIN SIZE and H(j, p2(k)) < H(i, p1) do
p2(k)← p2(k) + 1

if p2(k) > BIN SIZE then

p2(k)← BIN SIZE

// update the variables for the Gaussian convolution

weight← weight+ e
(i−j)2

2σ2

sum← sum+ e
(i−j)2

2σ2 × p2(k)

// compute contrast change function with respect to following frames

for j ← i+ 1 to max do

k ← j −min+ 1
// find the corresponding level in histogram H(j)

while p2(k) < BIN SIZE and H(j, p2(k)) < H(i, p1) do
p2(k)← p2(k) + 1

if p2(k) > BIN SIZE then

p2(k)← BIN SIZE

// update the variables for the Gaussian convolution

weight← weight+ e
(i−k)2

2σ2

sum← sum+ e
(i−k)2

2σ2 × p2(k)

f(i, p1)← sum/weight
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Algorithm 4: Apply Contrast Change

input : {I}, {Ig}, {f}
output: {I}
for i← 1 to Nf do

for j ← 1 to Np do

prev ← Ig(i, j)
// select relative position in the contrast change function

p← round(BIN RATE× prev)
if p < 1 then

p← 1

else if p > BIN SIZE then

p← BIN SIZE

// get corresponding position in the contrast change function

q ← i× BIN SIZE+ p
// obtain the corresponding contrast change in grayscale

post← 1/BIN RATE× f(i, q)
// apply the contrast change to each color channel

I(i, j)← gray2rgb(post/prev, I(i, j))

same position. It is important that this sorting does not correlate with the image reading direction,
because it may produce strips of constant intensities after equalization, like in Figure 1. To avoid
this, we need to randomize the gray levels before sorting them.

Figure 1: Artifacts appearing with the sorting method: On the left, one frame of the Pieds Nickelés sequence (see experiment
in Figure 4); in the middle, the result of the sorting method without randomizing the gray levels (observe the strips of constant
intensities); on the right, the result using the randomization.

In the second step, this volume is smoothed in each rank through a one dimensional temporal
Gaussian convolution. This yields a new set of images with histograms having more similar distri-
butions. In the final step, the pixels are rearranged in their original positions in order to obtain the
final equalized images. This method is detailed in Algorithm 5.

The quick sort algorithm (supplied by the C++ STL) is used for sorting the pixels of the images,
which has a complexity of O(N logN). Since it must be applied to every frame, then its complexity
is O(NfNp logNp), with Nf the number of frames and Np the number of pixels per image. The result
is obtained in the same array. This function is modified to provide the original position of each pixel
in the input images (array index). The intensity values are smoothed at each position of the ordered
images using a one dimensional temporal Gaussian convolution. We choose the Deriche’s recursive
filter [5] since it is fast, with a complexity of O(N), and has a good accuracy as shown in [6] (we
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Algorithm 5: Sorting Method

input : {I}, σ, dithering
output: {I}
Convert images {I} to grayscale {Ig}
if dithering then

Add white noise to {Ig} with σd := 2

Sort Images({Ig}, {index})
Gaussian Convolution({Ig}, {Is}, σ)
Apply Contrast Change({I}, {Ig}, {Is}, {index}) // Algorithm 6

use the implementation given in this article). The total computational complexity of this step is
O(NfNp).

Algorithm 6: Apply Contrast Change

input : {I}, {Ig}, {Is}, {index}
output: {I}
for i← 1 to Nf do

for j ← 1 to Np do

I(i, index(i, j))← gray2rgb(Is(i, j)/Ig(i, j), I(i, index(i, j)))

After the images have been smoothed pixel by pixel, the intensities are rearranged using Al-
gorithm 6. For grayscale images, this is a simple assignment of the intensities using the index
array computed in the first step. For color images, we follow the same strategy as in the previous
method [10, 11]: the colors are modified according to the rate of change between Is and Ig.

The benefit of this technique is that the histograms of the resulting images are more similar.
However, one of the drawbacks of this alternative is that the sorting of the pixels and the Np con-
volutions with a Gaussian kernel have a higher computational cost than in the previous strategy.
Another drawback is that pixels with the same initial intensity may get different values after equal-
ization. Nevertheless, there are several strategies that take into account this effect to improve the
equalization result; see [2] or [12], for instance.

In summary, the complexity of the algorithms are O(NfNp logNp) and O(NfNp), for the sorting
and histogram methods, respectively; although with a much bigger constant in the sorting method.
Note that both strategies are highly parallelizable, so the runtime is, in practice, inversely propor-
tional to the number of cores.

3 Implementation Details

The implementation of the algorithm works with raw videos. This facilitates the task of reading
and writing the information inside the program. The main procedure loads the whole video at the
beginning and writes the output at the end. For converting a video to raw data, we use the avconv
program from the command line as

avconv -i input_video -f rawvideo -pix_fmt rgb24 -y output_video.raw
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This converts a video into raw data with 24 bits per pixel in RGB format, 8 bits per channel. The
three components of the pixels are stored consecutively. The video can be directly read using an
unsigned char array. This can be done in a single instruction with the fread function in C as

fread(I, sizeof(unsigned char), video_size, filename);

and written to disk with fwrite as

fwrite(I, sizeof(unsigned char), video_size, filename);

In a raw video, the information is stored in binary format without any header. This means that the
size and the number of frames must be passed to the program. The following instruction shows how
to call the program from the command line:

midway_video input_video.raw width height nframes [OPTIONS]

with width and height the size of the frames and nframes the number of frames. Additionally,
we may specify the standard deviation for the Gaussian convolutions, with -r 30 for example, and
the use of the dithering method, with -d. If we want to convert the output raw video to any other
format, we may also use the avconv program as

avconv -f rawvideo -pix_fmt rgb24 -video_size ’width’x’height’ -framerate ’N’ -i

input_video.raw -pix_fmt yuv420p output_video

Note that it is necessary to specify the dimensions of the frames, width x height, and the frame
rate, N. In the accompanying distributable, we include a script, called cmdline_execute.sh, that
covers all the steps, from the conversion of the input video to raw data, the call to the midway
equalization, and the conversion from the output raw data to a video format supported by avconv.

4 Experiments

In this section, we show several examples using our algorithms. The value of σ is 100 by default.
This means that the equalization in every image takes into account the information of 201 frames.
This large kernel will yield very similar histograms for all the images. However, if the contents of
the video change, this may produce some problems, as in the last example.

In the first experiment, Figure 2, we show the equalization of a Chaplin’s film, The Cure. The
first row shows several frames of the original video and, the second, the equalized images with the
histogram method. Figure 3 shows the corresponding histograms for these images and also for the
images obtained by the sorting method. We observe that the midway equalization produces a more
stable brightness range. The intensities of the resulting images are similarly distributed, as we can
see in the histograms. The sorting method, in the third row, produces histograms which are more
similar and homogeneous than in the histogram method. It also fills the regular empty values that
we observe in the histograms of the original images.

In the second example, Figure 4, some quantization artifacts appear after the equalization. In
the case of the histogram method, we observe a large white region in the first image of the second
row. This method cannot cope with the saturation in the extreme values of the intensity range. In
the sorting method, this saturation artifact does not appear.

Figure 5 shows the histograms for these images. The first histogram in the second row contains
a large value in the last intensity bin, which corresponds to the large white region in Figure 4.
The histogram method cannot distribute these values and its shape is very different from the other

72



Midway Video Equalization

Figure 2: Equalization of Chaplin’s film The Cure: Top row, three frames of the original video; bottom row, the same
frames after equalization using the histogram method.

Figure 3: Histograms corresponding to the images in Figure 2. In the last row, the histograms of the images obtained by
the sorting method.

histograms. On the contrary, the histograms of the sorting method are much more homogeneous and
similar, like in the previous example.

Figure 6 shows the results using the dithering option. The quantization artifacts are reduced.
Nevertheless, in the case of the histogram method, we still observe the large white region. Increasing
the amount of noise may still reduce these artifacts at the expense of reducing the quality of the
images. In the sorting method, the use of dithering does not introduce any improvement.

The corresponding histograms for these images are given in Figure 7. Introducing a small amount
of noise contributes to a better distribution of the intensities and the histograms become more similar
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Figure 4: Equalization of Pieds Nickelés film: Top row, three frames of the original video; middle row, the same frames
after equalization with the histogram method; bottom row, equalization using the sorting method. Notice the quantization
artifacts that appear on the left image of the middle row.

Figure 5: Histograms corresponding to the images in Figure 4.

74



Midway Video Equalization

Figure 6: Equalization of Pieds Nickelés film using the dithering option: Top row, results obtained by the histogram method;
bottom row, the results obtained by the sorting method. The quantization artifacts are still important for the first method,
as we can see in the top–left image. The effect on the sorting method is not relevant in this case.

in both methods.

Figure 7: Histograms corresponding to the images in Figure 6. The top row corresponds to the histograms of the original
images.

In the third experiment, Figure 8, we observe the effect of midway equalization on color videos.
The histograms of the second and third rows of Figure 9 show that the distribution of intensities
is better in the equalized sequences. The solutions for the histogram and sorting methods are very
similar.

The last experiment in Figures 10 and 11 shows a failure example. This is a sequence of a walking
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Figure 8: Equalization of the Office sequence: Top row, three frames of the original video; bottom row, the same frames
after equalization with the histogram method.

Figure 9: Office sequence: Histograms corresponding to the images in Figure 8. The third row contains the histograms of
the sorting method.

person where the scene changes drastically in appearance and lighting conditions. In the second row
of Figure 10 and the first row of Figure 11, corresponding to the histogram and sorting methods,
respectively, we show the result using a value of σ := 30. In that case, the equalization works
properly, although we start to observe some color changes in the sky. In the last row of both figures,
σ := 100, there are severe color artifacts in the sky and asphalt, e.g., the blue color appearing in
some parts of the first image.

76



Midway Video Equalization

Figure 10: Equalization of the Walking sequence: Top row, three frames of the original video; middle row, frames after
equalization with the histogram method and σ := 30; bottom row, frames after equalization with the same method and
σ := 100. We observe that increasing the value of σ introduces important color artifacts.
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Figure 11: Equalization of the Walking sequence: Top row, equalization with the sorting method and σ := 30; bottom row,
equalization with the same method and σ := 100. We observe similar artifacts as in the histogram method (see Figure 10).
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