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Abstract

The bilateral filter is a popular non-linear smoother that has applications in image processing,
computer vision, and computational photography. The novelty of the filter is that a range kernel
is used in tandem with a spatial kernel for performing edge-preserving smoothing, where both
kernels are usually Gaussian. A direct implementation of the bilateral filter is computationally
expensive, and several fast approximations have been proposed to address this problem. In
particular, it was recently demonstrated in a series of papers that a fast and accurate approxi-
mation of the bilateral filter can be obtained by approximating the Gaussian range kernel using
polynomials and trigonometric functions. By adopting some of the ideas from this line of work,
we propose a fast algorithm based on the discrete Fourier transform of the samples of the range
kernel. We develop a parallel C implementation of the resulting algorithm for Gaussian kernels,
and analyze the effect of various extrinsic and intrinsic parameters on the approximation quality
and the run time. A key component of the implementation are the recursive Gaussian filters of
Deriche and Young.

Source Code

The ANSI C source code used in the demo can be downloaded from the web page of this
article1. Compilation and usage instruction are included in the README.txt of the archive.
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1 Introduction

The bilateral filter was proposed by Tomasi and Maduchi [12] as a non-linear extension of the classical
Gaussian filter. It belongs to the class of edge-preserving filters that can smooth homogeneous regions
and preserve edges at the same time. The bilateral filter has become a popular filtering tool in image
processing, computer graphics, computer vision, and computational photography. We refer the
interested reader to [9] for an account of the working of the filter and its various applications.

In this paper, we will consider grayscale images f : Ω → {0, 1, . . . ,M}, where Ω is some finite
rectangular lattice and M is the dynamic range. For example, M = 255 for an 8-bit grayscale image.
The bilateral filtering of f is given by

B[f ](i) = 1

η(i)

∑

j∈[−ω,ω]2

w(j) gσr
(f(i− j)− f(i)) f(i− j), (1)

where η(i) is the normalization factor,

η(i) =
∑

j∈[−ω,ω]2

w(j) gσr
(f(i− j)− f(i)). (2)

As in the original formulation [12], we consider the spatial and range kernels to be Gaussian, namely,

w(i) = exp

(

−‖i‖
2

2σ2
s

)

and gσr
(t) = exp

(

− t2

2σ2
r

)

, (3)

where ‖·‖ is the standard Euclidean norm. The parameters σs and σr are used to control the action
of the spatial and range kernels. The window size is usually set to be ω = 3σs in practice. Similar
to the classical Gaussian filter, the quantum of smoothing can be controlled using σs (the larger the
value of σs, more is the smoothing). In contrast, the range kernel is fundamentally used to inhibit
smoothing. For example, a small σr (narrow kernel) reduces the mixing of pixels from either sides of
an edge, which helps in retaining the sharpness of the edge.

It is clear from (1) and (2) that one requires O(ω2) operations per pixel to compute the filter.
This makes the real-time implementation of the bilateral filter challenging, especially when ω is
large. In fact, one would expect ω to scale with the image size in most applications of the bilateral
filter [9]. Several fast algorithms have been proposed that offer various trade-offs between speed and
accuracy [6, 8, 10, 13, 4, 11, 3, 1, 2, 7]. We refer the interested reader to these recent papers [11, 3]
for a survey and comparison of various fast algorithms.

The present work was motivated by a series of recent papers [4, 1, 2, 7], where it was demon-
strated that a fast O(1) algorithm can be derived by approximating the Gaussian range kernel using
polynomial and trigonometric functions. These functions have the so-called shiftability property [1]
that can be used to derive an O(1) algorithm. At this point, we note that by an O(1) algorithm2, we
mean that the number of computations does not scale with the kernel width ω. It is a well-known
fact that the Gaussian convolution,

G[f ](i) =
∑

j∈[−ω,ω]2

w(j)f(i− j), (4)

can be approximated using O(1) operations per pixel [5, 14]. This is achieved by first expressing (4)
as a cascade of one-dimensional convolutions, and then a recursive formula is used for approximating
each of the one-dimensional convolutions. In fact, as will be explained shortly, the basic idea behind
the shiftable bilateral filter is to approximate (1) and (2) using a series of Gaussian convolutions,
where the convolutions are performed on certain (pointwise) non-linear transforms of the input image.

2also referred to as a constant-time or linear-time algorithm in the image processing literature.
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2 Proposed Algorithm

Similarly to [4, 11, 2, 7] the present idea is to use trigonometric sums for approximating the range
kernel. The key difference is that instead of approximating the continuous kernel, we propose to
approximate the discrete kernel samples. This was motivated by the recent work in [7], where the
continuous kernel was first approximated using a Fourier series and then sampled for optimization
purpose. We turn this idea3 around and directly consider the sequence of kernel samples that appear
in (1) and (2), which we then approximate using the discrete Fourier transform. To the best of our
knowledge, the possibility of using the discrete Fourier transform has not been previously explored in
this context. At this point, we would like to note that the proposed approach can be used to derive
a fast algorithm for any generic range kernel and not just the Gaussian kernel, provided the discrete
Fourier transform decays sufficiently fast.

Our starting point is the observation that the argument t in (3) assumes the pixel differences
f(i− j)− f(i) in (1) and (2). In particular, t takes values in ΛT = {−T, . . . , 0, . . . , T}, where

T = max
{

|f(i− j)− f(i)| : i ∈ Ω, j ∈ [−ω, ω]2
}

.

We will refer to T as the local dynamic range. It was observed in [2] that T is usually less than the
full dynamic range M for natural images. A direct computation of T can be slow when ω is large.
In fact, it has the same O(ω2) complexity as that of the bilateral filter. A fast recursive algorithm
for computing T was proposed in [2], where the run-time does not depend on ω.

Now, consider the sequence of samples g(−T ), . . . , g(0), . . . , g(T ), where

g(n) = exp

(

− n2

2σ2
r

)

(n ∈ ΛT ). (5)

There are a total of |ΛT | = 2T + 1 samples. The discrete Fourier transform of (5) is given by

ĝ(k) =
1

|ΛT |
∑

n∈ΛT

g(n) exp(−ινnk) (k ∈ ΛT ). (6)

where ι =
√
−1 and ν = 2π/|ΛT |. A well-known fact is that we can exactly reconstruct the samples

from (6), namely, we have the inversion formula

g(n) =
∑

k∈ΛT

ĝ(k) exp(ινkn) (n ∈ ΛT ). (7)

The above representation is of interest for a couple of reasons. First, we are able to write the samples
in terms of the shiftable exponential function. The algorithmic advantage that we can derive from
the shiftable expansion in (7) will be made explicit shortly.

The second important point is that the Fourier transform of the (truncated) Gaussian (5) decays
rapidly, provided that the truncation width T is sufficiently large compared to the effective support
of the Gaussian (which is proportional to σr). In particular, we set

Tmax = max(T, 3.2σr), (8)

which is then used in place of T in (6) and (7). Notice that when σr is sufficiently small, Tmax = T .
In this case, the width T is sufficiently large compared to the effective support of the Gaussian. Note
that the smaller 3.2σr compared to the dynamic range, the wider the Fourier transform of the range

3We wish to thank the reviewer for raising a question that led to this idea.
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Figure 1: Demonstration of the advantage obtained using the proposed rule (8), where K was computed using (10). Notice
that the Tmax = T rule (that was used in [7]) results in larger values of K compared to the proposed rule when σr > 70.
For this experiment, ǫ = 0.01 and T = 255.

kernel. That is, the Fourier transform of the Gaussian that decays the most rapidly is obtained
when Tmax = 3.2σr. However, we cannot take Tmax < T , since the kernel takes values in the interval
[−T, T ]. The lower bound on Tmax is thus T . Hence the need to compute the local dynamic range
instead of working with M . On the other hand, for large values of σr, i.e., when T < 3.2σr, we use
Tmax = 3.2σr. This ensures that the samples in (5) are sufficiently concentrated over the domain
ΛTmax used in the Fourier transform. This produces a smoother transition at the boundary, which
causes the Fourier coefficients to decay rapidly. In our case, we empirically found that the choice
3.2σr gives satisfactory results. In Figure 1, we demonstrate the utility of (8) over the Tmax = T rule
that was used in [7].

We propose to approximate (7) using partial sums corresponding to the largest Fourier coeffi-
cients. In particular, for some fixed approximation order 0 ≤ K ≤ Tmax, we consider the K-term
approximation

gK(n) =
∑

|k|≤K

ĝ(k) exp(ινkn) (n ∈ ΛTmax). (9)

Clearly, gK(n) approaches g(n) asK gets large, and gK(n) = g(n) in the extreme case whenK = Tmax.
The important point is that we can obtain a fairly accurate approximation when K ≪ Tmax. In
particular, given some user-defined tolerance ǫ > 0, we pick the smallest K such that

max
{

|gK(n)− g(n)| : n ∈ ΛTmax

}

≤ ǫ. (10)

The variation of K with ǫ for different values of σr is shown in Figure 2. Some of the reconstructions
are shown in Figure 3.

After replacing the original range kernel with (9), we obtain the following approximations of (1)
and (2)

B̃[f ](i) = 1

η̃(i)

∑

j∈[−ω,ω]2

w(j)gK(f(i− j)− f(i))f(i− j), (11)

and

η̃(i) =
∑

j∈[−ω,ω]2

w(j)gK(f(i− j)− f(i)). (12)
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Figure 2: Variation of K with tolerance ǫ for three different values of σr (T = 255).

In particular, note that we can write the numerator of (11) as

∑

j∈[−ω,ω]2

w(j)
(

∑

|k|≤K

ĝ(k) exp
(

ινk (f(i− j)− f(i))
)

)

f(i− j).

We next apply the addition-multiplication property exp(t+s) = exp(t) exp(s), and exchange the two
sums, to arrive at

∑

|k|≤K

ĝ(k) exp(−ινkf(i))
∑

j∈[−ω,ω]2

w(j) exp
(

ινkf(i− j)
)

f(i− j).

Notice that the inner summation is simply a Gaussian convolution of the form in (4). In particular,
we can write the numerator in (11) as

∑

|k|≤K

ĝ(k)Fk(i)G[Hk](i), (13)

where the images Fk : Ω→ C and Hk : Ω→ C are given by

Fk(i) = exp(−ινkf(i)) and Hk(i) = f(i)F ∗
k (i) (i ∈ Ω).

It is now easy to see that (12) can be written as

η̃(i) =
∑

|k|≤K

ĝ(k)Fk(i)G[F ∗
k ](i). (14)

Notice that we need to perform a series of Gaussian convolutions to compute (13) and (14). Moreover,
notice that

F−k = F ∗
k , G[H−k] = G[Hk]

∗, and G[F ∗
−k] = G[F ∗

k ]
∗.

In other words, it is not necessary to compute the convolutions corresponding to the negative indices.
In fact, we can write (13) and (14) as4

ĝ(0)G[f ](i) + 2 · real
{

K
∑

k=1

ĝ(k)Fk(i)G[Hk](i)

}

,

4real(z) and z∗ denote the real part and the complex conjugate of z ∈ C.

119



Pravin Nair, Anmol Popli, Kunal N. Chaudhury

-250 -200 -150 -100 -50 0 50 100 150 200 250

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Target Gaussian ǫ = 0.1 ǫ = 0.01 ǫ = 0.001

(a) σr = 10.
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(b) σr = 80.

Figure 3: Approximation of the Gaussian range kernel over [−255, 255] for various values of ǫ. For a fixed ǫ, we computed
K using (10).

and

ĝ(0)G[F ∗
0 ](i) + 2 · real

{

K
∑

k=1

ĝ(k)Fk(i)G[F ∗
k ](i)

}

.

Notice that a total of 2(K+1) convolutions are required to compute (13) and (14). As mentioned
earlier, each of the Gaussian convolutions can be computed using O(1) operations per pixel [5, 14],
and hence the overall complexity of computing (11) is O(1) per pixel. The steps of the algorithm are
described in Algorithm 1. In the description, we have used ⊕,⊗ and ⊘ to denote pointwise addition,
multiplication, and division of two images.

3 Implementation

We now discuss the O(1) implementation of the Gaussian convolution in (4) and the parallelization
of Algorithm 1. For the Gaussian convolution, we experimented with various approximations and
selected the proposals of Deriche [5] and Young [14] which appear to offer the best trade-off between
speed and accuracy.

3.1 Gaussian Convolution

As it is well-known, we can efficiently compute (4) using the separability of the spatial Gaussian
kernel. In particular, consider the one-dimensional convolution

G [f ](i) =
∑

j∈[−ω,ω]

exp

(

− j2

2σ2
s

)

f(i− j). (15)

We can compute (4) by applying (15) along the rows of the input image, and then applying (15)
along the columns of the intermediate image. Using separability, we can already cut down the number
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Algorithm 1: Fast Bilateral Filter.

Data: Image f : Ω→ {0, 1, . . . ,M};
Parameters: Filter parameters σs and σr, and tolerance ǫ;
Result: Output given by (11);
// Internal parameters

Compute T for the input image using the algorithm in [2];
Tmax ← max(T, 3.2σr);
ν ← 2π/(2Tmax + 1);
Based on ǫ, compute K and {ĝ(k) : k = 0, 1, . . . , K} using the rule in (10);
// Initialization

P ← ĝ(0)G[f ];
Q← ĝ(0)G[F ∗

0 ];
// Gaussian convolutions

for k = 1, . . . , K do

F ← exp(−ινkf);
P ← P ⊕ 2 · real(ĝ(k) (F ⊗ G[f ⊗ F ∗]));
Q← Q⊕ 2 · real(ĝ(k) (F ⊗ G[F ∗]));

// Output

B̃[f ]← P ⊘Q.

of operations per pixel from O(ω2) to O(ω). This can be reduced to O(1) by approximating the
underlying continuous kernel in (15), namely,

g(x) = exp

(

− x2

2σ2
s

)

. (16)

In particular, we have implemented and compared the following approximations: Deriche [5], Young [14],
and repeated box convolutions [14]. We have compared these with the exact FFT implementation5

of (15) for different values of σS. A typical comparison is shown in Figure 4. We notice that Young’s
approximation offers better trade-off between accuracy and speed (for Algorithm 1) when σr is small.
On the other hand, Deriche’s approximation works better when σr is large. We experimentally found
that Deriche’s approximation has an edge (in terms of the trade-off between accuracy and speed)
over Young’s approximation when Tmax ≤ 3.5σr. We have used this rule in the C code.

For completeness, we now provide brief descriptions of the schematic behind the approximations
in [5, 14]; we refer the reader to the original papers for further details.

Deriche’s approximation. In [5], Deriche used a sum of weighted exponentials with complex
coefficients and exponents to approximate (16). The filter order (the number of exponentials) dictates
the accuracy and run-time of the approximation. For our implementation, we have used the following
third-order approximation [5]

ga(x)=1.898exp

(

−1.556 x

σs

)

−
(

0.8929 cos

(

1.475
x

σs

)

−1.021 sin
(

1.475
x

σs

))

exp

(

−1.512 x

σs

)

. (17)

The normalized mean square error between the lattice samples of (16) and (17) is ∼ 6e-06 [5].
In particular, let (hk) be lattice samples of (17). Deriche’s algorithm is based on splitting (hk) into
causal and anti-causal components, hk = h+

k + h−
k , where the transfer functions of h+

k and h−
k are

H+(z−1) =
a+ + b+z−1 + c+z−2

1− p+z−1 − q+z−2 − r+z−3
, (18)

5This FFT package was used: https://sourceforge.net/p/kissfft/discussion/?source=navbar.
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Figure 4: Comparison of the accuracy and speed of different approximations of (4). The experiments were performed on
lena.png. The root-mean-square error (RMSE) is between (4) and the proposed approximation. The precise definition of
RMSE is provided in (23).

Algorithm 2: Deriche’s Approximation (third order).

Data: Sequence f(0), . . . , f(N − 1);
Parameter: σs;
Result: Approximation of (15);
Compute a+, b+, c+, p+, q+, r+, a−, b−, c−, p−, q−, and r− in (18) and (19) using σs;
// Compute causal part

for k = 0, . . . , N − 1 do

G +(k) = c+f(k − 2) + b+f(k − 1) + a+f(k) + r+G +(k − 3) + q+G +(k − 2) + p+G +(k − 1);

// Compute anti-causal part

for k = N − 1, . . . , 0 do

G −(k) = a−f(k+1)+ b−f(k+2)+ c−f(k+3)+ p−G −(k+1)+ q−G −(k+2)+ r−G −(k+3);

// Output

for k = 0, . . . , N − 1 do

G [f ](k) = G +(k) + G −(k)
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and

H−(z) =
a−z1 + b−z2 + c−z3

1− p−z1 − q−z2 − r−z3
. (19)

The formula for the coefficients in (18) and (19) are described in equations (21)-(22) and (31) in [5].
The implementation of the causal and anti-causal filters are described in Algorithm 2.

Algorithm 3: Young’s Approximation.

Data: Sequence f(0), . . . , f(N − 1);
Parameter: σs;
Result: Approximation of (15);
Compute b+0 , b

+
1 , b

+
2 , b

−
0 , b

−
1 , b

−
2 , and bin in (20) and (21) using σs;

// Compute causal part

for k = 0, . . . , N − 1 do

G +(k) = binf(k) + b+0 G +(k − 3) + b+1 G +(k − 2) + b+2 G +(k − 1);

// Output

for k = N − 1, . . . , 0 do

G [f ](k) = binG
+(k) + b−0 G [f ](k + 1) + b−1 G [f ](k + 2) + b−2 G [f ](k + 3);

Young’s approximation. This is based on approximating (16) in the transform domain using
a rational form [14]. More specifically, the Laplace transform of the Gaussian is approximated using

G (s) =
A0

a0 − (a2q2)s2 + (a4q4)s4 − (a6q6)s6
.

This is next factored as G (s) = G +(s)G −(s), where G +(s) has poles in left half plane (causal) and
G −(s) has poles in right half plane (anti-causal). The causal and anti-causal components are mapped
into stable difference equations with transfer functions

H+(z) =
bin

1− b+2 z
−1 − b+1 z

−2 − b+0 z
−3

, (20)

and

H−(z) =
bin

1− b−0 z
1 − b−1 z

2 − b−2 z
3
. (21)

The coefficients in (20) and (21) are polynomial functions of q. The exact formula is given by equation
(11b) in [14]. The formula for the coefficients in (20) and (21) are provided in equations (8a), (8b),
(8c), and (10) in [14]. The difference equations corresponding to (20) and (21) are implemented
recursively. The complete procedure is summarized in Algorithm 3.

3.2 Parallelization

We now discuss the parallel implementation of Algorithm 1. A straightforward parallelization can be
achieved by executing the “for-loop” in Algorithm 1 in parallel on separate cores, and accumulating
the output of each core in a shared memory location. We have performed multi-threading in C using
the OpenMP API. The description of the parallelized algorithm is provided in Algorithm 4. The
main steps are as follows:

1. We extract the number of physical cores nC from the system information.

2. Based on nC , we fix the number of threads nT to be spawned by the master thread.
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3. Parallel regions with nT threads are created.

4. Each thread is mapped to a distinct physical core.

Since the operating system assigns at most two virtual cores to a distinct physical core, nT is at
most twice the number of physical cores. A master thread sets up parallel regions using the “#pragma
omp parallel” preprocessor directive. By default, nT is equal to the number of hyperthreads on the
system. Every thread uses a part of the memory to store temporary data and the processed output.
Hence, the memory consumption increases with nT . However, if nT is reduced, then the possibility
of two different hyperthreads being assigned to the same physical core increases. This would not
produce the best performance as some cores would remain idle. Thus, an optimal trade-off between
memory consumption and the number of threads spawned has to be struck. We have set the limit
on nT to be 8 (cf. line 5 of Algorithm 4) to limit the memory consumption and optimize the overall
performance.

Note that the images F0, . . . , FK in Algorithm 1 can be efficiently computed by setting

Fn(i) = Fn−1(i) · F1(i) (n ≥ 1), (22)

where F0 is defined to be an image with all pixels as unity. However, since the default scheduling
is dynamic, where a job is randomly distributed to some thread depending on the availability, this
makes it difficult to implement (22). To overcome this problem, we have used static scheduling where
the input image is exponentiated only nT times if K + 1 is a multiple of nT (once for each thread),
or nT + 1 times if tnT < K + 1 < (t + 1)nT . Here t is the largest integer less than or equal to
(K +1)/nT . The subsequent images are computed by recursion (cf. lines 13 and 22 in Algorithm 4).
We note that a thread can have private and shared variables. The private variables are stored in
the reserved memory space of a thread. On the other hand, the shared variables are updated in the
critical region to ensure that no two threads access the same variable.

4 Results

We now present some results obtained using the C implementation of Algorithm 4. In particular, we
report few visual comparisons on natural images, and some statistics on the filtering accuracy and
run-time of the implementation. We have used the grayscale versions of the standard images House
and Lena, and the real-world image Tiya that was captured using a cellphone camera.

The visual comparisons are presented in Figures 5 and 6, where we have compared the output
image from the fast algorithm with that of the bilateral filter. The two outputs are visually indistin-
guishable. For a quantitative comparison, we evaluated the root-mean-square error (RMSE) between
the two images, which is given by

RMSE =

{

1

|Ω|
∑

i∈Ω

(

B[f ](i)− B̃[f ](i)
)2

}1/2

. (23)

In Table 1, we have listed the RMSEs for the Tiya image for various values of σs and σr. The
average RMSEs for four standard test images are listed in Table 2. In Figure 7, we present a visual
comparison for coarse-to-fine values of the tolerance ǫ. Artifacts are clearly visible in the output
image when ǫ is high, that is, when lesser number of terms are used in the Fourier approximation.

The run-times of the serial and parallel implementations are reported in Tables 3 and 4. The ex-
periment was performed on an Intel quad-core 3.4 GHz machine with 32 GB memory. The reduction
in computation time obtained using the parallel implementation is evident. Moreover, as expected,
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Algorithm 4: Parallelized Fast Bilateral Filter.

Data: Image f : Ω→ {0, 1, . . . ,M};
Parameters: Filter parameters σs and σr, and tolerance ǫ;
Result: Output given by (11);

1 Set nC as the number of physical cores of the system;
2 // Number of threads

3 nT ← nC ;
4 if nC ≥ 8 then

5 nT ← 8;

6 Map each thread to a distinct physical core of the system;
7 Compute T for the input image using the algorithm in [2];
8 Tmax ← max(T, 3.2σr);
9 ν ← 2π/(2Tmax + 1);

10 Based on ǫ, compute K and {ĝ(k) : k = 0, 1, . . . , K} using the rule in (10);
11 t← ⌊(K + 1)/nT ⌋; // Number of loops assigned to each thread

12 // Initializations

13 F1 = exp(−ινf);
14 P ≡ 0 , Q ≡ 0 ;
15 // Parallel implementation starts

16 Create parallel regions for nT threads, with variables k and t, and images P and Q shared;
17 Create a critical region in shared memory to execute lines 25 and 26;
18 for k = 0, . . . , K do

19 if mod (k, t) = 0 then

20 F = exp(−ιkνf);
21 else

22 F = F ⊗ F1;

23 Pk ← 2 · real(ĝ(k) (F ⊗ G[f ⊗ F ∗]));
24 Qk ← 2 · real(ĝ(k) (F ⊗ G[F ∗]));
25 P ← P ⊕ Pk;
26 Q← Q⊕Qk;
27 // Pk and Qk are deallocated

28 // Parallel implementation ends

29 B̃[f ]← P ⊘Q.
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(a) Input. (b) Exact.

(c) Error between (b) and (d). (d) Fast.

Figure 5: Bilateral filtering of lena.png using σs = 5, σr = 60, and ǫ = 0.01. The RMSE between (b) and (d) is 0.387291.
The figure (c) shows the absolute value of the difference between (b) and (d). The range is mapped from [0, 4] to [0, 255].
Notice that the visual artifacts in (c) are cluttered around sharp edges in the original image. This can be explained by the
fact that the Fourier approximation is relatively poor (often assuming negative values) on the tails compared to that around
the origin. Since the operating region for large pixel differences is precisely the tail, this can result in artifacts around edges.
For example, see Figure 3, which shows ripples on the tails when ǫ = 0.01.
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(a) Input. (b) Exact.

(c) Error between (b) and (d). (d) Fast.

Figure 6: Bilateral filtering of tiya.jpg using σs = 20, σr = 20, and ǫ = 0.1. The RMSE is 0.6168. The figure (c) shows the
absolute value of the difference between (b) and (d). The range is mapped from [0, 58] to [0, 255]. As in Figure 5, we see
some visible artifacts around sharp edges.
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(a) Direct. (b) ǫ = 0.01 (K = 17).

(c) ǫ = 1 (K = 0). (d) ǫ = 0.5 (K = 4).

Figure 7: Comparison of different approximations of the bilateral filter for house.png using σs = 3 and σr = 10. When
ǫ = 1, the output image is visibly blurred since only the dc component is considered in this case. The result improves on
reducing the tolerance to ǫ = 0.5; however, the output still shows some artifacts since the kernel approximation is poor.
When a sufficiently small tolerance of ǫ = 0.01 is used, the proposed approximation becomes visually indistinguishable from
the bilateral filter output.
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❩
❩
❩
❩

σs

σr 10 20 30 40 50 60 70 80 90 100

3 0.0598 0.0869 0.1072 0.1249 0.1412 0.1562 0.1689 0.0268 0.0283 0.0295
7 0.0638 0.1077 0.1439 0.1765 0.2050 0.2306 0.2517 0.0481 0.0510 0.0534
11 0.0572 0.0996 0.1367 0.1704 0.1988 0.2244 0.2456 0.0597 0.0634 0.0666

Table 1: RMSE for the Tiya image using ǫ = 0.001.

❩
❩
❩
❩

σs

σr 10 20 30 40 50 60 70 80 90 100

3 0.0816 0.1371 0.1849 0.2282 0.2714 0.1810 0.0482 0.0533 0.0584 0.0629
7 0.0768 0.1349 0.1925 0.2498 0.3080 0.3657 0.0704 0.0791 0.0862 0.0924
11 0.0730 0.1254 0.1776 0.2296 0.2817 0.3308 0.0837 0.0929 0.1005 0.1073

Table 2: Ensemble RMSE for the images House, Cameraman, Lena, and Barbara (see Image Credits) using ǫ = 0.001.

σr 10 20 30 40 50 60 70 80 90 100

Serial 5891 3003 2190 1784 1376 1173 1172 1687 1687 1690
Parallel 2352 1409 1194 911 886 885 885 927 1280 905

Table 3: Run-times (in milliseconds) of the serial and parallel implementations for a megapixel image for fixed σs = 3 and
ǫ = 0.001.

σs 3 5 7 9 11 13 15 17 19 21

Time(ms) 948 934 953 968 978 987 997 1031 1042 1030

Table 4: Run-time of the parallel implementation (for a megapixel image) for different σs using the settings σr = 40 and
ǫ = 0.001. Notice that the speed essentially does not depend on σs.

the execution time does not scale with σs. Notice that we have not reported results in the regime
σr < 10, since the bilateral filter virtually acts as an identity transformation in this case. On the
other hand, the edge-preserving property of the filter is lost when σr > 100.
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