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(bruno.galerne@parisdescartes.fr)

2 CMLA, ENS Cachan, CNRS, Université Paris-Saclay, 94235 Cachan, France
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Abstract

Inpainting consists in computing a plausible completion of missing parts of an image given the
available content. In the case of images composed of a homogeneous microtexture, inpainting
can be addressed by relying on Gaussian conditional simulation. In this paper we describe an
algorithm which allows to perform inpainting by Gaussian conditional simulation, in a scalable
way. We provide a detailed numerical study of this algorithm.

Source Code

The reviewed source code and documentation for this algorithm are available from the web page
of this article1. Compilation and usage instruction are included in the README.txt file of the
archive.

Supplementary Material

A Matlab interface (not reviewed) is also available for convenience.
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An Algorithm for Gaussian Texture Inpainting

1 Introduction

Inpainting consists in filling missing regions in images by inferring from the surrounding context. It
was addressed by early methods in [17, 4, 16] which, to some extent, fill the hole by connecting the
incoming level lines in order to satisfy the Gestaltist’ principle of good continuation. In the spirit of
these seminal works, many contributions have addressed geometric inpainting, and we refer to [19]
for a detailed review of these methods.

Unfortunately, these geometric inpainting methods, which are essentially based on PDEs or
generic variational problems, are unable to properly model the stochastic behavior of textures, and
thus fail to inpaint textural parts of images. In order to inpaint textural content, one can estimate
from the surrounding context a texture model that is conditionally sampled knowing the values on
the boundary of the hole. In turn, the exemplar-based texture synthesis methods of [7, 20] can
be modified in order to address textural inpainting: these articles indeed contain a few inpainting
results under the name “constrained texture synthesis”. Many inpainting methods were inspired by
this exemplar-based algorithm, leading to state-of-the-art inpainting results [21, 3, 2, 1, 15, 12, 18, 5].
But still, as for texture synthesis, these patch-based methods do not provide mathematical guarantees
on the inpainted content (except the asymptotic result of [14]).

In this paper we propose an algorithm (together with an online implementation) which is based
on Gaussian conditional simulation, and thoroughly described in the companion paper. The first step
of the method is to estimate a Gaussian texture model on the masked exemplar. Next, this Gaussian
model is conditionally sampled using the available values of the texture on the outer border of the
inpainting domain. This conditional sampling step essentially amounts to solve a possibly very large
and ill-conditioned linear system. We propose to solve this linear system by relying on a conjugate
gradient descent (CGD) which takes profit on a Fourier-based implementation of the system matrix,
computed with the fast Fourier transform (FFT). We provide a detailed numerical study of this
algorithm, and several inpainting results on stochastic and structured textures, showing that this
algorithm competes with state-of-the-art methods on irregular textures.

2 Detailed Description of the Algorithm

Let Ω ⊂ Z2 be a m × n rectangle of Z2. Let u : Ω → Rd be the image to inpaint; d is the number
of channels (d = 3 for color images). Let M ⊂ Ω be the indices corresponding to masked pixels, so
that the values of u are known only on Ω \M . We also define C = ∂wM the outer border of M with
width w pixels, which is composed of all pixels of Ω \M which are at Euclidean distance ≤ w of M .
If S ⊂ Ω, we will denote by u|S the restriction of u to S.

Our algorithm consists in first estimating a Gaussian texture model U using the values of u
outside the mask, and next performing conditional simulation of U knowing that U|C = u|C.

2.1 Estimation of the Gaussian Model

We set ω = Ω \M and we set v = u|ω the restriction of u to ω. When inpainting composite images,
other (manual) choices of ω can be interesting; but in this online demo, we only consider the canonical
choice ω = Ω \M which suffices to inpaint images composed of one microtexture.

Following [8, 10], we estimate a Gaussian texture model with

v̄ =
1

|ω|
∑
x∈ω

v(x), and ∀x ∈ Z2, tv(x) =

{
1√
|ω|

(v(x)− v̄) if x ∈ ω,

0 otherwise.
(1)
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The function tv is called the texton associated to v. The Gaussian texture model is then given by

∀x ∈ Ω, U(x) = v̄ + tv ∗W (x) = v̄ +
∑
y∈Z2

tv(x− y)W (y), (2)

where W is a normalized Gaussian white noise on Z2 (i.e. (W (x))x∈Z2 is a collection of i.i.d. Gaussian
random variables with mean 0 and standard deviation 1). The second term is the convolution of tv
with the scalar Gaussian white noise W . Notice that tv has a finite support so that this convolution
can be computed in Fourier domain, provided that tv is extended by zero to a twice larger domain.
Notice also that this formula holds in the color case: each channel of tv is convolved with the same
white noise W .

U is a Rd-valued stationary Gaussian random field on Ω. The mean of U is constant equal to v̄
and its covariance Γ is given by

∀x, y ∈ Ω, Γ(x, y) = E
(

(U(x)− v̄)(U(y)− v̄)T
)

=
∑
z∈Z2

tv(x− z)tTv (y − z). (3)

Since U is a Rd-valued random field, Γ(x, y) is a d× d-matrix. Alternately, by writing also the color
index, one can also consider that Γ is a |Ω×{1, . . . , d}|× |Ω×{1, . . . , d}| matrix. But in practice we
do not form this matrix explicitly since for conditional simulation (Subsection 2.2) we will only need
to apply the operator associated to the covariance, which can be done as follows. This operator is
the convolution by the matrix kernel

tv ∗ t̃Tv (h) =
∑
z∈Z2

tv(z)t̃Tv (h− z),=
∑
z∈Z2

tv(z)tTv (z − h) (4)

where we used the notation t̃(x) = t(−x) for the mirror function. Indeed, since

Γ(x, y) = tv ∗ t̃Tv (x− y), (5)

we have for all images ϕ ∈ (Rd)Ω,∑
y∈Ω

Γ(x, y)ϕ(y) =
∑
y∈Ω

tv ∗ t̃v(x− y)Tϕ(y) = tv ∗ t̃Tv ∗ ϕ(x). (6)

Again, this convolution can be computed in Fourier domain (extending the image ϕ by zero-padding).
One can also see that this formula naturally encompasses the color case because the matrix kernel
tv ∗ t̃Tv contains the cross-correlations between all color channels of v.

In order to give a description which is closer to the provided code, we summarize the model estima-
tion, the model sampling and the covariance operator in Algorithm 1, Algorithm 2 and Algorithm 3,
respectively. In these algorithms, we denote by

Z : (Rd)m×n −→ (Rd)2m×2n, (7)

the zero-padding operator which extends a m × n image by zero to a domain of size 2m × 2n. Its
transpose ZT is a restriction operator. Also, we denote by

K : R2m×2n −→ (Rd)2m×2n, (8)

the periodic convolution of a real-valued image of size 2m× 2n by the color image Z(tv) (this convo-
lution can be computed with a FFT of size 2m× 2n). Its transpose KT is the periodic convolution

by Z̃(tTv ). With this notation, a sample of the Gaussian model is given by v̄ +ZTKW where W is a
Gaussian white noise of size 2m× 2n, and the covariance operator can thus be written ZTKKTZ.
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Algorithm 1: Estimating the Gaussian model

input : masked exemplar u, mask M
ω ← Ω \M
Compute the restriction v ← u|ω.

v̄ ← 1

|ω|
∑
x∈ω

v(x), tv ←
1√
|ω|

(v − v̄)1ω (1ω is the indicator function of ω)

output: Gaussian model N (v̄,Γ).
The matrix Γ is defined by

∀x, y ∈ Ω, Γ(x, y) = tv ∗ t̃Tv (x− y)

but not stored explicitly.

Algorithm 2: Sample the Gaussian model (2) on Ω

input : texton tv, mean value v̄
Draw a normalized Gaussian white noise W of size 2m× 2n.
Perform periodic convolution of W with Z(tv). (with the FFT), (Z defined by (7))

Crop the restriction on Ω.
Add the mean value v̄.
Compute U = v̄ + ZTKW . (Z defined by (7), K defined by (8))

output: sample U of the Gaussian model N (v̄,Γ), (Γ defined by (3)).

Algorithm 3: Apply the covariance operator Γ = ZTKKTZ

input : texton tv, test image χ ∈ (Rd)Ω

Extend χ by zero-padding to a twice-larger domain.
Perform periodic convolution with Z(tv). (with the FFT), (Z defined by (7))

Perform periodic convolution with Z̃(tTv ). (with the FFT), (Z defined by (7))

Crop the result on Ω.
output: Γχ (image of χ by the convolution operator Γ).

2.2 Conditional Simulation

In this paragraph, we explain how to conditionally sample the estimated Gaussian model given
the value on the conditioning points C. Withdrawing the mean component, this is equivalent to
conditionally sample the random field F = tv ∗W knowing F|C = u|C − v̄.

In order to clarify the notation we introduce the restriction operator R : (Rd)Ω → (Rd)C that
keeps only the values on C. Its transpose RT : (Rd)C → (Rd)Ω is a zero-padding operator. Using the
traditional algorithm for Gaussian conditional simulation [9], we see that a conditional sample of F
given RF = ϕ can be obtained from an unconditional sample F ∼ N (0,Γ) by computing

F + Λ(ϕ−RF ), (9)

where Λ = ΓRT (RΓRT )† (whose elements are sometimes called the kriging coefficients). The notation
A† refers to the pseudo-inverse of A. For more details about the derivation of this formula, we refer to
the SIIMS companion paper [9]. Once a sample of F has been obtained (using the technique explained
in the previous section), the main difficulty is thus to apply the matrix Λ. The multiplication by
ΓRT is easy: it consists in zero-padding from C to Ω and applying the covariance operator Γ (applied
with Algorithm 3). Computing A†ϕ where A = RΓRT is more costly. Let us notice that RΓRT is
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the covariance of R(F ) and thus applying A can be done efficiently, see Algorithm 4. But computing
the pseudo-inverse is less easy.

Algorithm 4: Apply the restricted covariance operator A = RΓRT

input : texton tv, subdomain C, test image ψ ∈ (Rd)Ω

Extend ψ to Ω by zero-padding.
Apply the covariance operator Γ. (with Algorithm 3)

Extract the values on C.
output: Aψ (image of ψ by the restricted covariance operator A)

Assume for a moment that A is invertible. Then computing A−1ϕ amounts to solving a linear
system of size p× p (where p = d|C|). Since A is symmetric positive-definite, this can be reduced to
solving two triangular systems thanks to the Cholesky factorization of A. Nevertheless, finding the
Cholesky factorization of A requires O(p3) flops in general. Therefore, this direct method will only
work for small values of p. This was a major limitation of our preliminary work presented in [11].

To cope with this problem, we propose here to solve the linear system with a conjugate gradient
descent (CGD) algorithm, taking profit of the fact that applying the matrix A can be done efficiently.
Therefore, following [13], we compute A†ϕ by performing a CGD on

f : ψ 7−→ 1

2
‖Aψ − ϕ‖2, (10)

with initialization ψ0 = 0. This optimization procedure solves the normal equations ATAψ = ATϕ,
which are equivalent to Aψ = ϕ when ϕ ∈ Range(A) (recall that the range of A and the kernel of
AT are orthogonal subspaces). Besides, using the CGD on the normal equations allows to cope with
possibly singular matrices A. This algorithm is summarized in Algorithm 5.

Algorithm 5: Conjugate gradient descent to compute A†ϕ

input : A, ϕ, precision ε > 0, max number of iterations kmax

initialization: k ← 0, ψ0 ← 0, r0 ← ATϕ− ATAψ0, d0 ← r0.
while ‖rk‖ > ε and k < kmax do

k ← k + 1
αk ← ‖rk‖2

dTkA
TAdk

(Apply A with Algorithm 4)

ψk+1 ← ψk + αkdk
rk+1 ← rk − αkATAdk
dk+1 ← rk+1 + ‖rk+1‖2

‖rk‖2
dk

output: approximation of A†ϕ given by ψk

Stopping criterion

The stopping criterion that we use in Algorithm 5 is ‖rk‖ ≤ ε where the residual at iteration k is
given by

rk = ATϕ− ATAψk, (11)

and where ‖rk‖ is the unnormalized `2-norm of rk ∈ R|C|. The behavior of the residual norm along
the iterations will be studied in Section 3. In practice, to keep a simple choice, we take ε := 10−3

and we also constrain the number of iterations to be less than kmax = 1000.
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2.3 Complete Algorithm

We summarize the whole microtexture inpainting algorithm in Algorithm 6. The overall complexity
of this algorithm is O(kmax|Ω| log |Ω|) where kmax is the number of iterations used in the gradient
descent algorithm. More precisely, let us evaluate the precise number of calls to the FFT. The Fourier
transform of the texton is computed once and for all with d FFTs (where d is the number of channels).
Sampling the Gaussian model requires d FFTs (the white noise can be sampled directly in Fourier
domain). Initializing the CGD requires to apply the matrix A which costs 2d FFTs (d direct and d
inverse). Each iteration of the CGD requires to apply twice the matrix A. The last convolution with
the covariance operator requires 2d FFTs. Eventually, the number of FFTs required by the whole
inpainting process is (4kmax + 6)d FFTs. Using our C implementation (involving parallel computing,
in particular for the FFT) run with a modern computer (Intel i7 processor @2.60GHz), the whole
inpainting process takes about 20 seconds for a 256× 256 image and 1000 iterations of CGD. When
using this algorithm, we recommend to keep kmax = 1000 iterations. However, since we want the
IPOL implementation to be able to inpaint possibly large images, we set by default kmax = 100 on
the online demo (leaving kmax as a parameter that can be changed on the webpage).

Algorithm 6: Microtexture inpainting

input : mask M ⊂ Ω, texture u on Ω \M , conditioning points C = ∂3M
notation: R denotes the operator associated to the restriction on C
From the restriction v of u to ω = Ω \M , estimate a Gaussian model N (v̄,Γ) with

v̄ ← 1

|ω|
∑
x∈ω

v(x), tv ←
1√
|ω|

(v − v̄)1ω (Algorithm 1), (1ω is the indicator function of ω)

Sample the Gaussian model F = ZTKW , where W ∼ N (0, I) (Algorithm 2)

ψ ← (RΓRT )†(Ru− v̄ −RF ) (Algorithm 5 with A = RΓRT , ε = 10−3 and kmax = 1000 iterations)

Compute Λ(Ru− v̄ −RF ) = ΓRTψ (Zero-padding and Algorithm 3)

w ← v̄ + F + Λ(Ru− v̄ −RF )

Force the initial values outside the mask w|Ω\M ← u|Ω\M
output: inpainted image w

3 Numerical Study of the Conjugate Gradient Descent

3.1 Possible Regularization

For our inpainting application, it is often harmless to modify the texture model by adding a Gaussian
white noise of variance δ2, provided that δ2 is small compared to the color variance in the observed
texture. This is equivalent to replace the matrix Γ by Γ + δ2I. The matrix A = Γ|C×C is modified
accordingly as A + δ2I. With this modification, the matrix A is ensured to be invertible; in other
words, it adds some regularization in the linear system. Besides, if λ is an eigenvalue of A, then
λ + δ2I is an eigenvalue of A + δ2I. Therefore, adding a small white noise tends to decrease the
condition number of A. As illustrated in Figure 1, this may improve the convergence properties of
the algorithm, but it does not improve the visual results obtained after k = 1000 iterations. So by
default, we do not use such regularization.

3.2 Precision on the Solution

The error on the computation of A†ϕ made by stopping at iteration k is given by A†ϕ−ψk, which is
connected to the residual via rk = ATA(A†ϕ−ψk). Thus, the error norm is ‖A†ϕ−ψk‖ = ‖(ATA)†rk‖.
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Once A†ϕ is computed, the conditional sample involves the vector Γ|Ω×CA
†ϕ. If we replace A†ϕ

by the approximation ψk, we thus make an error given by

‖Γ|Ω×C(A†ϕ− ψk)‖ = ‖Γ|Ω×C(ATA)†rk‖ ≤ ‖Γ|Ω×C‖‖(ATA)†‖‖rk‖, (12)

where the matrix norms are derived from the current norm ‖ · ‖. If we want an error norm < η on
the inpainting output, we should use a stopping criterion

‖rk‖ < ε :=
η

‖Γ|Ω×C‖‖(ATA)†‖
. (13)

In this case of the `2-norm, ‖Γ|Ω×C‖ ≤ ‖Γ‖ which is the largest eigenvalue of Γ. If Γ is the
covariance of a Gaussian model estimated on u, the discrete Fourier basis is an eigenvector basis of Γ,
and thus ‖Γ|Ω×C‖ ≤ maxξ |t̂u(ξ)|2, where t̂u is the DFT of tu. In a standard inpainting experiment,
numerical computations give a value ‖Γ|Ω×C‖ ≤ 100. In contrast, the second matrix norm is much
larger. Indeed, ‖(ATA)†‖ = λ−2 where λ is the smallest non-zero eigenvalue of A. In some standard
inpainting experiment, we obtained a λ value close to 10−4 which makes the stopping criterion of (13)
impractical.

Therefore, in practice, we cannot use a stopping criterion ‖A†ϕ − ψk‖ < η on the error, but
instead we use a stopping criterion directly on the residual ‖rk‖ < ε = 10−3. We also constrain
the number of iterations to be less than kmax < 1000 to keep the algorithm scalable. Indeed, the
decreasing speed of the residual norm strongly depends on the size of the system, which is directly
related to the size of the conditioning set (for big holes in images much larger than those shown in
Figure 1, 1000 iterations may not suffice to get ‖rk‖ < 10−3).

3.3 Convergence of the Conjugate Gradient Algorithm

In this paragraph, we examine the behavior of Algorithm 5 on a simple inpainting case with a small
image. Precisely, we consider a 64 × 64 image with d = 3 color channels, on which we put a mask
of size 11 × 11 and we take C = ∂3M . In such a case, the matrices A = Γ|C×C and Λ = Γ|Ω×CΓ

†
|C×C

can be formed explicitly, and the matrix A is invertible (though ill conditioned; its condition number
is > 106). Recall that in the RGB case, all the channels correlations must be considered, so that A
is actually a d|C| × d|C| matrix with d|C| = 504.

As a baseline comparison, we solve the linear system Aψ = ϕ with a standard matrix method
based on the Cholesky decomposition of A and we use this reference solution ψref to examine the
convergence speed of the conjugate gradient method applied on the normal equations. We run this
algorithm for kmax = 10000 iterations and we monitor the evolution of

err(k) =
1√
d|M |

‖Γ|M×Cψref − Γ|M×Cψk‖2, (14)

resn(k) =
1√
d|C|
‖ATϕ− ATAψk‖2, (15)

the former being the normalized `2 error on the inpainting result made by stopping at iteration k,
and the latter being the normalized `2-norm of the residual at iteration k.

These numerical results are reported in Figure 1. As one can see on these graphs, even if the
residual norm quickly becomes < 10−4, a very large number of iterations is necessary to attain a
value close to machine precision. Also, one can notice that the convergence to the ideal solution is
quite slow, but still, the result obtained after 10000 iterations remains a satisfying inpainting result.
In particular, in terms of visual quality of the inpainting (which is, of course, a subjective measure)
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the solution obtained after 10000 iterations is very close to the reference. In Section 4, we will even
see that the result after kmax = 1000 or even kmax = 100 iterations is still satisfying in general.

In Figure 1, we also show the numerical results obtained by adding some regularization in the
linear system as suggested above. More precisely, we replaced Γ by Γ + δ2I. In the experiment
shown here, we take δ = 0.01. As it is well known, adding such a regularization tends to decrease
the condition number of the system (which is ≈ 3430 here after regularization), and thus strongly
improves the convergence speed of the gradient descent. In particular, after 5000 iterations, we get
an inpainting error ≈ 10−14, which is the best we can hope since we are limited by the numerical
precision of the FFT algorithm. Let us also remark that the corresponding inpainting result is
visually close to the one obtained without regularization.

To end this convergence study, we illustrate in Figure 2 a more difficult case: we inpaint the
same image, but now taking C = Ω \M . The corresponding linear system is now d|C| × d|C| where
d|C| = 11925; in particular we have d|C| ≥ |Ω| and thus A is necessarily singular (see the companion
paper [9, §3.4]). In this case, we do not dispose of a reference solution to compute the pseudo-inverse
A†, so we can only illustrate the convergence with the `2 norm of the residual. As one can see in
Figure 2, the convergence is still slow in this case, and adding a small regularization (δ = 0.01)
does not help much. But in terms of visual result, the inpainting is already satisfying even if the
algorithm has not fully converged. Of course, increasing further the regularization δ improves the
convergence speed, but also impacts the model more significantly (i.e. Gaussian noise becomes visible
in the inpainted part). This is why we choose not to include regularization by default.

To conclude, the conjugate gradient descent on normal equations is a principled and scalable way
to compute the solution of the kriging system. It may converge quite slowly in general, but gives
visually satisfying inpainting results before full convergence.

4 Experiments

4.1 Inpainting Examples

In Figure 3, Figure 4 and Figure 5 we display inpainting results obtained with several textures and
different kinds of masks. As one can see, our algorithm is able to inpaint perfectly microtexture
images, provided that we dispose of a sufficiently plain piece of texture to properly estimate the
Gaussian model. If the mask is too scattered and irregular (like in the last row of Figure 4) then
the estimation step gives a too imprecise result; but still, the inpainting algorithm can still give a
reasonable result (last rows of Figures 4 and 5).

Since this inpainting algorithm relies on a Gaussian texture model, it is more adapted to microtex-
tures than structured textures. Nevertheless, this algorithm is able to produce interesting inpainting
results on structured textures, especially with sufficiently thin masks (see the first examples of Fig-
ure 4 and the right column of Figure 5). In particular, the results on such textures may look much
more plausible than results obtained with methods based on PDEs or generic variational methods
(like TV inpainting [6]).

We have discussed the number of iterations from a numerical point of view in Section 3. In
Figure 3, Figure 4 and Figure 5, we observe that the results obtained after 100 or 1000 iterations
(in the CGD) are hardly distinguishable when compared side by side. However, let us mention that
iterating enough is important to enforce the constraints at the boundary of the inpainting domain.
For example, in the last row of Figure 4, the boundary of the mask is less visible after 1000 iterations.
In general, we recommend to run the algorithm for 1000 iterations to ensure a good inpainting result.
But for the online demo, we set the default number of iterations to 100 so that the demo scales to
very large images (the user is free to increase this parameter if needed).
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Figure 1: Convergence of the conjugate gradient method. C = ∂3M . On the first row, from left to right, we
display a masked exemplar texture, the reference inpainting result (obtained by computing the reference solution ψref with a
matrix method based on Cholesky decomposition), and the inpainted result obtained with our FFT based algorithm (using
kmax = 10000 iterations of the conjugate gradient method on the normal equations). The conditioning points C are taken
on a 3 pixel wide border of the mask. On the second row, we show the evolution along the iterations of the inpainting
normalized `2 error (defined by (14)) and the normalized `2-norm of the residual (defined by (15)). The inpainting error
is computed with respect to the reference. These graphs indicate that the convergence of the algorithm is in general very
slow, but gets better when adding some regularization as suggested in Section 3.1. See the text for additional comments.
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Figure 2: Convergence of the conjugate gradient method. C = Ω\M . The first column contains the masked exemplar.
The second and third columns contain the inpainting results without and with regularization, respectively. The inpainting
results have been obtained with kmax = 10000 iterations of the conjugate gradient on normal equations. Again, the residual
norm decreases to 0 quite slowly. The regularization parameter δ = 0.01 is not sufficient to improve the convergence. Still,
the inpainting results are already satisfying, even without regularization. See the text for additional comments.

4.2 Discussion of the Thickness w of the Conditioning Set

Finally, we will discuss the parameter w which is the thickness of the conditioning border C = ∂wM .
In Figure 6 we display several inpainting results obtained with different conditioning borders. Here
again, there are only slight differences between these results and we suggest to flip between the
different images for better comparison. In theory, increasing w allows to better grasp the textural
behavior around the mask, but in practice, very good results are obtained with w = 3 or even w = 1.
For the example in the first row of Figure 6 the result with w = 3 is slightly better than with w = 1
(the vertical correlations are slightly better extended through the mask). But one has to keep in
mind that increasing w also increases the size of the linear system that has to be solved, and so
one should increase kmax accordingly. We found that w = 3 is a good compromise to account for a
sufficient neighborhood of the mask while keeping a reasonable number of iterations in the CGD.
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Masked input Results for kmax = 100 Results for kmax = 1000

Figure 3: Examples of successful texture inpainting with kmax = 100 and kmax = 1000. All images have size 768 × 512.
One observes that for kmax = 1000 the color of the inpainted parts are better blended with the known area.
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Masked input Results for kmax = 100 Results for kmax = 1000

Figure 4: Same as Figure 3 but with unsuccessful examples. The failures are mostly due to the fact that the Gaussian model
is not accurate for the texture. For the last case, it is due to the irregularity of the mask that prevents a proper estimation
of some characteristic frequency content for the wood texture.
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Successful example Failure example

Figure 5: Examples of texture inpainting with kmax = 100 and kmax = 1000. All images have size 128 × 128. Successful
examples are presented in the left column while (relative) failure examples are presented in the right column (please zoom
in for close inspection).
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Original w = 1 w = 3 w = 5 w = 10

Figure 6: Varying the thickness of the conditioning set. The first column contains the masked exemplar. The other
columns contain the inpainting result obtained with conditioning sets of thickness w = 1, 3, 5, 10.
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Image Credits

All the textures shown in this article come from Bruno Galerne’s personal collection (CC-BY).
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