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Abstract

Hyperspectral imagery is a challenging modality due to the dimension of the pixels which can
range from hundreds to over a thousand frequencies depending on the sensor. Most methods
in the literature reduce the dimension of the data using a method such as principal component
analysis, however this procedure can lose information. More recently methods have been de-
veloped to address classification of large datasets in high dimensions. This paper presents two
classes of graph-based classification methods for hyperspectral imagery. Using the full dimen-
sionality of the data, we consider a similarity graph based on pairwise comparisons of pixels.
The graph is segmented using a pseudospectral algorithm for graph clustering that requires
information about the eigenfunctions of the graph Laplacian but does not require computation
of the full graph. We develop a parallel version of the Nyström extension method to randomly
sample the graph to construct a low rank approximation of the graph Laplacian. With at most
a few hundred eigenfunctions, we can implement the clustering method designed to solve a vari-
ational problem for a graph-cut-based semi-supervised or unsupervised classification problem.
We implement OpenMP directive-based parallelism in our algorithms and show performance
improvement and strong, almost ideal, scaling behavior. The method can handle very large
datasets including a video sequence with over a million pixels, and the problem of segmenting
a data set into a pre-determined number of classes.

Source Code

The reviewed source code and documentation for this algorithm are available from the web page
of this article1. Compilation and usage instructions are included in the README.txt file of the
archive.
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1 Introduction

Multi-class classification is one of the fundamental problems in machine learning and computer vision.
In this paper, we outline two very efficient methods to classify data sets, so that the similarity
between nodes in one class is much larger than the similarity between nodes of different classes. One
application of this work is the class detection of hyperspectral images, where each pixel contains
many channels. We use the graphical framework, where we consider each pixel as a node on a graph,
and take the values in the channels to form the feature vectors [60]. To make our codes even more
efficient, we implement OpenMP directive-based parallelism in our procedures and observe strong
scaling behavior.

A traditional way of solving the hyperspectral image classification problem is to first use dimen-
sion reduction and then a classifier. Many feature extraction and dimension reduction techniques
have been developed for hyperspectral image classification, such as principal component analysis
(PCA) [29], independent component analysis [77], signal subspace identification [7], discrete wavelet
transform [45], band reduction based on rough sets [66], projection pursuit algorithm [44], and clonal
selection feature-selection algorithm [79]. The Fuzzy C-Means (FCM) algorithm is a well-known tool
to find proper clusters, which can be used for hyperspectral image classification [43], and can be
further enhanced by the Support Vector Domain Description [65].

Support vector machines (SVM) [9, 73] are another popular approach to the supervised classifi-
cation problem, including one involving hyperspectral data [38, 55, 18]. Similar approaches include
transductive SVM [15] and SVM with composite kernels [19]. Some of these methods use kernels,
which have been shown to improve performance [18, 48], especially when the data is not linearly
separable. Examples of kernel methods can be found in [75, 32, 78]. Other successful techniques in-
clude multinomial logistic regression [8, 47], which was applied to hyperspectral image segmentation
in [49, 50], and sparse representation, also applied to such images in [23, 22]. The reader is referred
to [52, 70] for more approaches.

As a basis for both of our algorithms, we use the graphical framework, described in more detail
in [60]. This framework provides several advantages; for example, it allows for a general incorporation
of information of any kind of data set- video data, text, images, etc. It also brings forth a way to
work with nonlinearly separable classes [34], i.e. when the data is not linearly separable. Moreover,
in the case of image processing, the framework allows one to easily capture texture and patterns
throughout the image [16, 60, 37, 36] using the non-local means feature vector. The graphical
approach has appeared in many recent works for different kinds of applications: semi-supervised
learning [21, 57, 2, 34, 60, 59, 61, 3], image processing [26, 80, 25], machine learning [81], graph
cuts [10, 39, 67, 69, 11, 13, 12, 58].

In this work, we introduce two novel graph-based classification algorithms. The first one is semi-
supervised [61], which requires some known labels as input, and the second one is unsupervised [42].
Both methods make use of the MBO scheme, which is a well-established PDE method for evolving an
interface by mean curvature [62, 63], which is adapted to the graph setting [34, 33]. The supervised
algorithm minimizes an energy functional that is a sum of a graph cut term and a least squares fit
to the training data. The unsupervised algorithm is derived from the Chan-Vese method [20, 74]
likewise adapted to the graph setting. It has an energy functional that is the sum of a graph cut
term and a least squares fit to the average value of pixels in that class.

For hyperspectral images, the pixel dimension can be very large. This motivated us to develop
parallel implementations and optimizations of these two new algorithms [56]. In particular, for
computations, we use an optimized implementation of the Nyström extension eigensolver on high
performance computing systems. Moreover, after analyzing the computational hotspots, we im-
plement directive-based OpenMP parallelization. In practice, we obtain strong scaling results and
extremely fast implementations.
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Main Contributions

The main contributions of the paper are the following:

• We describe two efficient data classification algorithms to cluster a data set into a pre-determined
number of classes. The methods are applied specifically to hyperspectral data. While the first
algorithm is semi-supervised (requiring a subset of the pixels to have known labels), the second
method is unsupervised, allowing us to proceed when no ground truth is available.

• The new parallel methods provide performance and accuracy advantages over traditional data
classification algorithms in serial mode. The efficiency is largely due to new implementations of
our spectral solver built on the Nyström extension method. For the 40 frames of the plume video
data, the entire classification process takes only 1 minute using 32 threads on a supercomputer!

• We implement OpenMP directive-based parallelism in our algorithms, and show performance
improvement and strong (almost ideal) scaling behavior due to the parallelization. We optimize
the OpenMP implementations and show performance results on IPOL server Purple (Intel
X7560 Nehalem) and traditional supercomputer nodes (Intel Haswell).

• These methods have been introduced in earlier conference papers [61, 42] as serial implemen-
tations and as a parallel implementation [56] on a supercomputer, without online code. Here
we develop new parallel versions for real time implementations on the IPOL server for both
hyperspectral imagery and the non local means functional for segmentation of RGB images.

The paper is organized as follows. In Section 2, we describe the graph model and provide some
background information. In Section 3, the details of our algorithms and the Nyström extension
technique are presented. In Section 4, we elaborate on our numerical results using hyperspectral and
RGB data sets. Section 5 contains details on parallelization and scaling. Section 6 concludes the
paper.

2 Background

2.1 Graphical Representation

The two classification algorithms are based on the graph setting [24, 76]. The framework involves
an undirected graph G = (V,E), where V and E are sets of nodes and edges, respectively. Pairs of
nodes of the graph are connected by edges, each of which is assigned a weight, which describes the
similarity between the nodes the edge is connecting. A high-valued weight indicates that the two
vertices are similar, and a low-valued weight indicates they are dissimilar.

We embed our data into a graphical framework, and use the weight function given by the formula

wij = exp(−||xi − xj||2/τ), (1)

where xi and xj are feature vectors of nodes i and j, and τ is a parameter to be determined. More
details about how to choose τ can be found in [4]. In the case of hyperspectral images, each node in
a graph is a pixel in the image, and the feature vector of a pixel is a vector of intensity values in its
many bands. We use the cosine norm to compare two feature vectors.

The degree of a node i ∈ V is defined as di =
∑

j∈V wij. If D is the diagonal matrix with elements
di and W = {wij} is the weight matrix, the graph Laplacian is defined as L = D −W . For scaling
purposes, we use the normalized symmetric Laplacian Ls, which is defined as

Ls = D−
1
2LD−

1
2 = I −D−

1
2WD−

1
2 . (2)
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Another common version of the normalization, related to the discrete Markov process, is the random
walk Laplacian given by

Lw = D−1L = I −D−1W. (3)

We note that the graph Laplacians satisfy the following properties [24, 76]:

1) L and Ls are symmetric.

2) L, Ls and Lw are positive semi-definite matrices.

3) λ is an eigenvalue of Lw with eigenvector u if and only if λ is an eigenvalue of Ls with eigenvector

w = D
1
2u.

4) L, Ls and Lw have non-negative, real-valued eigenvalues 0 = λ1 ≤ λ2 ≤ . . . ≤ λN . Note that 0 is
an eigenvalue of L and Lw with a constant one eigenvector 1. Due to 3), 0 is an eigenvalue of Ls

with eigenvector D1/2
1.

In this paper, we use a fully connected graph, and also use non-local operators, which allow the
algorithm to capture patterns and texture in the image by using non-local information [37, 36].

2.2 Spectral Clustering and K-means

Our algorithms involve computing eigenvalues and eigenvectors of the graph Laplacian. This infor-
mation is also used in the technique of spectral clustering, so we review it here.

Spectral clustering [76] is a popular approach for clustering a data set into several classes. The
method requires the data set to be embedded in a graph framework and the eigenvectors of the
graph Laplacian (or the random walk Laplacian) to be computed. The procedure is described in
Algorithm 1.

Algorithm 1: Spectral Clustering

Input: Graph Laplacian L (or Lw), number K of clusters to construct.
Output: Clusters A1, . . . , AK with Ai = {j|yj ∈ Ci}.

1 Compute first K eigenvectors v1, . . . , vK of L (or Lw).
2 Let V ∈ RN×K be the matrix containing the vectors v1, . . . , vK as columns.
3 For i = 1, . . . , N , let yi ∈ RK be the vector corresponding to the ith row of V .
4 Cluster the points (yi)i=1,...,N in RK with the K-means algorithm into clusters C1, . . . , CK .

The K-means Algorithm [53] for finding K clusters proceeds iteratively by first choosing K
centroids and then assigning each point to the cluster of the nearest centroid. The centroid of each
cluster is then recalculated and the iterations continue until there is little change from one iteration
to the next. A generalized version of spectral clustering using the p-Laplacian is proposed in [17].

3 Graph-based Classification Algorithms

3.1 Semi-supervised Algorithm

In this section, we describe how to use eigenvectors of the Laplacian to minimize a semi-supervised
graph model. In semi-supervised learning, the fidelity, or a small amount of “ground truth”, is known
and the rest of the data set needs to be classified according to the categories of the known data [61].
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We approach the semi-supervised classification problem using energy minimization techniques.
Similar approaches have been used in [4, 5], where the problem is formulated as a minimization of the
Ginzburg-Laudau (GL) functional (in graph form) with a fidelity term. In [60], the authors propose
an MBO scheme to solve the binary classification problem; a multi-class extension of that algorithm
is described in [34, 59].

The problem is to classify a data set with N elements into n̂ classes, where n̂ is to be provided to
the algorithm in advance. We work with an assignment matrix u, which is an N × n̂ matrix, where
each row is an element of the Gibbs simplex Σn̂, defined as

Σn̂ :=

{
(x1, . . . , xn̂) ∈ [0, 1]n̂

∣∣∣∣∣
n̂∑

k=1

xk = 1

}
. (4)

Therefore, each row of u is a probability distribution; in fact, the kth component of the ith row of u
is the probability the ith node belongs to class k. In the text that follows, we denote the ith row of u
by ui. Let us also denote by ek the kth vertex of the simplex, where all the entries are zero, except
the kth one, which is equal to one.

The optimization problem we consider consists of minimizing the following energy

E(u) = ε〈u, Lsu〉+
1

ε

∑
i

W (ui) +
∑
i

µ

2
λ(xi)||ui − ûi||2L2

, (5)

encountered also in [34, 60, 59]. The first two terms of (5) comprise the graph form of the Ginzburg-
Landau functional, where Ls is the symmetric Laplacian, ε is a small positive constant, and W (ui)
is the multi-well potential in n̂ dimensions, where n̂ is the number of classes

W (ui) =
n̂∏

k=1

1

4
||ui − ek||2L1

. (6)

The last term of (5) is the regular L2 fit to known data with some constant µ, while λ(x) takes the
value of 1 on fidelity nodes, and 0 otherwise. The variable û is the initial value for u with randomly
chosen labels for non-fidelity data points and the “ground truth” for the fidelity points. Lastly, in (5),
for matrices A and B, 〈A,B〉 = trace(ATB), where AT indicates A transpose.

Minimizing E(u) by the gradient descent method, one obtains

∂u

∂t
= −εLsu−

1

ε
W

′
(u)− µλ(x)(u− û). (7)

This is the Allen-Cahn Equation [1, 30] with fidelity term with the differential operator ∆u replaced
by a more general graph operator −Ls [51]; when ε → 0, the solution to the Allen-Cahn equation
approximates motion by mean curvature [62]. Note that in the last term of (7), the product is meant
to be calculated on each node.

In [34], the authors propose an MBO scheme to solve (7). We slightly modify this scheme to
solve (7) in the formulation of our semi-supervised method.

We now present the semi-supervised algorithm, detailed in Algorithm 2, and which is based on
that of [34]. For initialization, which we denote by û, we use the known labels for the fidelity points
and random class labels for non-fidelity points. To obtain the next iterate of u, one proceeds with
the following two steps:

• Step 1: Heat equation with forcing term:

un+ 1
2 − un

dt
= −Lsu

n − µλ(x)(un − û), (8)
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• Step 2: Threshold

un+1
i = er, r = arg maxu

n+ 1
2

i , (9)

for all i ∈ {1, 2, . . . , N}, where er is the rth standard basis in Rn̂.

For a stopping criterion, we compute the norm of the difference between the label matrix u of
two consecutive iterations and stop the iteration when the norm is below a threshold value. Let us
denote the final u by uf . To obtain the final classification of node i, we find the largest value in the
ith row of uf and assign the corresponding index as the class label of node i. For a more thorough
discussion about the MBO scheme and motion by mean curvature on graphs, the reader is referred
to [72].

Step 1 can be computed very efficiently and simply by using the eigendecomposition of Ls, which
is

Ls = XΛXT , (10)

where X is the eigenvector matrix and Λ is a diagonal matrix containing the eigenvalues. We
approximate X by a truncated matrix retaining only a small number of the leading eigenvectors. If
we write

un = Xan, µλ(x)(un − û) = Xdn, (11)

and equate coefficients, we can formulate Step 1 in the MBO scheme as solving for the coefficients
an+1
k

an+1
k = (1− dtλk) · ank − dt · dnk , (12)

where λk is the kth eigenvalue of Ls, in ascending order.
Due to the fact that, in practice, only the leading eigenvalues and eigenvectors (in ascending

order) need to be calculated to obtain good accuracy, (12) is an efficient way to compute Step 1 of
the algorithm, even in the case when the number of classes is very large. This feature of the method
makes the procedure very fast.

Empirically, the algorithm converges after a small number of iterations. Note that the iterations
stop when a purity score between the partitions from two consecutive iterations is greater than
99.99%. The purity score, as used in [41], measures how “similar” two partitions are. Intuitively, it
can be viewed as the fraction of nodes of one partition that have been assigned to the correct class
with respect to the other partition.

3.2 Unsupervised Algorithm

In this section, we formulate an unsupervised algorithm to handle the case when there is no knowledge
of the class of any part of the data set. Our method is based on the Mumford-Shah model [64],
which is a famous model used for multi-class segmentation problems. One simplified version of the
Mumford-Shah model tailored for images is the piecewise constant model [74, 28]

EMS(Φ, {cr}n̂r=1) = |Φ|+ µ
n̂∑

r=1

∫
Ωr

(f − cr)2, (13)

where the contour Φ segments an image region Ω into n̂ disjoint sub-regions Ωr, |Φ| is the length of
the contour, f is the observed image data, µ is a constant, and {cr}n̂r=1 is a set of constant values
which represent the local centroids.

The graph version of the multi-class piecewise constant Mumford-Shah energy was introduced
in [42] for hyperspectral images

MS(u, {cr}n̂r=1) =
1

2
|u|TV + µ

n̂∑
r=1

〈||f − cr||2, u?,r〉, (14)
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Algorithm 2: Semi-Supervised Algorithm

Input: A data set of N points (embedded in a graphical framework G = (V,E)) to be
classified into n̂ classes, parameters dt and µ and threshold value δ.

Output: matrix C denoting the final class of all nodes.
1 Initialize u0 and compute d0.
2 Calculate m << N smallest eigenvectors and eigenvalues of the symmetric graph Laplacian

Ls. Let X denote the eigenvector matrix.
3 Set n = 0.
4 while purity(un, un−1) < 99.99% do
5 an = XT · un.
6 an+1

k = (1− dtλk) · ank − dt · dnk for k = 1 to k = m.

7 Compute un+ 1
2 via un+ 1

2 = Xan+1.
8 Compute dn+1 via (11).

9 un+1
i = er, r = arg maxu

n+ 1
2

i for i = 1 to i = N .
10 n← n+ 1.

11 If uf is the final iterate of u, let Ci = arg max(uf )i.

where u is the class assignment matrix (described in the previous section) in which each row is an
element of the Gibbs simplex (4). The length of the contour is estimated by the total variation
(TV) of the assignment matrix u. In (14), the term ||f − cr||2 denotes an N × 1 vector (||f(x1) −
cr||2, . . . , ||f(xN) − cr||2)T and the xi (i = 1, . . . , N) are the N pixels of the data set. In addition,
the term u?,r indicates the rth column of u; the vector u?,r is a N × 1 vector which contains the
probabilities of every node belonging to class r. Lastly, in (14), 〈, 〉 indicates the usual inner product.

The problem is to classify a data set with N elements into n̂ classes, where n̂ is to be provided to
the algorithm in advance. We work with an assignment matrix u, described in the previous section.
For the purpose of segmentation, we need to minimize equation (14). This problem is essentially
equivalent to the K-means method when µ approaches +∞.

Minimizing the variation in c yields the following formula for the optimal constants cr

cr =
〈f, ur〉∑N

i=1 u?,r(xi)
, (15)

where u?,r(xi) indicates the ith entry of u?,r.
To motivate our algorithm, we note that the GL functional converges to the TV seminorm [46, 6];

thus, we modify (14) using a diffuse interface approximation

E(u, cr) = ε〈u, Lsu〉+
1

ε

∑
i

W (ui) + µ
n̂∑

r=1

〈||f − cr||2, u?,r〉. (16)

Similarly to the procedure in Section 3.1, using gradient descent yields

∂u

∂t
= −εLsu−

1

ε
W

′
(u)− µ(||f − cn1 ||2, . . . , ||f − cnn̂||2). (17)

We can use the MBO scheme, described in Section 3.1, to solve this minimization problem. A
similar thresholding procedure can be found derived in [28]. A class of algorithms for the high order
geometric motion of planar curves following a similar thresholding procedure can be found in [27].

We now present our unsupervised algorithm, detailed in Algorithm 3. For initialization of u, we
use random labels. To obtain the next iterate of u, one proceeds with the following three steps:
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• Step 1: Compute

un+ 1
2 − un

dt
= −Lsu

n − µ(||f − cn1 ||2, . . . , ||f − cnn̂||2). (18)

• Step 2: Threshold

un+1
i = er, r = arg maxu

n+ 1
2

i , (19)

for all i ∈ {1, 2, . . . , N}, where er is the rth standard basis in Rn̂.

• Step 3: Update c

cn+1
r =

〈f, un+1
?,r 〉

〈1, un+1
?,r 〉

. (20)

The stopping criteria for this scheme is the same as the one in Section 3.1. The final classification
of the nodes is also obtained in the same manner as in Section 3.1.

As in the case of the semi-supervised algorithm, Step 1 can be computed very efficiently and simply
by using the eigendecomposition of Ls. Let X be the matrix containing the first m << N orthogonal
leading eigenvectors of L, Λ be the diagonal matrix containing the corresponding eigenvalues, and
write un as un = Xan. Then Step 1 of the algorithm can be approximately computed as

un+ 1
2 = X(1− dt · Λ)an − dt · µ(||f − ck1||2, . . . , ||f − ckn̂||2). (21)

Due to the fact that, in practice, only the leading eigenvalues and eigenvectors need to be com-
puted to obtain a good accuracy, (21) is an efficient way to compute Step 1 of the algorithm, even
when the number of classes is large. This feature makes this method very fast.

The algorithm also converges after a small number of iterations empirically. Note that the itera-
tions stop when a purity score between the partitions from two consecutive iterations is greater than
99.99%.

Algorithm 3: Unsupervised Algorithm

Input: A data set of N points (embedded in a graphical framework G = (V,E)) to be
classified into n̂ classes, and parameters dt and µ.

Output: matrix C denoting the final class of all nodes.
1 Initialize u0 and compute a0 via (11).
2 Calculate m << N smallest eigenvectors and eigenvalues of the symmetric graph Laplacian

Ls. Let X= the eigenvector matrix, Λ= the diagonal matrix containing the eigenvalues.
3 Set n = 0.
4 while purity(un, un−1) < 99.99% do
5 Compute cn+1

r via (20) for r = 1 to r = n̂.

6 Compute un+ 1
2 via (21).

7 un+1
i = er, r = arg max(un+ 1

2 )i for i = 1 to i = N .
8 Compute an+1 via (11).
9 n← n+ 1.

10 If uf is the final iterate of u, let Ci = arg max(uf )i.
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3.3 Background on the Nyström Extension Technique

In the procedure of both the supervised and unsupervised algorithms, we use spectral methods to
make the computations more efficient. Due to the fact that we calculate several leading eigenvectors
and eigenvalues of the graph Laplacian matrix and project all vectors onto this sub-eigenspace, Step
1 becomes simply updating coefficients.

An approximation to the eigendecomposition of the graph Laplacian matrix can be computed
very efficiently by the Nyström extension method [31]. This is achieved by calculating an eigen-
decomposition of a smaller system of size m << N and then expanding the results back up to N
dimensions. The computational complexity is almost O(N). We can set m << N without any
significant decrease in the accuracy of the solution. In practice, we also see that only the leading
eigenvectors and eigenvalues are needed to obtain an accurate answer.

The method proceeds as follows. Suppose Z = {zi}Ni=1 is the whole set of nodes on the graph.
By randomly selecting a small subset X, we can partition Z as Z = X

⋃
Y . The weight matrix W

can be written as

W =

[
WXX WXY

WY X WY Y

]
,

where WXX denotes the weights of nodes in set X, WXY denotes the weights between set X and set
Y , WY X = W T

XY and WY Y denotes the weights of nodes in set Y .
It can be shown that the large matrix WY Y can be approximated by WY Y ≈ WY XW

−1
XXWXY , and

the error is determined by how many of the rows of WXY span the rows of WY Y . We only need to
compute WXX , WXY = W T

Y X , and it requires only (|X| ·(|X|+ |Y |)) computations versus (|X|+ |Y |)2

when the whole matrix is used. The major overhead is computing WXY and we have developed a
new parallel code for the first time in the literature. See Section 5 for details.

Based on the definition in formula (2), if ξ is an eigenvalue of Ŵ = D−1/2WD−1/2, then 1 − ξ
is an eigenvalue of Ls. Therefore, we first calculate the eigendecomposition of Ŵ , and then easily
extend it to one of Ls. However, to calculate the eigenvalues and eigenvectors of Ŵ , we need to first
calculate normalizations of WXX and WXY .

Let 1K be the K-dimensional unit vector, and matrices dX and dY be defined as

dX = WXX1L +WXY 1N−L,

dY = WY X1L + (WY XW
−1
XXWXY )1N−L.

(22)

Let A./B denote component-wise division between matrices A and B, and vT denote the transpose
of vector v; then, the matrices WXX and WXY can be normalized in the following manner to obtain
ŴXX and ŴXY :

ŴXX = WXX ./(sXs
T
X),

ŴXY = WXY ./(sXs
T
Y ),

(23)

where sX =
√
dX and sY =

√
dY .

It is shown in [4] that if we have the eigendecomposition of two small matrices

ŴXX = BXΓBT
X , (24)

and
ŴXX + Ŵ

−1/2
XX ŴXY ŴY XŴ

−1/2
XX = ATΞA, (25)

then the eigenvector matrix of Ŵ and thus Ls is given by

Φ =

[
BXΓ1/2BT

XAΞ−1/2

ŴY XBXΓ−1/2BT
XAΞ−1/2

]
.
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The diagonal components of I − Ξ contain the corresponding eigenvalues of the symmetric graph
Laplacian Ls.

4 Numerical Results

4.1 Urban Data

The Urban data set, available at http://www.tec.army.mil/Hypercube, is one of the most widely
used hyperspectral data sets in the hyperspectral image study. It was recorded in October 1995 by the
Hyperspectral Digital Imagery Collection Experiment (HYDICE), whose location is an urban area in
Copperas Cove, TX, U.S.. The data consists of an image with dimension of 307 x 307 pixels, each of
which corresponds to a 2 square meters area. For each pixel, there are 210 channels with wavelengths
ranging from 400 nm to 2500 nm, resulting in a spectral resolution of 10 nm. After removing certain
channels due to dense water vapor and atmospheric effects, the common clean data set contains 162
channels. We use the ground truth from http://www.escience.cn/people/feiyunZHU/Dataset_

GT.html [85], which contains 4 classes with end members corresponding to asphalt, grass, tree and
roof, respectively. The goal is to accurately segment the image into the 4 classes.

We apply both the semi-supervised and unsupervised algorithms to this data set. For the semi-
supervised algorithm, we randomly select 10% of the ground truth to have known labels.

The classification results are shown in Figure 1. There are four classes in the ground truth;
asphalt, grass, trees and roof are labeled in blue, red, green and yellow, respectively. We see that
both algorithms are able to obtain a result very close to the ground truth and one that is much more
accurate than that of spectral clustering.

4.2 Kennedy Space Center Data

The Kennedy Space Center Data Set was acquired by NASA AVIRIS (Airborne Visible/Infrared
Imaging Spectrometer) instrument at the Kennedy Space Center (KSC) in Florida. The data set
consists of an image, the dimension of which is 512 × 614 pixels. The are 224 bands having a width
of 10 nm with center wavelengths ranging from 400 to 2500 nm. After removing water absorption
and low SNR bands, 176 bands were used for the analysis.

For classification purposes, 13 classes representing the various land cover types that occur in this
environment were defined for the site; therefore, the goal is to accurately detect all 13 classes. The
public ground truth, which contains only 1.66% of the total pixels, is shown in Figure 2(a). The
image of band 50 is shown in Figure 2(b).

We chose 10 pixels per class for fidelity and applied our semi-supervised algorithm on this data
set. The classification result representing the whole image is shown in Figure 2(c). The overall
accuracy, calculated using known labels, is 80.37%.

4.3 DC Mall Data

The DC Mall data set was collected with an airborne sensor system located over the Washington
DC Mall. The data set consists of an image with dimension of 1280 × 307 pixels with 210 spectral
bands, each of which contains a wavelength in the 400− 2400 nm region. However, after elimination
of water absorption and noisy bands, only 191 spectral bands remain, and the modified data set is
available at http://cobweb.ecn.purdue.edu/~biehl/.

The data set contains 7 classes; thus, the problem becomes to accurately segment the 7 classes.
However, we only have 2.06% of the ground truth available and it is shown in Figure 3(a).
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(a) the ground truth with four classes: asphalt
(blue), grass (red), trees (green), roof (yellow).

(b) pixels selected to have known labels (10% of
the data) for the semi-supervised algorithm.

(c) the classification result of the semi-supervised
algorithm with the accuracy of 93.48%.

(d) the classification result of the unsupervised
algorithm with the accuracy of 92.35%.

(e) the result of spectral clustering with K-means
with the accuracy of 75.06%.

(f) the error of the semi-supervised algorithm.

Figure 1: Urban Data.

We use 10 pixels per class for fidelity and apply our semi-supervised algorithm on this data set.
The result is shown in Figure 3(b), and the overall accuracy is 98.11%. We note that when 20 pixels
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(a) Ground truth. (b) Band 50.

(c) Classification result.

Figure 2: Kennedy Space Center data.

per class are used for fidelity, an even better accuracy of 99.17% is achieved. The algorithm clearly
performs very well in clustering the data set into seven classes.

4.4 Face Data

We consider the face data of the Stanford Center for Image System Engineering. We choose an image
with dimension 1372 ×1183. It has 148 spectral bands with wavelengths ranging from 415 to 950 nm
in steps of 4 nm. The data set is available at https://scien.stanford.edu/index.php/faces.

The data does not have ground truth but we can observe the different classes using the RGB
image shown in Figure 4(a). The testing is performed using the unsupervised algorithm and we vary
the number of classes from three to five. The classification results are shown in Figure 4(b), (c), (d).
We see that the algorithm accurately detects the different regions of the image.

4.5 Plume Video Data

We also consider the data set of hyperspectral video sequences recording the release of chemical
plumes at the Dugway Proving Ground [14]. The data set we use here is the aa12 Victory data set
from Algorithms for Threat Detection Data Repository, which is a video sequence documenting the
release of a plume, and it has 329 frames in total. Each frame of the video sequence is a 3D image of
dimension 128×320×129, where the last dimension indicates the number of channels. Each channel
depicts a particular frequency starting at 7,830 nm and ending at 11,700 nm with a spacing of 30

229

https://scien.stanford.edu/index.php/faces


Zhaoyi Meng, Ekaterina Merkurjev, Alice Koniges, Andrea L Bertozzi

(a) Ground truth (b) Classification result

Figure 3: DC mall data.

(a) Ground truth. (b) Three classes. (c) Four classes. (d) Five classes.

Figure 4: Face data.
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nm. The videos in this repository were captured by Johns Hopkins Applied Physics Lab using three
long wave infrared (LWIR) spectrometers, each placed at a different location about 2 km away from
the release of plume at an elevation of around 1300 feet. Frames were captured every five seconds.

The goal, of course, is to track the plume as it moves in the video sequence, but before the
data is directly inputed into the algorithm, we perform some preprocessing of the raw data from
the repository. We first convert the data to spectral emissivity values. Then, we locate the pixels
with values greater than a certain threshold and replace their values with the mean values of their
neighborhood.

Due to the temperature fluctuation during the day, there is a flicking inconsistency throughout
the video and the pixel values vary from frame to frame. We show the different values from different
frames of one fixed pixel in Figure 5. To eliminate the flicker between frames, the Midway equalization
method is used in [35]. In this paper, we do not perform this preprocessing and the flicker problem
does not affect the classification result.

This plume video dataset has been studied in several papers. The approach in [35] uses a com-
bination of dimension reduction and histogram equalization to prepare the hyperspectral video data
for segmentation. Principal Component Analysis (PCA) is used for dimension reduction of the hy-
perspectral video data, and a Midway method for histogram equalization is used to redistribute the
intensity values in order to reduce flicker between frames. Then, the preprocessed data is classified
using some traditional methods including K-means, spectral clustering, and the Ginzburg-Landau
functional. In [71], a binary partition tree method is used to retrieve the real location and the extent
of the plume. Moreover, the author of [68] proposes two ways to compute meaningful eigenvectors
of the graph Laplacian. Other detection methods for hyperspectral plumes include [40] (MWIR)
and [54] (HYDICE).

We select the 17th frame to the 56th frame, which contain most of the plume scenes, for our
tests and we classify all the pixels simultaneously, not frame by frame. Note that when the number
of frames is very large, the number of pixel values we are dealing with may exceed the maximum
allowed value for a 32-bit signed binary integer (2,147,483,647) in many programming languages and
an overflow can cause its value to wrap and become negative. For example, if we are dealing with
500 frames of the plume data, the overall number of pixel values is 500×320×128×129 = 2.6e+09,
which is larger than 2,147,483,647. In this case, we need to process the video frames in batches.
Instead of having just two classes of the plume and background, we choose to segment each frame in
the video sequence into four classes: plume, sky, foreground, and mountain.

For the semi-supervised algorithm, since we do not have the ground truth of the plume video, we
choose the “ground truth” by identifying the relevant eigenvectors and then thresholding, similarly
to the procedure in [61]. We show the 2nd to 5th eigenvectors of frame 30 in aa12 Victory video set
in Figure 6. We threshold the largest values in the 2nd eigenvector to obtain the “known” labels for
the sky and the smallest values to obtain “known” labels for the foreground. Similarly, we use the
smallest values in the 3rd eigenvector for the plume and the smallest values in the 5th eigenvector
for the mountain region. We select 2% of the “known” labels for each of the 4 classes. The selected
fidelity regions are shown in Figure 7.

For the unsupervised algorithm, we set the number of classes to be five. This is due to the fact
that there are a few noisy pixels in frame 22, which is the frame when the explosion of the plume
started, and which would be classified as one class. The total number of the noisy pixels in this class
is 68, which is not noticeable in the classification result.

The classification result (29th frame to the 37th frame) is shown in Figure 8 for the semi-supervised
algorithm and Figure 9 for the unsupervised method. We see that the algorithms are able to accu-
rately detect the plume as it moves in the video sequence. These results can be compared to that of
spectral clustering, shown in Figure 10, in which the plume is separated into two classes. Therefore,
spectral clustering does not do well in detecting the plume. We note that for the spectral clustering
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experiment, we calculate the first 100 leading eigenvectors of the 40 frames using the Nyström ex-
tension method and then use the K-means algorithm on these 100 leading eigenvectors to find the 4
classes.

We also perform experiments using 329 frames. Since most of the frames are just background
frames without any plume, the plume class contains a much smaller amount of pixels compared to
the other three classes and becomes harder to detect. For the semi-supervised algorithm, in order
to get similar results as that of the 40 frames, we need to increase the value of µ before the fidelity
term. In a certain range, when µ is increased, the plume becomes thicker, and when µ is decreased,
the plume becomes thinner. For the unsupervised algorithm, since we do not have any known labels,
the plume detected is thinner than that of the result of the 40 frames.

Figure 5: Emissivity value of one fixed pixel of frame 65 and frame 320.

Figure 6: 2nd to 5th eigenvectors of the 30th frame.

4.6 Non-local Means Method for RGB image

We have applied the semi-supervised and unsupervised algorithms on several hyperspectral data sets
and we also consider RGB images. RGB images have three bands on each pixel, which is much
less than the number of bands of the hyperspectral images. We use the non-local means method
to compute a feature vector for each pixel based on the RGB values of this pixel and that of its
neighbors.

The non-local means method is widely used in image processing. Zhou and Schölkopf in their
papers [84][83][82] formulated a theory of non-local operators that is related to the discrete graph
Laplacian described in Section 2.1. Buades, Coll, and Morel applied this non-local theory to denoising
algorithms in their work [16]. Osher and Gilboa proposed using non-local operators to define func-
tionals involving the TV semi-norm for various image processing applications in their work [37, 36].
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Figure 7: 8% of data selected to be the fidelity region by thresholding the eigenvectors, frames 29-37.

Figure 8: Classification result of the semi-supervised algorithm (frames 29-37 of the aa12 Victory video).

In our work, we use the non-local means method to compute the feature vector of each pixel. The
procedure is described in Algorithm 4.

We apply a Gaussian kernel on a patch for each pixel i since we would like to give more importance
to points closest to the center of the patch (pixel i). The points farther away from the main pixel
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Figure 9: Classification result of the unsupervised algorithm (frames 29-37 of the aa12 Victory video).

Figure 10: Classification result of spectral clustering with K-means (frames 29-37 of the aa12 Victory video).

should be weighted less than those closest to it.

We apply the semi-supervised and unsupervised algorithm on the RGB image of two cows and
show the results in Figure 11. Figure 11(a) is the original image and there are four classes by
observation: the grass, the river, one brown cow and one black cow. To use the semi-supervised
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Algorithm 4: Non-local Means Method

Input: RGB image I, window size d.
Output: a (m× n) by (2f + 1)2 × 3 feature matrix F .

1 Pad the image with mirror reflections of itself with a width d.
2 For the ith pixel, make a (2d+ 1) by (2d+ 1) patch centered at pixel i.
3 For the jth, (j = 1; 2; 3) band, apply a Gaussian kernel on this patch and straighten it to a

vector vij.
4 Concatenate the three vectors vi1, vi2, and vi3 together to form the feature vector vi at pixel i.
5 Form the feature matrix F by letting each row of F be a feature vector of a pixel.

algorithm, we select some pixels with known labels to be the fidelity. The fidelity is shown in
Figure 11(b) and the classification result of the semi-supervised algorithm is shown in Figure 11(c).
The river, the grass and the brown cow are very accurately segmented, and some parts of the black
cow get mixed with the river or the grass. The classification result of the unsupervised algorithm
is shown in Figure 11(d). The river, the grass and the brown cow are also accurately segmented
here. The black cow gets mixed with the river because the ratio of the RGB values of the black
color (the black cow) and the grey color (the river) are the same. Since we use the cosine distance
when building the weight matrix, the grey color and the black color are very close to each other and
can be easily classified as one class. While when dealing with the hyperspectral images, the cosine
distance is more meaningful because the same materials have same spectrum but may have different
intensities.

In practice, we use d = 2 in our source code. The length of the feature vector of each pixel is
3× (2d+ 1)2 = 75, which is a reasonable dimension for the feature vector. We also consider a corner
case. We consider an image with a dark region where the pixel values of all the pixels in this region
are 0. Then when we apply the non-local means method on this image, the feature vector of pixel
which is in the center of the dark region would be a zero vector. In this case, when we calculate
the weight between this pixel with other pixels, using formula (1), we get an invalid value since the
cosine distance between each vector to a zero vector is infinity. To avoid this kind of case, we add a
small value ε (we use ε = 0.1 in the codes) to all the pixel values in the RGB image to make sure all
the weights are valid numbers.

4.7 Result Summary

4.7.1 Accuracy Summary

We apply our the semi-supervised and unsupervised algorithms on various data sets. The accuracy
summary is shown in Table 1. We show the overall accuracy of the data sets with ground truth.
For the other data sets without ground truth (the face, the plume and the cow), the classification
results are shown in figures in the previous subsections. The semi-supervised algorithm achieves high
accuracy with very low portion of known labels for all data sets. We also compared the unsupervised
algorithm with the spectral clustering with K-means. The spectral clustering with K-means achieves
only 75.06% overall accuracy for the urban data set and it gives wrong classification results for the
plume data set which is shown in Figure 10.

4.7.2 Run Time Summary

We apply our the semi-supervised and unsupervised algorithms on various hyperspectral data sets.
The run time summary is shown in Table 2. We show the run time of Nyström extension method
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(a) the image of two cows on the grass near the
river.

(b) pixels selected to have known labels for the
semi-supervised algorithm.

(c) the classification result of the semi-supervised
algorithm.

(d) the classification result of the unsupervised
algorithm.

Figure 11: Classification result of the non-local method on the RGB Image of Two Cows.

Urban(semi) Urban(un) KSC(semi) DC(semi)
Number of classes 4 4 13 7

Percentage of fidelity 10% NA 2.5% 1.73%
Overall Accuracy 93.48% 92.35% 80.37% 99.17%

Table 1: Accuracy summary of hyperspectral images.

and graph MBO methods tested on the IPOL server Purple. The run time of Nyström extension is
greatly reduced by the parallelization which we will discuss in the following section. The run time
of the MBO (both semi-supervised and unsupervised) method is highly dependent on the number of
iterations. The MBO algorithm converges after around 10 iterations for the plume, face, and urban
data sets. While for KSC and DC data set, it takes about 100 iterations to reach the convergence.
The number of iterations it takes to get to convergence varies for different data sets and different
numbers of classes.

5 Parallelization

In general, hyperspectral video sequences have hundreds of frames. For example, the Victory data
set we use in this paper has 40 frames, each of which is a hyperspectral image with dimension
128 × 320 × 129, where 129 is the number of channels of each pixel. Thus, the total number of
pixels is 1,638,400! Therefore, in order to apply the algorithms to a large data set very efficiently,
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Urban(semi) Urban(un) KSC(semi) DC(semi) Face(un) Plume(semi) Plume(un)
Number of pixels 94,249 94,249 314,368 392,960 1,623,076 1,638,400 1,638,400
Number of bands 162 162 176 191 148 129 129
Number of classes 4 4 13 7 5 4 4
Nyström (serial) 5.72 5.72 19.97 26.44 93.92 112.00 112.00

Nyström (32 threads) 1.30 1.30 4.35 5.51 22.43 23.57 23.57
MBO 12.13 2.07 145.62 141.79 35.92 59.57 41.02

Table 2: Run time summary of hyperspectral images and videos (in seconds).

we parallelize our codes.

As a first step, we analyze the serial codes of the two algorithms, locate hotspots, and evaluate
cache miss rates, potential for vectorization, locality improvement and other performance factors
such as contention for shared resources. Here, the part that consumes the most run time is a big
“For” loop building the matrix WXY in the Nyström extension procedure. A simple parallelization
for this problem is to use OpenMP directive-based parallelism. We apply that procedure to the code
here, and present results on the IPOL testing server and a single node of a supercomputer at the
National Energy Research Scientific Computing Center (NERSC).

First, we present parallelization scaling results on the IPOL test server named Purple. The IPOL
server is comprised of Intel X7560 Nehalem, running at 2.27GHz and configured into a PowerEdge
R910 server. With four sockets, and each one containing 8 cores, we have 32 cores of shared memory
that are available. The scaling of the optimized code indicates almost ideal scaling, as shown in
Figure 12.

Second, we describe parallelization scaling results on the NERSC machine Cori Phase I. The
Cori Phase 1 system is based on Intel Haswell processors. It has two 2.3 GHz 16-core HaswellTM

processors per node. Each core has its own L1 and L2 caches, with 64 KB (32 KB instruction cache,
32 KB data) and 256 KB, respectively; there is also a 40-MB shared L3 cache per socket. According
to Figure 12, the scaling of the optimized code is almost ideal as well.

In Figure 12, we also show the scaling result of the total time of the Nyström extension procedure;
it includes both the serial and the parallelized part. Since we are using library BLAS in the serial
part, the operations in the BLAS library are also parallelized when given more threads.

The results relating to the speedup factor are further shown in Table 3. According to the table,
the speedup factor of the OpenMP part on IPOL server Purple shows an ideal scaling result! In fact,
it runs 30.96 times faster when using 32 threads, while on Cori, it runs 23.74 times faster when using
32 cores; the difference of scaling is due to the different architecture of the machines. With regards
to the speedup of the total time of Nyström extension procedure, Cori Phase I gives better results
than Purple. The procedure runs 7.98 times faster when using 32 threads on Cori and 4.75 times
faster on Purple.

6 Conclusion

We have presented one semi-supervised and one unsupervised graph-based classification algorithm
and have applied these methods to hyperspectral video data, hyperspectral images and RGB images.
The results show that these procedures can very accurately and efficiently segment a data set into
a number of classes. To make the algorithms very efficient, we use the Nyström extension method
to calculate the eigendecomposition of the graph Laplacian; in practice, only a small portion of the
eigenvectors are needed to obtain good results. Moreover, we use OpenMP directive-based parallelism
in our algorithms and observe strong (almost ideal) scaling behavior and very fast implementation
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Figure 12: Normalized scaling results of the IPOL server Purple and NERSC machine Cori Phase I.

# of Threads Nyström OpenMP(Purple) Nyström Total(Purple) Nyström OpenMP(Cori) Nyström Total(Cori)
2 1.97 1.69 1.97 1.82
4 3.95 2.57 3.61 3.00
8 7,94 3.46 6.25 4.39
12 11.92 3.91 8.95 5.44
16 15.79 4.26 12.08 6.25
20 19.80 4.40 15.09 6.80
24 23.75 4.57 17.96 7.35
28 27.57 4.67 20.66 7.68
32 30.96 4.75 23.74 7.98

Table 3: Speedup factors of using multiple cores.

times. In fact, the entire process takes only 1 minute using 32 threads on a supercomputer for 40
frames of the plume video data!
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