
Published in Image Processing On Line on 2018–05–22.
Submitted on 2016–02–26, accepted on 2018–04–22.
ISSN 2105–1232 c© 2018 IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
https://doi.org/10.5201/ipol.2018.173

2
0
1
5
/
0
6
/
1
6

v
0
.5
.1

IP
O
L

a
rt
ic
le

c
la
ss

A MATLAB SMO Implementation to Train a SVM

Classifier: Application to Multi-Style License Plate

Numbers Recognition

Pablo Negri1,2

1 Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación,
Argentina

2 CONICET-Universidad de Buenos Aires. Instituto de Investigación en Ciencias de la Computación (ICC),
Argentina (pnegri@dc.uba.ar)

Communicated by Mart́ın Rais Demo edited by Mart́ın Rais

Abstract

This paper implements the Support Vector Machine (SVM) training procedure proposed by
John Platt denominated Sequential Minimimal Optimization (SMO). The application of this
system involves a multi-style license plate characters recognition identifying numbers from “0”
to “9”. In order to be robust against license plates with different character/background colors,
the characters (numbers) visual information is encoded using Histograms of Oriented Gradients
(HOG). A reliability measure to validate the system outputs is also proposed. Several tests
are performed to evaluate the sensitivity of the algorithm to different parameters and kernel
functions.

Source Code

The source code is written in MATLAB and it is available at the IPOL web page of this article1.
It implements Platt’s SMO algorithm to train and test a SVM classifier on a multi-style license
plate character dataset. Compilation and usage instruction are included in the README.txt file
of the archive. The online demo allows to test the character (numbers) recognition system, from
license plate images.

Supplementary Material

The supplementary files of the work include a dataset of license plate numbers from four coun-
tries having different fonts, and character/background colors.

Keywords: sequential minimal optimization; support vector machine; multi-style license plate
recognition; histogram of oriented gradients

1https://doi.org/10.5201/ipol.2018.173

Pablo Negri, A MATLAB SMO Implementation to Train a SVM Classifier: Application to Multi-Style License Plate Numbers Recognition,
Image Processing On Line, 8 (2018), pp. 51–70. https://doi.org/10.5201/ipol.2018.173

https://doi.org/10.5201/ipol
https://doi.org/10.5201/ipol
http://creativecommons.org/licenses/by-nc-sa/3.0/
https://doi.org/10.5201/ipol.2018.173
https://doi.org/10.5201/ipol.2018.173
https://doi.org/10.5201/ipol.2018.173

Pablo Negri

1 Introduction

Sequential Minimal Optimization (SMO) [11] can be considered as the simplest algorithm to train
a Support Vector Machine (SVM) classifier. It uses the divide and conquer approach to solve ana-
lytically a large quadratic programming (QP) optimization problem. The reduction in complexity
has several advantages: saving processing time and reducing memory consumption. It is also a very
interesting implementation that can be employed for pedagogical purposes, because the variables of
the iterative algorithm can be easily accessed and interpreted in the learning process.

This paper uses SMO to implement a multi-class SVM classifier to address the problem of recog-
nizing multi-style license plate numbers. The One-Against-All approach is employed to classify the
incoming characters from “0” to “9”. In order to be robust to changing colors and backgrounds, the
features describing the characters’ shape consist of Histograms of Oriented Gradients [3], as proposed
by Gómez et al. [6].

2 Histogram of Oriented Gradients Feature Space

The Histogram of Oriented Gradients (HOG) [3] is a widely used image descriptor to successfully
recognize different kinds of object classes, such as pedestrians, vehicles, etc. It computes the gradient
of the image I(x, y), using, for example a 3x3 size Sobel filter, to get (M(x, y), O(x, y)), the matrices
corresponding to the gradient magnitude and the gradient orientation, respectively.

The gradient directions are discretized into D bins, and the histograms are determined by ac-
cumulating the gradient magnitude of each pixel of the region by their gradient directions. It is
important to notice that gradient directions, not gradient orientations, are used: directions do not
discriminate between dark-to-light and light-to-dark transitions. Thus, the HOG feature set is inde-
pendent of the character and background colors. We choose D = 6. Each HOG feature describing a
region of the image is a histogram of D bins.

Each histogram j is defined as: hj(xj, yj, sj, rj), where rj is the type of rectangle, sj is the scale
and (xj, yj) is its position in the window. The types of rectangles depend on the (width, height)
ratio which can be (s, s), (s, s/2), (s/2, s). We have a total of four scales: s : {4, 6, 8}.

Algorithm 1: HOG feature j

input : (M,O, xj , yj , sj , rj)
output : hj
R⇐ defineRectanglePositions(xj , yj , sj , rj)
Initialize hj as a zero vector of length D
forall the pixels positions (x, y) ∈ R do

o = mod(round(D ·O(x, y)/π), D)
hj(o) = hj(o) +M(x, y)

T =
∑D−1

k=0 hj(k)
for k ← 0 to D − 1 do

hj(k) = hj(k)/T

Each histogram hj is computed using Algorithm 1. The function defineRectanglePositions()
transforms rj position and size from a normalized character pattern with a size of 16x12 pixels to
their relative values in the input image shape. Thus, it is not necessary to resize the image to
compute each histogram. Once all the pixels inside region R have been evaluated and accumulated
on hj, the bin values are normalized to sum 1.

52

A MATLAB SMO Implementation to Train a SVM Classifier: Application to Multi-Style License Plate Numbers Recognition

Figure 1 shows two examples of corresponding HOG features extracted from samples of Argen-
tinean and American license plates, with D = 6, computed on regions with two different rectangles.
The green rectangle corresponds to a square feature and the red one is a vertical rectangle feature.
As can be seen, both HOG features are very similar for the two different license plate numbers.

6
5

4

orientation

3
2

1

0

0.5

1

H
o
G

6
5

4

orientation

3
2

1

0

0.5

1

H
o
G

6
5

4

orientation

3
2

1

0

0.5

1

H
o
G

6
5

4

orientation

3
2

1

0

0.5

1

H
o
G

Argentine License Plate Number

Gradient
Modulo

Original

USA License Plate Number

Gradient
Modulo

Original

Figure 1: The figure shows the same HOG features computed for two samples from different datasets.

To accelerate the computation of the histograms, we use the “Integral Histogram” [12] which is an
intermediate representation of the input image inspired by Viola & Jones Integral Image [18]. The
Integral Histogram is a three dimensional table (the third dimension corresponds to orientations)
that makes it possible to accumulate the gradient magnitude for each orientation in a rectangular
region with only four references to it. Thus, each HOG feature can be built with 4 ×D accesses in
the Integral Histogram.

Based on the 16x12 pixels pattern size, and computing overlapped rectangles rj with a displace-
ment of one pixel, a set of 871 rectangles is obtained. The descriptor of one character results in a
vector x of G = 871 concatenated histograms. This vector, of G ×D values ∈ <, will be the input
of the SVM multi-class classifiers.

53

Pablo Negri

3 SVM-SMO Implementation

This section gives a very brief introduction to SVM classification and does not intend to be a guide of
SVM learning or convex optimization. Interested readers on those subjects can have a look at [1, 2,
14]. Here, the principal results for the non-linear case are presented and we describe how the analytic
solution is implemented. The idea is to deduce the equations which will be employed on Platt’s
pseudo-code for the sake of completeness of the Sequential Minimal Optimization methodology. This
description follows the presentation proposed in [11], Section 1.1. Considering that Platt’s work gives
a limited explanation of some equations, the procedure is completed based on [14], Section 10.5.

3.1 SVM Introduction

Vapnik [17] introduced Support Vector Machines as an optimization algorithm seeking to find the
hyperplane with the maximum margin discriminating two classes on a dataset, as shown in Figure 2.

Figure 2: The figure shows a toy sample of the SVM margin and a hyperplane definition in a two-class problem. The figure
was produced using the demo code from [14].

In its general form, the decision function that evaluates an input sample xt is

f(xt) = sign

(
N∑
i=1

yiαiK(xt,xi)− b

)
, (1)

where the couples {xi, yi}i=1,...,N correspond to the training samples. xi ∈ <d is the input vector
from sample i with size d, and yi is the associated label that takes two possible values: -1 and 1.
K(xt,xi) is a kernel function estimating the similarity between samples t and i in the feature space.
Examples of kernel functions will be presented in Section 5.2. The constant b is the threshold of
the function. The values of the coefficients αi correspond to the Lagrange multipliers of a quadratic

54

A MATLAB SMO Implementation to Train a SVM Classifier: Application to Multi-Style License Plate Numbers Recognition

programming (QP) problem. They are found by minimizing the following objective function

minimize
α∈<N

Ψ(α) =
1

2

N∑
i=1

N∑
j=1

yiyjK(xi,xj)αiαj −
N∑
i=1

αi,

subject to 0 ≤ αi ≤ C, ∀i,

and
N∑
i=1

yiαi = 0,

(2)

where the constant C determines a compromise between margin maximization and training error
minimization. A large value for C involves a high penalization on errors.

When the number of training samples is very small, the Support Vector optimization problem
can be solved analytically. In that case, the solution of the minimization problem (2) involves the
inversion of a Hessian matrix of size N ×N [1]. For large datasets, the manipulation of this matrix
becomes intractable in memory and time requirements.

The efforts were then conducted to divide the QP problem into a series of smaller QP sub-
problems. Vapnik [16] proposed a technique known as chunking which relies on the fact that training
samples with αi = 0 are not involved in the solution of the QP problem. The QP sub-problems use a
subset of the non-zero αi’s and the M training samples that violate the most the Karush-Kuhn-Tucker
conditions (KKT)

αi = 0⇒ yif(xi) ≥ 1,

0 < αi < C ⇒ yif(xi) = 1,

αi = C ⇒ yif(xi) ≤ 1.

(3)

With the obtained solution, the values of the αi’s are updated and a new subset is selected. The
algorithm finishes when the entire set of non-zero αi’s is identified.

Osuna [10] also reduces the QP problem into QP sub-problems with a fixed size Hessian matrix
by removing samples and adding others which violate KKT conditions. Joachims [7] employs an
heuristic to choose the samples to be used on the QP sub-problem.

3.2 Sequential Minimal Optimization: Two Variable Analytic Solution

SMO is a simple algorithm that pushes the chunking method to the smallest possible expression by
using only two Lagrange multipliers at each iteration. It finds the optimal value for these multipliers,
and updates the SVM framework, until the entire QP problem is solved. The advantage of SMO
is that for two Lagrange multipliers, the optimization sub-problem can be solved analytically. This
methodology is detailed below in this section.

The algorithm chooses two training samples (x1,y1) and (x2,y2). Their associated Lagrange
multipliers are α1 and α2. For the sake of simplicity, the kernel function computation is expressed
as K(x1,x1) = K11, K(x1,x2) = K(x2,x1) = K12, and K(x2,x2) = K22. For two variables α1 and
α2, the optimization of the objective function Ψ(α) from Equation (2) becomes [14]

minimize
α1,α2

Ψ(α) =
1

2
(α2

1K11 + 2sα1α2K12 + α2
2K22)− α1 − α2,

subject to 0 ≤ α1 ≤ C,

0 ≤ α2 ≤ C,

sα2 + α1 = γ

(4)

where s = y1 · y2, γ ∈ <.

55

Pablo Negri

To solve the QP problem of Equation (4), the objective function Ψ(α) and the constraints are
simplified with the substitution: α1 = γ − sα2. Equation (4) is then rewritten as

minimize
α2

Ψ(α) =
1

2
α2
2(K11 +K22 − 2K12) + α2(sγK12 − sγK11 + s− 1) +

γ2K11

2
− γ,

subject to 0 ≤ α2 ≤ C,

γ − C ≤ α2 ≤ γ, (if s = 1)

− γ ≤ α2 ≤ −γ + C, (if s = −1),

(5)

where constraints on α2 are related to constraints on α1, from Equation (4). The optimization
problem will now be solved for α2.

The quadratic objective function Ψ(α2) on Equation (5) has the form

Ψ(α2) =
χ

2
α2
2 − ζα2 + κ, (6)

with

ζ = sγK11 − sγK12 − s+ 1, (7)

χ = K11 +K22 − 2K12, (8)

κ =
γ2K11

2
− γ. (9)

The minimal α2 of (6) is the root of

∂Ψ(α2)

∂α2

= χα2 − ζ = 0, (10)

which is placed at α2 = χ−1ζ. This value, however, must to be clipped into the constraints in
Equation (5). Both constraints can be combined on the interval L ≤ α2 ≤ H using

L =

{
max(0, s(γ − C)), if s = 1,
max(0, sγ), otherwise.

(11)

H =

{
min(C, sγ), if s = 1,
min(C, s(γ − C)), otherwise.

(12)

The value of α2, solution of Equation (10), is computed considering two cases
Case 1: χ = 0

α2 =

{
H, if ζ > 0,
L, otherwise.

(13)

Case 2: χ > 0

α2 = min(max(L, χ−1ζ), H). (14)

Case χ < 0 occurs when two training samples have the same feature vector. To avoid this situation,
a preliminary step eliminating duplicated inputs is then mandatory.

It can be proved that the new value of α2 gets the minimal values along the direction of the
constraints by using the following equation (see [14], Proposition 10.4)

αnew2 = αold2 +
y2(E1 − E2)

χ
, (15)

56

A MATLAB SMO Implementation to Train a SVM Classifier: Application to Multi-Style License Plate Numbers Recognition

where Ei = f(xi) − yi is the error evaluating the ith sample with Equation (1). This value of αnew2

has to be clipped to ensure that the value will lie between the constraints

αnew,clipped2 =

H, if αnew2 ≥ H,
L, if αnew2 ≤ L,
αnew2 , otherwise.

(16)

Finally, the value of αnew1 is then obtained from αnew,clipped2 as follows

αnew1 = αold1 + s(αold2 − α
new,clipped
2) (17)

3.3 Implementation of the Sequential Minimal Optimization Algorithm

Platt’s paper [11] proposes the pseudo-code of some routines to solve the SMO algorithm. Here, the
pseudo-code is highly inspired from [11], and also follows the MATLAB implementation code that
supports this article.

Algorithm 2 shows the Main Routine that initializes the SVM training algorithm for a two
classification problem. The inputs of the procedure are the following:

• Training Dataset: composed of N pairs (xi, yi), where N is the length of the dataset, xi is the
feature vector of sample i, and yi is the target of sample i corresponding to the following labels:
1,−1, indicating to which it belongs.

• Kernel Matrix Function K: this is a two dimensional N ×N matrix. Each element (i, j) of the
matrix is the output of the non-linear kernel function K(xi,xj).

• C parameter: the SVM training is very sensitive to this parameter. Generally, its value is
computed by a k-fold cross validation approach, choosing the value which maximizes the results
in a validation set.

• Initial b parameter: bias threshold parameter of the SVM hyperplane. It is initialized to 0.

• E error vector: this vector stores the errors of the training samples: Ei = f(xi) − yi, where
fi is computed using Equation (1). The initial values of the elements are: Ei = −yi,∀i. This
vector will be updated every time that a Lagrange multiplier changes its value, because fi also
changes.

• Initial α vector: the values of the Lagrange multipliers (αi), with i = 1, . . . , N , are initialized
to zero.

Algorithm 2 is the main script that evaluates all the samples and their associated Lagrange
multipliers αi. This procedure calls the examineExample() routine which optimizes and updates the
Lagrange multipliers. numChanged accumulates the number of multipliers updated at each iteration
by the function examineExample(). The routine finishes when the values of the multipliers have not
changed in a whole iteration. The output of the procedure is the list of Lagrange multipliers αi and
bias b. In combination with training samples xi, and targets yi, any incoming test sample can be
evaluated using Equation (1).

The examineExample routine (Algorithm 3) iteratively chooses all the samples from the training
set and searches another sample to update its Lagrange multipliers. At the end of the cycle, if the
values of the multipliers have converged, the algorithm stops.

Each time that examineExample() picks one training sample i, it is necessary to choose another
sample j to solve the optimization problem for two multipliers. Platt proposes a heuristic to identify

57

Pablo Negri

Algorithm 2: Main Routine
examineAll = 1
numChanged = 0
while examineAll OR numChanged > 0 do

numChanged = 0
if examineAll then

forall the element i of the training set do
numChanged = numChanged + examineExample(i)

examineAll = 0

else
forall the element i of the training set where 0 < αi < C do

numChanged = numChanged + examineExample(i)

examineAll = 1

Algorithm 3: examineExample()

input : i index sample
output : flagChanges
ri = Ei · yi
if (ri < -tol AND αi < C) AND (ri > tol AND αi > 0) then

if exists j 6= i with 0 < αj < C then
j = secondChoiceHeuristic(i)
if takeStep(j,i) then

return 1

forall the remaining examples j 6= i with 0 < αj < C do
j = randomly picked example
if takeStep(j,i) then

return 1

forall the possible indexes j on train dataset do
if takeStep(j,i) then

return 1

return 0

sample j so as to maximize the numerator of Equation (15). This methodology, referred to as Second
Heuristic seeks to find the pair of samples where the difference in the classification error is significant,
and there is still place for improvement conditioned to the Lagrange multipliers.

Algorithm 5 is function takeStep, which updates the values of the Lagrange multipliers with
indexes i and j. If the change between new and old values is considerable, bias threshold b and
error list E are updated, using Algorithms 6 and 7, respectively. If the change is not noticeable, the
function outputs a zero value (false) indicating this situation. Section 2.3 of Platt’s original work [11]
details the methodology to update threshold b.

The output of the SMO learning algorithm are the values of αi, and bias b. In order to test a
new input sample using Equation (1), these values are needed: feature vectors xi, and labels yi of
the training samples.

The next section implements this algorithm to train a pool of classifiers which will recognize
license plate numbers.

58

A MATLAB SMO Implementation to Train a SVM Classifier: Application to Multi-Style License Plate Numbers Recognition

Algorithm 4: secondChoiceHeuristic()

input : E, i
output : j
sE,sidx = sort values of error vector E
if Ei > 0 then

choose the sample with lowest error to maximize the step size |Ei − Ej |
if sidx[1] equals i then

j = sidx[2]

else
j = sidx[1]

else
choose the sample with highest error to maximize the step size |Ei − Ej |
if sidx[last] equals i then

j = sidx[last-1]

else
j = sidx[last]

return j

4 Multi-class SVM Recognition Framework

The License Plate Number recognition is considered as an M = 10 multi-class problem. This problem
is solved using the One-Against-All approach [13, 8].

4.1 SVM Multiclass Recognition Strategies

SVM is, basically, a binary classifier, generating a hyperplane which separates two classes from a
training dataset. Two of the most used strategies adapting SVM to multi-class tasks are: One-
Against-One, and One-Against-All [9, 5].

Consider the training dataset composed of N samples: {x1, y1}, . . . , {xN , yN}. Each xi ∈ <d
is the input vector of concatenated HOG features, and yi ∈ {1, . . . ,M} is the corresponding label
associated with one of the M classes. The One-Against-All approach trains separately M binary
SVM classifiers, one class vs all the other classes: the machine corresponding to class i is trained
setting label y = 1 to samples of the i− th class, while the other samples get label y = −1.

Equation (1) then becomes

fi(xt) =
N∑
j=1

1yj=iαi,jK(xt,xj)− bi, (18)

where 1yj=i is the label function of yj, which takes value 1 when the sample has the same label as
the training class, yj = i, and −1 otherwise; the variables {αi,j, bi} correspond to the output of the
training algorithm taking the ith class as positive, as explained in Section 3.3.

In the testing phase, a sample xt is classified as in class i∗ whose f ∗i produces the largest value of
the SVM output function of Equation (18)

i∗ = argmaxi=1,...,Mfi(xt). (19)

The One-Against-One strategy involves the construction of a machine for each pair of classes,
resulting in M(M − 1)/2 binary classifiers. A classifier discriminating between classes i and j can be

59

Pablo Negri

Algorithm 5: takeStep()

input : j, i
output : flagChanged
s = yiyj
if yj equals yi (s=1) then

L=max(0,αi + αj − C)
H=min(C,αi + αj)

else
L=max(0,αi − αj)
H=min(C,C + αi − αj)

if the boundaries overlap (L=H) then
return 0

χ = K(j, j) + K(i, i)− 2K(j, i)
if χ > 0 then

a2 = αi + yi · (Ej−Ei)
χ

if a2 < L then
a2 = L

else if a2 > H then
a2 = H

else
if (yi · (Ej − Ei)) < 0 then

a2 = H

else if (yi · (Ej − Ei)) > 0 then
a2 = L

else
a2 = αi

if |a2 − αi| < eps · (a2 + αi + eps) then
return 0

a1 = α1 + s · (αi − a2)
updateThreshold(j,i,a1,a2)
αj = a1
αi = a2
updateErrorList()
return 1

Algorithm 6: updateThreshold()

input : j, i, a1, a2
output : b
b1 = Ej + yj · (a1 − αj) ·K(j, j) + yi · (a2 − αi) ·K(j, i) + b
b2 = Ei + yj · (a1 − αj) ·K(j, i) + yi · (a2 − αi) ·K(i, i) + b
b = 0.5(b1 + b2)

Algorithm 7: updateErrorList()

output : E
forall the element i of the training set do

ui =
∑N

j=1 yjαjK(i, j)− b
Ei = ui − yi

60

A MATLAB SMO Implementation to Train a SVM Classifier: Application to Multi-Style License Plate Numbers Recognition

represented by the function fi−j. When the methodology is applied to a test sample xt, it is classified
as the class which gets most of the votes from the M(M − 1)/2 classifiers.

In this paper, the One-Against-All approach is taken because it is better suited to construct the
reliability measure, which is developed in the next section.

4.2 Reliability Measures for Multi-Class SVM

The outputs of the multi-class recognition framework are analyzed in order to incorporate a reliability
measure to evaluate classification results.

The methodology, proposed by Thome et al. [15] defines two confidence variables: cd and cr.
Here, cr is a measure of performance, i.e. how well the character is identified. The other variable cd
is a measure of discrimination performance. It estimates how discriminant a classifier output is with
respect to its M − 1 competitors.

The IPOL implementation code follows the guidelines in the paper by Gomez et al. [6]. The
main difference with [15] is that the individual output values of the SVM classification functions are
transformed to enhance the discriminating response of the One-Against-All strategy.

Let µxt be the mean value of the M fi(xt) SVM classification outputs, and σxt their standard
deviation. A vector v with M elements is defined, where each ith element is obtained as follows

v(i) =
(fi(xt)− µxt)

2

σ2
xt

.

Now, if the i∗ index defines the largest value of the SVM classification outputs (see Equation (19)),
cd and cr confidence scores for sample xt are defined as follows

cr(xt) = v(i∗),

cd(xt) =
v(i∗)∑M

i=1,i 6=i∗ v(i)
.

Two constant values, TCR and TCD, were estimated using the confidence scores computed for training
samples. They get the lowest values of the scores corresponding to correct classifications

TCR = min
t′=1,...,N

{cr(xt′)| argmax
i=1,...,M

(fi(xt′)) = yt′},

TCD = min
t′=1,...,N

{cd(xt′)| argmax
i=1,...,M

(fi(xt′)) = yt′}

The output of the Multi-class Recognition Framework receives a reliability measure for sample xt
computed as

r(xt) =
cr(xt)

TCR
· cd(xt)
TCD

. (20)

Figure 3 compares two character recognition results. One example is a valid “3” character number,
which obtains a reliability measure r = 3.28, based on constants TCR = 2.23 and TCD = 6.21 fixed
during the learning phase. As can be seen, the highest SVM output corresponds to the binary
classifier fi=“3′′(xt). The other SVM outputs have relatively stable values around −1. The example
of character “E” obtains r = 0.47. The distribution of their SVM binary classifier outputs results in
a variance that is 30% greater than the one for the “3” character. This shows that the classifiers did
not obtain a set of values where the correct character class is strongly discriminated. Both scores, cr
and cd obtain values lower than the constants.

61

Pablo Negri

c = 7.69d

c = 5.91r
r = 3.28

Class Number
'0' '1' '2' '3' '4' '5' '6' '7' '8' '9'

S
V

M
 o

u
tp

u
t

-2

-1.5

-1

-0.5

0

0.5

Class Number
'0' '1 '2' '3 '4' '5' '6' '7' '8' '9'

v

0

1

2

3

4

5

6

7

8

= -0.96 = 0.30

c = 5.09d

c = 1.30r
r = 0.47

= -1.07 = 0.39
Class Number

'0' '1' '2' '3' '4' '5' '6' '7' '8' '9'

S
V

M
 o

u
tp

u
t

-2

-1.5

-1

-0.5

0

0.5

Class Number
'0' '1' '2' '3' '4' '5' '6' '7' '8' '9'

v

0

1

2

3

4

5

6

Figure 3: The figure shows two examples of the computation of the reliability measure.

The reliability measure r < 1.0 could then correspond to a number with a style that is not
present in the learning dataset, a wrongly defined bounding box, or an image that is not matched to
a number, which is the present case. If r > 1.0 the output corresponds to a character with a high
discrimination ratio, and can be trusted as a real number.

62

A MATLAB SMO Implementation to Train a SVM Classifier: Application to Multi-Style License Plate Numbers Recognition

5 Experiments and Results

5.1 License Plate Number Datasets

The multi-style license plate dataset is composed of character numbers extracted from the Dlavnekov
dataset (USA)2 [4], COMVIS cardataset v1 (Pakistan)3, Medialab’s dataset (Greece/Europe)4, and
an Argentinean license plate dataset. As can be seen in Figure 4, the license plate numbers of those
datasets have opposite colors for the characters and the background.

Figure 4: The figure shows some training and testing samples from the Multi-Style License Plate Numbers dataset, used in
the recognition system.

Table 1 details the number of samples for each number class, discriminating between the Ameri-
can, Argentinean, Greek, and Pakistani datasets.

Number Argentine USA Greece Pakistan Total

‘0’ 33 14 49 19 115
‘1’ 33 22 29 15 99
‘2’ 42 21 85 30 178
‘3’ 32 36 74 37 179
‘4’ 36 61 69 37 203
‘5’ 32 47 95 21 195
‘6’ 26 25 75 20 146
‘7’ 26 25 74 17 142
‘8’ 30 22 62 35 149
‘9’ 28 23 74 14 139

Total 335 310 686 245 1545

Table 1: This table shows the composition of the License Plate Number Dataset.

2L. Dlagnekov and S. Belongie, Ucsd/calit2 car license plate, make and model database, http://vision.ucsd.
edu/belongie-grp/research/carRec/car_rec.html, 2005.

3COMSATS Institute of Information Technology, http://comvis.ciitlahore.edu.pk/downloads/comvis_

cardataset_v1.0.html
4Medialab, National Technical University of Athenas, http://www.medialab.ntua.gr/research/LPRdatabase.

html, last accessed on 2012.

63

http://vision.ucsd.edu/belongie-grp/research/carRec/car_rec.html
http://vision.ucsd.edu/belongie-grp/research/carRec/car_rec.html
http://comvis.ciitlahore.edu.pk/downloads/comvis_cardataset_v1.0.html
http://comvis.ciitlahore.edu.pk/downloads/comvis_cardataset_v1.0.html
http://www.medialab.ntua.gr/research/LPRdatabase.html
http://www.medialab.ntua.gr/research/LPRdatabase.html

Pablo Negri

5.2 Evaluation of Parameters

This section evaluates the performance of the multi-class SVM classifiers, applying three different
kernel functions, increasing the size of the training dataset, and for different values of the constant
C in the SMO algorithm.

The overall performance of each multi-class classifier is obtained by constructing a confusion
matrix of the ten classes. In the matrix diagonal, one finds the number (or percentage) of samples
correctly identified. The Equal Error Rate (EER) is computed from the complement of the diagonal
values, as the average of the percentage of samples wrongly classified of each class.

The training was carried out by randomly picking 20 or 40 samples per class. The total number
of training samples was then N = 200 or N = 400. The test dataset was built using the 50 remaining
samples of each class, and resulting in a total set of 500 samples. This operation was repeated three
times using different sets of samples. The performance of each choice was then computed as the
mean value of the three EERs.

Linear, Polynomial and Radial Basis Function (RBF) kernels were used below to implement the
SVM multi-classification.

Linear Kernel Function

The Linear Kernel function is the simplest similarity measure and is defined by the following equation

K(xi,xj) = x′i · xj. (21)

C
10-2 10-1 100 101

E
E
R

 (
%

)

1

2

4

6

8

10

N=200 - D=4
N=200 - D=6
N=200 - D=8
N=400 - D=4
N=400 - D=6
N=400 - D=8

Figure 5: The figure shows the EER of the multi-class license plate number performance using a linear kernel function.

Figure 5 shows the performance of the framework using a linear kernel function and changing
the number of HOG directions D, the C parameter, and the number of training samples (N). The
lowest EER value is equal to 2.3 %. It is obtained using the largest training dataset with N = 400,
and the more detailed description of the shape with D = 8.

64

A MATLAB SMO Implementation to Train a SVM Classifier: Application to Multi-Style License Plate Numbers Recognition

Polynomial Kernel Function

The Polynomial Kernel function is calculated as

K(xi,xj) = (c+ x′i · xj)d, (22)

where d is the degree of the polynomial, and c a constant bias which was fixed to 1 for the tests.
Several tests were conducted using this kernel function and changing parameter d in the poly-

nomial computation, HOG directions values D, training dataset size N , and SVM constant C. The
reliability of the results strongly depends on the degree d of the polynomial function, as can be seen
in Table 2. With d = 2 (quadratic kernel), the classifiers generalize much better than with greater
values, obtaining reliable outputs from the SVM classifier.

polynomial degree Reliable outputs (%)

d = 2 97.6
d = 3 80.2
d = 4 74.7

Table 2: The table shows the percentage of test samples with valid reliability measure r > 1.

Figure 6 shows the performance of the classifiers fixing d = 2 for different values of C, N and D.
The EER values decrease when C = 10−1 and stabilize for greater values. For the smaller dataset
(N = 200), the best accuracy is obtained with D = 4 HOG directions, with EER = 3.8%. On the
other hand, the lowest EER is 2.2% for the larger dataset (N = 400) and D = 8 HOG directions.

C
10-2 10-1 100 101

E
E
R

 (
%

)

1

2

4

6

8

10

N=200 - D=4
N=200 - D=6
N=200 - D=8
N=400 - D=4
N=400 - D=6
N=400 - D=8

Figure 6: The figure presents the EER of the multi-class license plate number performance using polynomial kernel function,
with d = 2.

Radial Basis Function Kernel

The Radial Basis Function (RBF) is widely used in numerous applications with excellent results. It
is considered that this kernel function projects the input feature vector to a classification space with
infinite dimensions. The RBF is defined as

K(xi,xj) = e−γ||xi−xj ||2 , (23)

65

Pablo Negri

HHH
HHHN
γ

0.0001 0.001 0.01 0.1

200 94.5 95.4 99.9 69.4

400 98.1 98.6 100.0 82.2

Table 3: The table shows the percentage of reliable SVM outputs for an RBF kernel and different parameter values using a
reliability measure.

where γ is a positive real number. In general, SVM classifiers using an RBF kernel produce reliable
outputs using the r measure from Equation (20), as can be seen in Table 3. The greatest reliability
values are obtained for γ = 0.01.

Figure 7 compares the EER performance for different values on parameters C, N and D. The
lowest EER = 0.8% is obtained for the larger dataset (N = 400), for values (γ = 0.01, D = 4,
C = 10), and set (γ = 0.001, D = 8, C = 10). Using fewer training samples (N = 200), the
performance is similar, obtaining a value of EER = 1.0% for (γ = 0.001, D = 4, C = 10) and
(γ = 0.01, D = 4, C = 1).

(a) N=200 - D=4 (b) N=400 - D=4

(c) N=200 - D=8 (d) N=400 - D=8

Figure 7: The figure compares the sensitivity of the RBF kernel to parameter C for different datasets and input features.

66

A MATLAB SMO Implementation to Train a SVM Classifier: Application to Multi-Style License Plate Numbers Recognition

5.3 Operational Complexity and Time Considerations

Both the operational complexity and processing time depend on the different parameters. Table 4
presents the average processing time, in seconds, to evaluate an input test number in the multi-class
recognition number system described in the previous section, for different kernel functions and N and
D parameters. The code is entirely written in MATLAB and corresponds to the same that supports
this article on the IPOL web page5. The scripts were executed on an Intel(R) Core(TM) i5 CPU
2.67 GHz, with 4 Gbytes of RAM.

Linear Kernel
H
HHH

HHN
D

4 6 8

200 0.090 0.099 0.116
400 0.173 0.200 0.226

Optimized Linear Kernel
HH

HHHHN
D

4 6 8

200 3.3 · 10−4 4.3 · 10−4 5.5 · 10−4

400 3.7 · 10−4 4.5 · 10−4 6.2 · 10−4

Polynomial Kernel (d = 2)
HHH

HHHN
D

4 6 8

200 0.109 0.122 0.136
400 0.221 0.246 0.269

RBF Kernel
HH

HHHHN
D

4 6 8

200 0.130 0.152 0.170
400 0.257 0.308 0.331

Table 4: The table shows the average processing time in seconds that it takes to classify a testing sample in the multi-class
recognition framework.

The computational complexity of the linear kernel can be estimated by the number of directions
D, the number of training samples N , the number of HOG features G = 871, and the number of
classes 10. One linear kernel function call performs D × G sums and D × G products. The SVM
output, as shown in Equation (1), adds 2 × N products, corresponding to labels yi and alphas αi,
and N sums. Thus, it takes N ×D×G+N sums, and N ×D×G+ 2×N multiplications to obtain
an individual output. To classify one testing sample, the framework will perform this operation 10
times. The complexity has an order of 10×N ×D ×G sums and 10×N ×D ×G multiplications.

There are some options to reduce the computational complexity. Firstly, Equation (1) can be
solved by only using support vectors: those training samples with αi 6= 0. Depending on the
problem, this can imply a 10 % reduction in the number of operations. Secondly, Platt proposes an
optimization for linear kernels. Using Equation (21), the evaluation function (1) becomes

f(xt) = sign

(
N∑
i=1

yiαixt · xi − b

)
. (24)

5https://doi.org/10.5201/ipol.2018.173

67

https://doi.org/10.5201/ipol.2018.173
https://doi.org/10.5201/ipol.2018.173

Pablo Negri

Equation (24) is linear and can be solved using a single weight vector w

f(xt) = sign (w · xt − b) . (25)

This drastically reduces the number of operations to 10×D ×G sums and 10×D ×G products.
The processing time to evaluate one example using an RBF kernel is by far the longest, specially
compared to the linear kernel optimization. The use of this kernel function represents a compromise
between good performance and fast response. If the application does not need real time outputs, the
RBF kernel represents a very good choice.

5.4 Results

This section presents the results obtained by running the Multi-Style License Number Recognition
Framework IPOL code supporting this article.

Feature Classification Method Accuracy (%)
Raw data KNN (K=5) 79.1
HOG KNN (K=5) 96.8
Raw data SVM 91.7
HOG SVM 99.0

Table 5: Comparing classification results using HOG features and intensity raw values, and SVM against KNN classifiers.

Table 5 compares HOG features results against intensity raw values using two classification meth-
ods. Because the images of the character numbers have different sizes, they were resized to 16× 12
pixels, to get an intensity feature vector with the same length. SVM is compared with a simple
K-Nearest Neighbors (KNN) classification using K = 5. For HOG features, histogram distances
are calculated using vector correlation, and for intensity features, the Euclidean distance of the
normalized pixels values. The overall performance of each system is evaluated by computing the
classification rate of each number, then the mean of the diagonal of the confusion matrix. Table 6
shows the results on the corresponding confusion matrix using SVM classifier and HOG features,
which yields the highest accuracy ratio.

The default kernel function for the SVM classifier is the RBF, with γ = 0.01, constant C = 1,
and the number of HOG directions is D = 4. The training dataset is composed of N = 200 randomly
chosen samples, consisting of 20 elements per class number. The remaining samples will make up
the test set.

Results are very good, even if the number of training samples is very limited. This can be
explained because LPR numbers should have standard shapes following the country regulations. It
simplifies the generalization of the classes shape using HOG features, compared with intensity values.
Finally, it is not then necessary to have a large training set, as the shapes of the same numbers have
very similar features.

The reliability measure, using Equation (20) for the SVM classifier using HOG features, is com-
puted for each test sample. The percentage of samples with r > 1.0 is 93 %.

Image Credits

The multi-style license plate dataset COMVIS cardataset v1 and the Medialab’s dataset are provided
without license. The Argentinean dataset is also distributed without license. Dlavnekov’s dataset
can be freely employed for research purposes.

68

A MATLAB SMO Implementation to Train a SVM Classifier: Application to Multi-Style License Plate Numbers Recognition

’0’ ’1’ ’2’ ’3’ ’4’ ’5’ ’6’ ’7’ ’8’ ’9’
’0’ 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
’1’ 0.0 97.3 0.0 0.0 2.7 0.0 0.0 0.0 0.0 0.0
’2’ 0.0 0.0 99.4 0.0 0.0 0.0 0.0 0.6 0.0 0.0
’3’ 0.0 0.0 0.0 98.7 0.0 0.7 0.0 0.7 0.0 0.0
’4’ 1.1 0.0 0.6 0.0 98.3 0.0 0.6 0.0 0.0 0.0
’5’ 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0
’6’ 0.0 0.0 0.0 0.0 0.0 0.9 99.1 0.0 0.0 0.0
’7’ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0
’8’ 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 99.2 0.0
’9’ 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.9 98.1

Table 6: Confusion matrix of License Plate Number recognition in the test samples from the four datasets.

References

[1] J.C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and
Knowledge Discovery, 2 (1998), pp. 121–167. http://dx.doi.org/10.1023/A:1009715923555.

[2] C. Cortes and V. Vapnik, Support-vector networks, Machine Learning, 20 (1995), pp. 273–
297. http://dx.doi.org/10.1023/A:1022627411411.

[3] N. Dalal and B.Triggs, Histograms of oriented gradients for human detection, in IEEE
Conference on Computer Vision and Pattern Recognition, vol. 2, June 2005, pp. 886–893. http:
//dx.doi.org/10.1109/CVPR.2005.177.

[4] L. Dlagnekov and S. Belongie, Recognizing cars, Tech. Report CS2005-083, UCSD CSE,
2005.

[5] A. Gidudu, G. Hulley, and T. Marwala, Image Classification Using SVMs: One-against-
One Vs One-against-All, in Asian Conference on Remote Sensing, 2007. arXiv:0711.2914.

[6] F. Gómez Fernández, P. Negri, M. Mejail, and J. Jacobo, A multi-style license plate
recognition system based on tree of shapes for character segmentation, in Progress in Pattern
Recognition, Image Analysis, Computer Vision, and Applications, vol. 7042 of Lecture Notes
in Computer Science, Springer Berlin Heidelberg, 2011, pp. 443–450. http://dx.doi.org/10.
1007/978-3-642-25085-9_52.

[7] T. Joachims, Making large-scale support vector machine learning practical, in Advances in
Kernel Methods, MIT Press, 1998, pp. 169–184. ISBN 0-262-19416-3.

[8] Y. Liu and Y.F. Zheng, One-against-all multi-class SVM classification using reliability mea-
sures, in International Joint Conference on Neural Networks, vol. 2, 2005, pp. 849–854.

[9] J. Milgram, M. Cheriet, and R. Sabourin, “One Against One” or “One Against All”:
Which One is Better for Handwriting Recognition with SVMs?, in International Workshop on
Frontiers in Handwriting Recognition, La Baule (France), October 2006. Inria-00103955.

[10] E. Osuna, R. Freund, and F. Girosi, An improved training algorithm for support vector
machines, in IEEE Workshop Neural Networks for Signal Processing, Sep 1997, pp. 276–285.
http://dx.doi.org/10.1109/NNSP.1997.622408.

69

http://dx.doi.org/10.1023/A:1009715923555
http://dx.doi.org/10.1023/A:1022627411411
http://dx.doi.org/10.1109/CVPR.2005.177
http://dx.doi.org/10.1109/CVPR.2005.177
http://dx.doi.org/10.1007/978-3-642-25085-9_52
http://dx.doi.org/10.1007/978-3-642-25085-9_52
http://dx.doi.org/10.1109/NNSP.1997.622408

Pablo Negri

[11] J. Platt, Sequential minimal optimization: A fast algorithm for training support vector ma-
chines, Tech. Report MSR-TR-98-14, Microsoft Research, 1998.

[12] F. Porikli, Integral histogram: A fast way to extract histograms in cartesian spaces, in IEEE
Conference on Computer Vision and Pattern Recognition, 2005, pp. 829–836. http://dx.doi.
org/10.1109/CVPR.2005.188.

[13] R. Rifkin and A. Klautau, In defense of one-vs-all classification, Journal of Machine Learn-
ing Research, 5 (2004), pp. 101–141.

[14] B. Schölkopf and A. Smola, Learning with Kernels. Support Vector Machines, Regulariza-
tion, Optimization, and Beyond, MIT Press, Cambridge, MA, 2002. ISBN 0262194759.

[15] N. Thome, A. Vacavant, L. Robinault, and S. Miguet, A cognitive and video-based
approach for multinational license plate recognition, Machine Vision and Applications, 22 (2010),
pp. 389–407. http://dx.doi.org/10.1007/s00138-010-0246-3.

[16] Vladimir Vapnik, Estimation of Dependences Based on Empirical Data, Springer-Verlag New
York, Inc., 1982. ISBN 0387907335.

[17] , The nature of Statistical Learning Theory, Springer, 1995. ISBN 9780387987804.

[18] P. Viola and M. Jones, Robust real-time face detection, International Journal of Computer
Vision, 57 (2004), pp. 137–154. http://dx.doi.org/10.1023/B:VISI.0000013087.49260.fb.

70

http://dx.doi.org/10.1109/CVPR.2005.188
http://dx.doi.org/10.1109/CVPR.2005.188
http://dx.doi.org/10.1007/s00138-010-0246-3
http://dx.doi.org/10.1023/B:VISI.0000013087.49260.fb

	Introduction
	Histogram of Oriented Gradients Feature Space
	SVM-SMO Implementation
	SVM Introduction
	Sequential Minimal Optimization: Two Variable Analytic Solution
	Implementation of the Sequential Minimal Optimization Algorithm

	Multi-class SVM Recognition Framework
	SVM Multiclass Recognition Strategies
	Reliability Measures for Multi-Class SVM

	Experiments and Results
	License Plate Number Datasets
	Evaluation of Parameters
	Operational Complexity and Time Considerations
	Results

