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Abstract

Using simple grouping rules in Gestalt theory, one may detect higher level features (geometric
structures) in an image from elementary features. By recursive grouping of already detected
geometric structures a bottom-up pyramid could be built that extracts increasingly complex
geometric features from the input image. Taking advantage of the (recent) advances in reli-
able line segment detectors, in this paper, we propose three feature detectors along with their
corresponding detailed algorithms that constitute one step up in this pyramid. For any digital
image, our unsupervised algorithm computes three classic Gestalts from the set of predetected
line segments: good continuations, non-local alignments, and bars. The methodology is based
on a common stochastic a contrario model yielding three simple detection formulas, character-
ized by their number of false alarms. This detection algorithm is illustrated on several digital
images.

Source Code

The Matlab source code implementing the proposed algorithms, which is part of this publication,
is accessible at corresponding IPOL web page.1

Keywords: Gestalt theory; good continuation; alignment; parallelism; line segment; non-
accidentalness principle; a contrario detection; number of false alarms (NFA)

1 Introduction

A basic task of the visual system is to group fragments of a scene into objects and to separate
one object from the others and from their background. Perceptual grouping has inspired many
researches in psychology in the past century. At the beginning of the 20th century, a systematic
approach for investigating human perception was introduced under the name of Gestalt theory [28,
18, 26, 27]. The Gestalt school proposed the existence of a short list of grouping laws governing visual
perception. The Gestalt laws include, but are not limited to, similarity, proximity, connectedness and
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good continuation. Gestaltists argue that partial grouping laws recursively group image elements
to form more organized Gestalts. But the grouping laws were qualitative and lacked a quantitative
formalization.

Since its origins, computer vision has been interested in Gestalt laws and there have been several
attempts to formalize aspects of the Gestalt program [17, 25]. We will concentrate on a particular
approach [8, 9] which has led to the conception of several Gestalt detectors to organize meaningful
geometric structures in a digital image. Based on the non-accidentalness principle [17, 23, 3], an
observed structure is considered meaningful when the relation between its parts is too regular to
be the result of an accidental arrangement of independent parts. This is the rationale behind the a
contrario model for determining potential Gestalts which is formulated in the next section.

The a contrario methodology has also been used in [16], inspired by the good continuation Gestalt
principle, to propose an algorithm to detect alignments of points in a point pattern. The detected
point alignments are further employed toward a nonparametric vanishing point estimating algorithm
again based on the non-accidentalness principle [15]. Based on the same principle, an automatic line
segment detector (LSD) is provided in [11, 12] with linear time complexity. The same approach is
used in the EDLines straight line calculator [1] but with the difference that the latter algorithm starts
from an edge drawing output while the former is based on image level lines. Similar ideas were also
proposed to detect circles and ellipses [20, 2]. Level lines are employed to detect good continuations
and image corners in [6]. Using edge pieces (edgelets) the authors of [29] adopt a featured a contrario
scheme to extract the strong edges and eliminate irrelevant and textural ones. Extracting an object
of interest from textural background or from outlier points is studied in [13, 10] where, for instance,
fixed contrast spots are detected in mammographic images.

Many image matching algorithms are also based on an a contrario model. In [21] given a set of
query descriptors and candidate descriptors, a match between a query descriptor, a, and a candi-
date, b, is reported if it is unlikely that a generic random descriptor (that is defined using mutual
independent random variables) is closer to a than b. The a contrario matching of blocks between two
frames in a stereo image pair is studied in [24]. An agent-based hierarchical object matching using
SIFT points is addressed in [4]. Finally, the a contrario method has been applied to the problem of
shape element recognition using a database of desirable shapes [19].

The a contrario framework was used for image segmentation in [5]. To obtain robust segments,
the authors suggest a combination of the a contrario approach and of Monte-Carlo simulation. Also,
to solve the hierarchical segmentation issue, the authors of [7] suggest two a contrario criteria for
measuring region and merging meaningfulness based on homogeneity and boundary contrast.

In this paper, we start from the “partial Gestalts” constituted by the line segments detected by
LSD and explore if they can be used as basic elements for more elaborate Gestalt groups such as long
straight lines, good continuations and parallel line segments. Toward this aim, an a contrario model is
adopted on the line segment distribution. It is used repeatedly for detecting the mentioned structures
as non-accidental. Figure 1 represents instances of the three Gestalts of interest in this paper. We
shall observe in most images that, with the exception of a few isolated line segments, all line segments
are classified precisely and hence the algorithm forms another level of segmentation pyramid toward a
complete analysis and understanding of each image’s structure. The main advantage of this approach
is its low time complexity due to the exploitation of line segments as input structures which are far
less numerous than the unstructured set of all image pixels. A preliminary version of this work was
published in [22].

The rest of this paper is organized as follows. Section 2 introduces the theoretical formulation
of the proposed method. Section 3 describes the resulting algorithm. Some results are shown and
commented in Section 4 and Section 5 concludes the paper.
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Figure 1: Instances of a non-local alignment (1), a bar (2) and a good continuation (3) Gestalts.

2 A Contrario Model

The a contrario detection approach has a probabilistic basis. Consider an event of interest e. Accord-
ing to the non-accidentalness principle, e is meaningful if its expectation is low under a stochastic
background (or a contrario) model H0. The stochastic expectation of an event is called its number
of false alarms (NFA) and is defined as

NFA(e) = NtestPH0(e), (1)

where Ntest indicates the number of possible occurrences of e and PH0(e) is the probability of e
happening under H0. A relatively small NFA implies a rare event e under the a contrario model and
therefore, a meaningful one. An event e is called ε-meaningful if NFA(e) < ε.

In this paper, three types of line segment events are under focus: non-local alignments, good
continuations and parallelism. Let us consider a set of N oriented line segments l1, . . . , lN observed
in a rectangular domain of size n×m. The adopted a contrario model H0 is a set of N stochastic line
segments, with independent and uniformly distributed tips on the image domain. Here, we provide
a formal definition of each event.

Definition 1. A sequence of k line segments la1 , la2 , . . . , lak form a potential good continuation event
℘k,ρ,θ if and only if D(la1 , la2 , . . . , lak) < ρ and ∠(la1 , la2 , . . . , lak) < θ for predefined constant ρ and θ
thresholds.

In the above definition D(·) and ∠(·) denote respectively the maximum of the distances and the
maximum of the angles between successive oriented line segments in a sequence. The two threshold
values ρ and θ limit the search space around each line tip for finding close line segments as represented
in Figure 2.

A small fixed margin λ (λ = 5) is allowed to deal with possible misalignments in the LSD outputs.
This special adopted sector is denoted by S in the sequel. Let us point out that the primary l1, . . . , lN
are oriented and hence have ordered tips. This order is taken into account in D(·), ∠(·) and similar
later calculations.

Definition 2. A good continuation with θ = 3◦ is called a non-local alignment event ζk,ρ.

Definition 3. Two line segments or non-local alignments li and lj are said to form a bar =ρ if and
only if Dm(li, lj) < ρ and π − ∆θ ≤ ∠(li, lj) ≤ π + ∆θ for ∆θ = 3◦ and ρ is a predefined constant
threshold.
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Figure 2: Given the endpoint p of a line segment, this figure defines the domain S around p, in which the presence of
successive line segment endpoints is searched by the algorithm. This search space depends on three parameters, ρ, θ and λ.

Here, Dm(·) stands for the mutual distance operator which is calculated as the maximum distance
between the respective tips of the two line segments constructing the bar. The ∆θ parameter is
defined to cope with the sampling effect in digital images. Note that the orientation of line segments
is considered in Dm(·) calculation. More precisely, the first tip of li is paired with the second tip of
lj and vice versa.

For the NFA calculation of a good continuation, according to (1), we have two parts: the number
of tests and the probability of the geometric event under H0. Here, Ntest is about all possible
sequences of k line segments out of overall N line segments in the image which is N !

(N−k)!
. We note

c1 the number of different pairs of ρ and θ values potentially tried which is independent of N . The
details of setting these two parameters are explained in Section 3. Therefore, Ntest = c1 · N !

(N−k)!
.

For the probability term of PH0(℘
k,ρ,θ), we assume in our a contrario model that all line seg-

ments tips are uniform i.i.d. spatial variables in the image domain and the line angles are uniformly
distributed in the [0, 2π] interval. Note that both of these assumptions are not simultaneously real-
izable because of boundary effects. Nevertheless for segments with limited lengths and large image
domains, these assumptions are a valid approximation. Let us first compute the probability that two
line segments be in good continuation in the sense specified in Figure 2 and with parameters (ρ, θ).

We shall then extend the computation to k line segments. When θ is expressed in radians, Πs ' θρ2

mn

is the probability that the tip of the second line segment falls into Sρ,θ around the tip of the first
one2 and Πa ' θ

π
is the probability that a maximum angle of θ occurs between the two line segments.

Therefore, PH0(℘
2,ρ,θ) = ΠsΠa

3. Consequently, for k − 1 junctions in a sequence of k line segments
we have PH0(℘

k,ρ,θ) = (ΠsΠa)
k−1.

Finally, we may approximate the number of false alarms (NFA) associated to a good continuation
event ℘k,ρ,θ according to Definition 1 as

NFAG(k, ρ, θ) = c1 ·
N !

(N − k)!
·
(
θρ2

mn
· θ
π

)k−1

. (2)

Similarly, since non-local alignments, ζk,ρ, are special types of good continuations, their NFA
calculation is straightforward

NFAA(k, ρ) = c2 ·
N !

(N − k)!

(
2λρ

mn
· θ
π

)k−1

, (3)

2Since λ is relatively small, we use this simple tight upper bound for Πs. We also neglect the fact that the angular
sector may sometimes fall outside the image domain, with area mn.

3Note that the angle of the line segments is determined by both tips, which are assumed independent in H0.
Therefore, to simplify the notation, except for the segments close to image boundaries, we can effectively suppose that
the two conditions are independent.
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where constant c2 is the number of different ρ values we actually try. The only point is that for
small θ = 3◦, λ is not negligible anymore. Indeed, for small angles, Sρ,θ turns into a rectangle with
dimensions 2λ by ρ. Accordingly, we have Πs = 2λρ

mn
.

Eventually, the number of false alarms of parallel line (bar) event, =ρ, according to Definition 3
is equal to

NFAB(ρ) = c2 ·
N(N − 1)

2

(
∆θρ2

mn

)2

. (4)

Using similar reasoning for the case of parallel lines, since we only have two line segments or
non-local alignments, the Ntest term reduces to N(N−1)

2
. If we consider angle and distance constraints

over both corresponding tips, we have Πa ' (∆θ
π

)2 and Πs ' (πρ
2

mn
)2. Therefore, the overall NFA is

formulated as (4).

3 The Algorithm

As mentioned earlier, by employing line segments as initial groups it is possible to detect more
organized and sophisticated Gestalts. In this paper, we exploit the LSD algorithm [12] to produce
l1, l2, . . . , lN initial oriented line segments. The next step is finding all possible instances of our three
Gestalts of interest in the form of sequences of line segments or chains.

Definition 4. A good continuation (Definition 1) chain ℘k,ρ,θ is meaningful if and only if NFAG(k, ρ, θ) <
ε and there exists no subchain of ℘ with smaller NFA.

Meaningful non-local alignments and bars follow the same definition. We assume ε = 1 as a
simple way to allow less than one false alarm on average for each Gestalt type per image [9].

Algorithm 1 describes the overall steps for calculating good continuation events. Using ρ and
θ thresholds for controlling the distance and angle between line segments, first, in Algorithm 2 an
adjacency matrix, A, is defined between input line segments, L. Each entry A(i, j) represents the
distance and angle between i and j line segments. In the second step, Algorithm 3 forms all the
chains up to K line segments. Here, parameter K is defined in order to control the complexity of
the algorithm. Furthermore, for each line tip we only consider up to three closer tips to make the
algorithm even faster. Finally, meaningful good continuations are calculated according to Definition 4
in Algorithm 4.

In order to give preference to smoother continuations with closer tips, instead of only one value
of ρ and θ thresholds in the NFA calculation, we consider nρ and nθ predefined thresholds. Then,
for each good continuation chain, and before calculating NFA, the smallest pair of (ρi, θj) that
D(li, li+1, . . . , lj) < ρi and ∠(li, li+1, . . . , lj) < θj is computed and employed in the NFA formula.
According to this consideration, and also considering the maximum number of line segments in a
chain, we have c1 = K × nρ × nθ in (2) and (3).

By calling Algorithm 1 with θ = 0.05 (e.g. 3◦) and replacing all NFAG with NFAA, the same
procedure yields non-local alignment gestalts. Non-local alignments and initial line segments are
then fed to Algorithm 5 to calculate parallel line events. Due to digital sampling errors two line
segments li and lj are considered parallel if π −∆θ ≤ ∠(li, lj) ≤ π + ∆θ where ∠(li, lj) is the angle
between line segments. Here, ∆θ is set to 0.05. The ρ threshold in (4) is tested over nρ different
values similar to good continuations. Therefore, in parallel line NFA formula we have c2 = nρ.

Finally, by merging all meaningful Gestalts we obtain a drawing of the input image. The next
section addresses the efficiency of the proposed approach applied on real-world images.
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Algorithm 1: Good continuation detection

input : A list L of size nl of line segments
Each line segment is described by the coordinates (X1, Y1;X2, Y2) of its two tips.

input : ρ, θ, K
Parameters to control connectivity, smoothness and length of continuations.

ρ is the maximum distance (in pixels) between line tips and

θ shows the maximum acceptable angle (in radians).

K is the maximum number of line segments in a good continuation.

output: A list G of size ng of good continuations
Each good continuation is represented as a list of line segments that constitute it.

A ← makeAdjacencyMatric(L, ρ, θ) (Algorithm 2)
A is an nl × nl matrix which represents adjacency between

line segments according to ρ and θ parameters.

C ← findChains(A, ρ, θ,K) (Algorithm 3)
C is a structure that represents all chains up to a length K

C = sortChains(C) Sort chains in an ascending order of NFA.

G = findGC(C) (Algorithm 4)
Distinct chains with smallest NFA are returned as good continuations.

Algorithm 2: Make adjacency matrix

A = makeAdjacencyMatric(L, ρ, θ)
for l1 = 1 to nl do
A(l1, :)← ∅
for l2 = l1 + 1 to nl do

d = D(L(l1),L(l2)) Minimum distance between line tips.

θ = ∠(L(l1),L(l2)) Angle between line segments.

if d ≤ ρ & θ ≤ θ then
A(l1, l2) = A(l2, l1) = {d, θ}

A ← rmExtraAdjacency(A) For each line tip keeps only the three closest tips.

4 Experimental Results

Man-made structures like buildings, furniture and natural scenes present many good continuations in
the form of line segments and curves or basic geometrical shapes like rectangles and parallelograms.
To organize these structures using the proposed algorithm in this paper, we first applied LSD [12].
Afterwards, the two initial thresholds θ and ρ in Definitions 1 to 3 must be determined. These
two parameters limit the number of chains that later are considered by the a contrario model. The
parameter θ controls the smoothness of output Gestalts while ρ is a parameter proportional to the
image size restricting the maximum acceptable distance between line segments of a candidate chain.
In the sequel and to detect all kinds of parallelogram shapes, θ is set to 150◦ and ρ is experimentally
fixed at min(10, d0.1×max(m,n)e) pixels by default. In Algorithm 1, the maximum number of line
segments in a good continuation, K, is set to 10. Additionally, the angle threshold between line
segments of a bar in Algorithm 5 is set to 5◦.

42



Gestaltic Grouping of Line Segments

Algorithm 3: Find chains

C = findChains(A, ρ, θ,K)
q ← 1
k ← 2
C ← ∅

Finding chains of length 2

foreach Nonempty cell {i, j} in A do
C{q}.segs← {i, j}
C{q}.len← k
C{q}.d← d{i,j}
C{q}.t← θ{i,j}
C{q}.nfa← NFAG(d{i,j}, θ{i,j}, k)
q ← q + 1

Finding chains of length more than 2

for k = 3 to K do
foreach chain c of length k − 1 do

Find the two free lines l1, l2 of c and their corresponding free tips
foreach free line l and Nonempty cell {l, j} in A do
C{q}.segs← c ∪ j
C{q}.len← k
C{q}.d← max(dc, d{l,j})
C{q}.t← max(θc, θ{l,j})
C{q}.nfa← NFAG(C{q}.d, C{q}.t, k)
q ← q + 1

Algorithm 4: Find good continuation

G = findGC(C)
nc ← size(C)
ε← 1
valid(1 : nc)← true
q ← 1
for c = 1 to nc do

if valid(c) & C{c}.nfa ≤ ε then
G{q} ← c
valid(c)← false
for c1 = 1 to nc do

if C{c1}.segs ∩ C{c}.segs 6= ∅ then
valid(c1)← false

q ← q + 1

Figure 3 shows the result of the joint application of all feature detectors on an image. In each
output image, organized Gestalts are depicted with different colors and finally the residual line
segments are shown in the last image. Note that the detected structures could be grouped again
using similar methods into more complex structures. The line segments that remained ungrouped
consist mostly of isolated line segments that are not expected to belong to any organized structure.
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Algorithm 5: Bar Detection

input : A list L of size nl of line segments, a list A of size na of non-local alignments, ρ, ∆θ
Each line segment is provided by (X1, Y1;X2, Y2) as the coordinates

of its two tips. Each non-local alignment is provided by (X1, Y1;X2, Y2) as the

coordinates of free tips of its starting and ending line segments.

ρ is the maximum distance (in pixel) between bar tips

∆θ is an angle threshold parameter.

output: A list B of size nb of bars
Each bar is represented as a list of two line segments that constitute it.

S ← L∪A
ns ← nl + na
q ← 1
B′ ← ∅
for l1 = 1 to ns do

for l2 = l1 + 1 to ns do
d = Dm(S(l1), S(l2)) Average distance between the respective tips of two segments.

θ = ∠(S(l1), S(l2)) Angle between line segments.

if d ≤ ρ & |π − θ| ≤ ∆θ then
B′(q).segs← {l1, l2}
B′(q).d← d
B′(q).nfa← NFAB(d, θ)
q ← q + 1

nb ← size(B′)
ε← 1
valid(1 : nb)← true
q ← 1
for b = 1 to nb do

if valid(b) & B′{b}.nfa ≤ ε then
B{q} ← b
valid(b)← false
for b1 = 1 to nb do

if B′{b1}.segs ∩ B′{b}.segs 6= ∅ then
valid(b1)← false

q ← q + 1

More results on more real-world or synthetic images are provided in Figure 4 and Figure 5.

5 Conclusion

The three detectors proposed in this paper represent one step up in the Gestalt grouping pyramid.
The good experimental point is that few line segments are generally left out unorganized, a require-
ment that was called “articulation without rest” in the Gestalt literature [14]. Clearly this step up
must be completed by further bottom up grouping. For example, good continuation curves present
gaps that must be completed with irregular contours. Other gaps in good continuations or align-
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Figure 3: Gestalt detector performance over the Whale image – each color indicates one detected structure. From left to
right and top to bottom: initial image, LSD line segments, all good continuations, non-local alignments, pairs of parallel
line segments (bars), and finally all line segments that do not belong to any of the former structures. A line segment can
belong simultaneously to several of these higher order partial Gestalts.

ments must be explained by T-junctions; bars and non-local alignments may be grouped again with
the same good continuation and parallelism principles. These further steps are required to solve the
figure-background problem by unsupervised algorithms.

We also notice that in several examples the found good continuations are not perceptually ade-
quate. It is clear that convex good continuations should be given a preference over good continuations
with oscillating direction, and that more specialized detectors detecting regular polygons or convex
polygons seem a necessary refinement for the automatic analysis of human made structures. Fur-
thermore our limitation of good continuation to 10 successive segments was due to computational
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Figure 4: Good continuation and parallel line segment grouping – each color indicates one structure. From left to right,
columns show original image, LSD line segments, good continuations and bars, respectively, for (from top to bottom)
Peppers, Circles, Bicycle, Room and House images.
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Figure 5: Good continuation and parallel line segment grouping – each color indicates one structure. From left to right,
columns show original image, LSD line segments, good continuations and bars, respectively, for (from top to bottom)
Church, Chess, Arc and Corridor images.

concerns only, and should be relaxed in future, more complete, implementations.

6 Image Credits

Standard test images

Jean-Michel Morel (CMLA, ENS-Cachan, France)
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Pascal Getreuer (CMLA, ENS-Cachan, France)

Image by authors

photograph courtesy Philip Greenspun (http://philip.greenspun.com)

Dean S. Pemberton (dean@deanpemberton.com)

Free credit from http://www.marinbikes.com

Saved from http://demo.ipol.im/demo/69/

Saved from http://demo.ipol.im/demo/145/
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[7] J. Cardelino, V. Caselles, M. Bertalḿıo, and G. Randall, A contrario hierarchical
image segmentation, in Proceedings of IEEE International Conference on Image Processing,
IEEE, 2009, pp. 4041–4044. https://doi.org/10.1109/ICIP.2009.5413723.

[8] A. Desolneux, L. Moisan, and J. M. Morel, Meaningful alignments, International Journal
of Computer Vision, 40 (2000), pp. 7–23. https://doi.org/10.1023/A:1026593302236.

[9] A. Desolneux, L. Moisan, and J. M. Morel, From Gestalt Theory to Image Analysis,
Springer, 2008.

[10] D. Gerogiannis, C. Nikou, and A. Likas, Elimination of outliers from 2D point sets using
the Helmholtz principle., IEEE Signal Processing Letters, 22 (2015), pp. 1638–1642. https:

//doi.org/10.1109/LSP.2015.2420714.

48

https://doi.org/10.1016/j.patrec.2011.06.001
https://doi.org/10.1016/j.patrec.2011.06.001
https://doi.org/10.1016/j.patcog.2012.09.020
https://doi.org/10.1016/j.patcog.2009.01.003
https://doi.org/10.1007/s00791-004-0123-6
https://doi.org/10.1007/s00791-004-0123-6
https://doi.org/10.1109/ICIP.2009.5413723
https://doi.org/10.1023/A:1026593302236
https://doi.org/10.1109/LSP.2015.2420714
https://doi.org/10.1109/LSP.2015.2420714


Gestaltic Grouping of Line Segments

[11] R. Grompone von Gioi, J. Jakubowicz, J. M. Morel, and G. Randall, LSD: A fast
line segment detector with a false detection control, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 32 (2010), pp. 722–732. https://doi.org/10.1109/TPAMI.2008.300.

[12] , LSD: a Line Segment Detector, Image Processing On Line, (2012). https://doi.org/

10.5201/ipol.2012.gjmr-lsd.

[13] B. Grosjean and L. Moisan, A-contrario detectability of spots in textured backgrounds,
Journal of Mathematical Imaging and Vision, 33 (2009), pp. 313–337. .

[14] G. Kanizsa, Organization in vision: Essays on Gestalt perception, Praeger New York:, 1979.

[15] J. Lezama, R. Grompone von Gioi, G. Randall, and J. M. Morel, Finding vanishing
points via point alignments in image primal and dual domains, in IEEE Conference on Computer
Vision and Pattern Recognition, 2014, pp. 509–515. .

[16] J. Lezama, J. M. Morel, G. Randall, and R. Grompone von Gioi, A contrario 2D
point alignment detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, 37
(2015), pp. 499–512. https://doi.org/10.1109/TPAMI.2014.2345389.

[17] D. Lowe, Perceptual Organization and Visual Recognition, Kluwer Academic Publishers, 1985.

[18] W. Metzger, Gesetze des Sehens, Verlag Waldemar Kramer, Frankfurt am Main, third ed.,
1975.
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