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Abstract

Image and video comparison is often approached by comparing patches of visual information. In
this work we present a detailed description and implementation of an affine invariant patch simi-
larity measure that performs an appropriate patch comparison by automatically and intrinsically
adapting the size and shape of the patches. We also describe the complete implementation of
the proposed iterative algorithm for computation of those shape-adaptive patches around each
point in the image domain.

Source Code

The implementation, written in C++, is available at the IPOL web page of this article1. Com-
pilation and usage instructions are included in the README.md file of the archive.

Keywords: patch similarity; affine invariance; structure tensor; shape-adaptive patches

1 Introduction

Image comparison is a topic that has received a lot of attention from the image processing and
computer vision communities. It is a main ingredient in many applications such as object recognition,
stereo vision, image registration, image denoising, exemplar-based image inpainting, to name a few.
There are plenty of techniques for image comparison and the particular choice always depends on
the specific task.

Very frequently it is required to compare any two given points in an image or, in a more general
situation, in two different images. Since a single color value of a point is not very descriptive, it
is common to use a small neighborhood around that point in the comparison. Traditionally such
neighborhoods are called patches. A distinctive property of all patch-wise image comparison tech-
niques, sometimes also called template matching, is that they assign a similarity value (or comparison
distance) to any given pair of points. In other words, for every single point in one image there is
a dense similarity (or distance) field associated with another image. Let u : Ωu ⊂ RN → RM and
v : Ωv ⊂ RN → RM be two images with M color channels. Here Ωu and Ωv denote their image do-
mains. This general definition of u and v aims to emphasize that the image comparison theory deals
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An Affine Invariant Patch Similarity

Figure 1: Possible extension of the space of available patches. On the left: rotations. On the right: full affine transformations.

both with regular 2D images and videos, as well as with 3D images, sequences of 3D images captured
over time and other more exotic data structures. The patch-wise image comparison functions can
then be generalized as

D : Ωu × Ωv −→ R
(x , y) −→ D(x, y),

where u and v may coincide. Let p denote a patch domain, which usually is given by a connected
subset of RN centered at the origin (for instance a disk, or a square, centered at 0 ∈ RN). Some
examples of such functions, that are usually called similarity measures, are:

• Maximum Absolute Difference

Dmax(x, y) = max
h∈p
|u(x+ h)− v(y + h)| ,

• Cross-Correlation
DCC(x, y) =

∑
h∈p

u(x+ h)v(y + h),

• Sum of Absolute Differences

DSAD(x, y) =
∑
h∈p

|u(x+ h)− v(y + h)| ,

• Sum of Squared Differences

DSSD(x, y) =
∑
h∈p

(u(x+ h)− v(y + h))2 .

Of course, much more elaborated similarity measures can be found in the literature, such as Zero-
mean Normalized Cross-Correlation (ZNCC) in [17], Phase Correlation in [11], IMage Euclidean
Distance (IMED) in [33], etc.

We consider patches to be the basic units of information that allow us to analyze and exploit the
self-similarity property, usually attributed to natural images, and which is a prior widely used in, e.g.
most of the state-of-the-art methods for image denoising, restoration, super-resolution, inpainting
and object recognition [5, 24, 27, 26, 1, 16, 25, 14, 8, 7]. Commonly, patches are set to have square
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shape and fixed size, and are used as they appear in an image without any transformations. However,
in the image formation process the final appearance of visual details of an observed scene is affected
by the geometry of that scene and by their positions with respect to the camera. Therefore, for many
tasks that involve comparison it might be beneficial to consider shape-adaptive patches despite the
additional computational burden associated with them. This point is illustrated by Figure 1, where
reference patches are shown in red and several other patches, containing similar visual details, are
shown in blue. In the left image similar patches are related by rotations. In the right image patches
containing the same pieces of texture are related by more complex affine transformations.

This work aims at promoting an affine invariant patch similarity measure that naturally also
implies shape-adaptive patches. This similarity measure provides dense image comparison (in the
sense that the local similarity can be computed for any arbitrary pair of points), and at the same
time it is invariant to affine transformations. The main intuition is simple: the similarity measure
compares elliptical patches (defined as spatially varying balls of the underlying metric previously
defined in the image domain) by normalizing them to a common disk domain. Potential applications
of such similarity measure are numerous, for example, a novel image inpainting method was presented
recently in [8], a variational segmentation method in [23], and an image denoising method achieving
top-tier performance in [10]. The similarity measure was originally introduced and studied in [9]
(see also [7]), whereas this work is focused on the numerical implementation. Other affine invariant
similarity measurements were proposed in the literature [20, 19, 31, 13, 30].

In the next section we briefly recall from [9] that the properties of the proposed affine invariant
similarity measure are closely related to the so called affine covariant structure tensors. In Section 3
we discuss in detail the numerical implementation, and then in Section 4 show some similarity maps
computed with the source code that accompanies this paper.

2 Affine Invariant Patch Similarity Measure

The affine invariant similarity measure that we consider in this work was originally introduced in [9],
where it was derived from a linear model proposed, among many other models, for multiscale analysis
of similarities between images on Riemannian manifolds, in [2]. Assuming, to simplify, that Ωu =
Ωv = RN , the considered affine invariant similarity measure between two points x, y ∈ RN is

Da(t, x, y) =

∫
R2

gt(h)
(
u(x+G1(x)−

1
2h)− v(y +G2(y)−

1
2h)
)2

dh, (1)

where G1(x) and G2(y) are spatially varying Riemannian metrics defined on the image domains of u
and v, respectively,

gt(h) = η exp

(
−dG1(x, x+G1(x)−

1
2h)2

t

)
, (2)

dG1(x̃, ˜̃x) denotes the distance on a geodesic curve joining points x̃ and ˜̃x in the Riemannian manifold
(Ωu, G1) and η is an appropriate normalization constant depending on t. The t parameter allows to
control the support in the patch comparison, and is directly related to the multiscale character of
Da [2, 9]. As will become clearer later in this section (see also [2, 9, 7]), the points x + G1(x)−

1
2h

and y + G2(y)−
1
2h belong, respectively, to patches around x and y, respectively, when h belongs to

the support of gt (which, in practice, will be considered bounded as usual).
In (1) the similarity measure is given in a general form, since G1 and G2 can be any Riemannian

metrics on the respective image domains of u and v. It is well known, that the structure tensor
(second-moment matrix) can be seen as a metric in the image domain (e.g. [35, 36, 15, 4, 3]). A
novel iterative scheme was presented in [9, 7] to define and compute the structure tensors. This
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scheme guarantees, at least in the continuous setting, that the structure tensors are affine covariant
which means that they transform appropriately by affine transformations. A study about how these
tensor properties behave in the case of discrete real image was performed in [9]. In this section
we first recall from [9] some definitions and then address the algorithmic construction of the affine
covariant structure tensors and affine covariant regions (shape-adaptive patches). We also illustrate
the geometrical meaning of using these affine covariant structure tensors as metrics G1 and G2 in (1).

2.1 Preliminaries

Let u be a given image, u : RN → R that we assume to be a function of bounded variation,
u ∈ BV (RN). Let GL(N) be the set of invertible matrices in RN . Let A ∈ GL(N) be an affine
transformation. We denote by uA(x) := u(Ax) a version of an image u, transformed by an affinity
A. Notice that it is equivalent to say that A transforms the coordinate system of the domain of uA
to the one of u.

Definition 1. Let Hu be a (1, 1) tensor defined on RN such that, for each x ∈ RN , it is represented
by a N ×N matrix Hu(x) mapping a vector in RN to another vector in RN . We say that Hu is an
affine covariant tensor if it satisfies

HuA(x) = AtHu(Ax)A, (3)

where uA(x) := u(Ax) for A ∈ GL(N).

Let us highlight a slight clash of terminology that we committed here. In general, a tensor is
said to be of type (m,n) if it is contravariant of order m and covariant of order n. Thus, the term
“covariant tensor” is used to denote any tensor of type (0, n), that is, any tensor that has n covariant
indices and no contravariant indices. On the other hand, in the context of Definition 1 we say “affine
covariant” to emphasize that such tensor, computed from an image u, transforms in accordance with
an affinity.

An interesting example of such a tensor is given by F (u) = ∇u⊗∇u, where∇ denotes the gradient
operator and ⊗ denotes the tensor product. The tensor field F (u) is affine covariant, because

F (uA)(x) = ∇uA(x)⊗∇uA(x) = At∇u(Ax)⊗ At∇u(Ax) (4)

= At∇u(Ax)⊗∇u(Ax)A = AtF (u)(Ax)A.

The law of transformations (3) is well adapted to define neighborhoods that transform properly with
respect to affine transformations. Indeed, it can be shown [9] that

Lemma 2.1. Let Hu be an affine covariant tensor. Let

BHu(x, r) = {y : 〈Hu(x)(y − x), (y − x)〉 ≤ r2} x ∈ RN , r > 0. (5)

Then, BHuA
(x, r) = A−1BHu(Ax, r).

We say that BHuA
(x, r) is an affine covariant neighborhood.

In particular, if we define
Bu(x, r) = {y : |〈∇u(x), y − x〉| ≤ r}, (6)

then

BuA(x, r) = {y : |〈∇uA(x), y − x〉| ≤ r}
= A−1{y : y ∈ Bu(Ax, r)} = A−1Bu(Ax, r),

that is, BuA(x, r) is an affine covariant neighborhood as well.
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2.2 Iterative Construction Scheme

At this point we have all the ingredients we need to describe the scheme for the construction of affine
covariant structure tensors and affine covariant neighborhoods.

Let Bu(x, r) be an affine covariant neighborhood in image u. For example, Bu(x, r) can be
computed using (6). Let

T (u)(x) =

∫
Bu(x,r)

∇u(y)⊗∇u(y) dy. (7)

Let us recall from [9] some properties of affine covariant tensors that were proved there. First, notice
that T (u) satisfies

T (uA)(x) =

∫
BuA

(x,r)

∇uA(y)⊗∇uA(y) dy =

∫
A−1Bu(Ax,r)

At∇u(Ay)⊗∇u(Ay)Ady, (8)

and by writing ȳ = Ay, y ∈ A−1Bu(Ax, r) we get

T (uA)(x) = At
∫
Bu(Ax,r)

∇u(ȳ)⊗∇u(ȳ)|detA|−1 dȳA. (9)

Let us remark that T (uA)(x) = |detA|−1AtT (u)(Ax)A; therefore, T (uA) is an affine covariant tensor
with a weight expressed by |detA|−1. We refer to it as an affine covariant tensor density of exponent
−1. More precisely, we will say that the image dependent tensor T is an affine covariant tensor
density of exponent p ∈ R if it satisfies T (uA)(x) = |detA|pAtT (u)(Ax)A for any affine transformation
A ∈ GL(N), where uA is the corresponding affinely transformed image defined by uA(x) = u(Ax).

Although the following results hold for the general case of RN , we will focus on the case of regular
images where Bu(x, r) ⊂ R2. To cancel the factor |detA|−1, we observe that Area(BuA(x, r)) =
|detA|−1Area(Bu(Ax, r)). Therefore, if we normalize T (u)(x) and define

NT (u)(x) =

∫
Bu(x,r)

∇u(y)⊗∇u(y) dy

Area(Bu(x, r))
, (10)

we have NT (uA)(x) = AtNT (u)(Ax)A. In other words, NT (u) is an affine covariant tensor (or an
affine covariant tensor density of exponent 0), computed on an affine covariant neighborhood.

Lemma 2.2. Let H1 be an affine covariant tensor density of exponent p ∈ Z and let H2 be an affine
covariant tensor. Let H i

A be the tensor after the affine transformation A. Let BH1(x, r) be an affine
covariant neighborhood, computed from H1. Let

T (H1, H2)(x) =

∫
BH1 (x,r)

H2(y) dy. (11)

Then
T (H1

A, H
2
A)(x) = |detA|pAtT (H1, H2)(Ax)A. (12)

That is, T (H1, H2) is an affine covariant tensor density of exponent p.

Notice that, in our examples, p = 0 or p = −1. Lemma 2.2 permits to iterate the above
construction (10) and redefine for k ≥ 1

NT (k)(u)(x) =

∫
B

NT (k−1)(u)
(x,r)
∇u(y)⊗∇u(y) dy

Area(BNT (k−1)(u)(x, r))
, (13)
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Figure 2: Evolution of two affine covariant neighborhoods over iterations of the construction scheme (k from 0 to 5).

where k is the index of iteration, and

BNT (k)(u)(x, r) = {y : 〈NT (k)(u)(x)(y − x), (y − x)〉 ≤ r2}, (14)

for k ≥ 1,

BNT 0(u)(x, r) = {y : |〈∇u(x), y − x〉| ≤ r}, (15)

for k = 0.
Equations (13), (14) and (15) constitute an iterative scheme for the calculation of affine covariant

structure tensors and neighborhoods. Algorithm 1 details the pseudo-code of the provided code for
its computation.

Notice that the initial neighborhood (15) takes into account non-local information due to its
infinite band support. Moreover, its shape depends only on the gradient at a single point and thus
may be subjected to noise. The iterative process decreases this dependency of the structure tensor
on the initial neighborhood BNT 0(u)(x, r). Figure 2 illustrates the evolution of two affine covariant
neighborhoods over iterations.

It was observed that after a few iterations the proposed scheme either converges to a single affine
covariant structure tensor, or starts to cycle over a finite number of them (typically 2 or 3). Notice,
however, that by Lemma 2.2 the structure tensor is guaranteed to be affine covariant at any iteration
of the scheme. Therefore, for the correct comparison of two points in the case of oscillation, it is only
required to run the construction scheme for the same amount of iterations k. We refer the reader
to [9, 7] for the empirical study of the convergence of the iterative scheme and the above mentioned
dependency on the initial iteration.

To simplify the notation, we will denote by Tu(x) the affine covariant structure tensor NT (k)(u)(x)
for a fixed number of iterations k and a given value of r (see Algorithm 1). We say that Tu is the
affine covariant structure tensor field associated with u. Similarly we will use the notation BTu(x) to
refer to the affine covariant neighborhood BNT (k)(u)(x, r).

Let us note that r is a free parameter. It controls the size of the affine covariant neighborhood
at a given point. On the other hand, the size of the neighborhood is also affected by the texture in
the vicinity of that point. For the same value of r, elliptical patches are always significantly bigger
in homogeneous regions than in textured regions or close to edges. Some examples of the affine
covariant neighborhoods, computed using the same value of r, are shown in Figure 3. The choice of
r might depend also on the application. For instance, in [22, 23] a thorough analysis was made to
experimentally show the robustness of a patch-based variational segmentation method that considers
the same adaptive patches depending on the values of t and r. It was also analyzed in [10] for image
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Figure 3: Affine covariant neighborhoods computed every 25 pixels using the same values of r.

denoising where, on the other hand, a patch size constraint limiting the maximum patch size was
introduced. It was developed by slightly modifying the tensors adding an appropriate constant to
its diagonal [10]. Obviously, this modification breaks the affine covariant property of the structure
tensors and associated neighborhoods but limiting the maximum patch size to capture only small
pieces of visual information, with the limit depending on the noise level, has proven to be beneficial
in the context of denoising.

2.3 Local Affinity from Structure Tensors

Let u : Ωu → R and v : Ωv → R be two given images. For each point x ∈ Ωu, let Tu(x) be the
structure tensor of u, and let Tv(y) be the structure tensor of v at y ∈ Ωv. By extending the domains
of u and v to RN and considering the structure tensor fields Tu and Tv as metrics on these domains,
we obtain two Riemannian manifolds (RN , G1 := Tu), (RN , G2 := Tv).

As was stated in Definition 1, a structure tensor that is affine covariant satisfies

TuA(x) = AtTu(Ax)A,

where uA(x) := u(Ax). When local vicinities of two given points x and y are related by a local affine
transformation A(x, y), we expect

Tu(x) = A(x, y)tTv(y)A(x, y).

This matrix equation has many solutions, as will be seen shortly, and the right solution needs to be
precised. For the moment, let us continue our argument with the solution

A(x, y) = Tv(y)−
1
2Tu(x)

1
2 . (16)

To calculate the square root of Tu(x) and Tv(y) we first diagonalize the matrices

Tu(x) = Uu(x)Du(x)U t
u(x),
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Figure 4: Affine covariant neighborhoods (shape-adaptive patches) computed at corresponding points in two images. Despite
the difference in viewpoints, the patches capture the same visual information.

Tv(y) = Uv(y)Dv(y)U t
v(y).

Here

Du(x) = diag(λu,1(x), λu,2(x)), λu,1(x) ≥ λu,2(x),

Dv(y) = diag(λv,1(y), λv,2(y)), λv,1(y) ≥ λv,2(y).

The matrices Uu(x) and Uv(y) are rotation matrices formed by the eigenvectors of Tu(x) and Tv(y),
respectively. Let eu,i(x) be the eigenvector of Tu(x) associated with the eigenvalue λu,i(x), i ∈ {1, 2}.
Let ev,i(y) be the eigenvector of Tv(y) associated with the eigenvalue λv,i(y). That is, eu,i(x) is the
i-th column of Uu(x) and ev,i(y) is the i-th column of Uv(y).

Recall that each structure tensor is associated with its corresponding region, which in R2 is an
ellipse given by

BTu(x) = {x̄ : 〈Tu(x)(x̄− x), x̄− x〉 ≤ r2},

BTv(y) = {ȳ : 〈Tv(y)(ȳ − y), ȳ − y〉 ≤ r2}.

Figure 4 shows examples of affine covariant regions computed at corresponding points in two views
of the same scene.

Figure 5: Decomposition of the transformation, obtained from a pair of structure tensors.

If we define Au(x) := Du(x)
1
2Uu(x)t, then by the change of variables X = Au(x)x′, we have

Au(x)
eu,i(x)√
λu,i(x)

= fi, where fi is a Euclidean orthonormal basis. Which means that Uu(x)t rotates the

ellipse, aligning the minor axis to f1 and the major to f2, and Du(x)
1
2 changes the length of both

axis. Similarly for the ellipse associated with Tv(y), we define Av(y) := Dv(y)
1
2Uv(y)t and, by the
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Figure 6: Schematic illustration of alignment of elliptical patches that takes into account the additional orthogonal trans-
formation R(x, y).

change of variables Y = Av(y)y′, we have Av(y)
ev,i(y)√
λv,i(y)

= fi. After these operations both ellipses are

transformed into disks of radius r.
Using the above notation we can rewrite (16) as

A(x, y) = Tv(y)−
1
2Tu(x)

1
2 = Uv(y)Dv(y)−

1
2Uv(y)tUu(x)Du(x)

1
2Uu(x)t. (17)

This combined transformation warps an elliptical region at point x into an elliptical region at point
y (Figure 5). Notice, however, that this transformation does not necessarily match the true affine
transformation between the vicinities of points x and y. As will be shown in the next section, there
is an orthogonal transformation missing in (17) between Uv(y)t and Uu(x).

2.4 Additional Orthogonal Transformation

Similarly to [12], it can be shown that in general Equation (17) allows to determine a local affine
transformation from two affine covariant structure tensors, but only up to some orthogonal transfor-
mation [9]. The exact local affinity can be obtained, when an additional constraint is applied. For
example, it is possible in the context of stereo imaging, when the vertical displacement of points is
known to be zero after rectification. In our case, the true local affine transformation satisfies [9]

A(x, y) := Tv(y)−1R̃(x, y)Tu(x), (18)

where R̃(x, y) is some additional orthogonal transformation. This equation can be rewritten as

A(x, y) = Tv(y)−1R̃(x, y)Tu(x) = Uv(y)Dv(y)−
1
2R(x, y)Du(x)

1
2Uu(x)t, (19)

where R(x, y) is an orthogonal transformation that “absorbs” the two rotations Uv(y)t and Uu(x)
in (17) and involves rotation and/or mirroring. Figure 6 illustrates the complete chain of transfor-
mations that align one patch with another.

The additional orthogonal transformation R(x, y) can be computed from the image content inside
elliptical regions at points x and y. When two corresponding elliptical regions are normalized to disks,
a proper additional orthogonal transformation should align the content of these circular regions.
Since exhaustive search is not an option for any practical application, we instead split the sought-for
transformation into two parts

R(x, y) = Rv(y)−1Ru(x),

each of which depends on image content around only one point, x or y. We can now look for some
invariant features inside both normalized circular regions and compute from them the transformations
Ru(x) and Rv(y). In Section 3.3 we explain the estimation of these transformations in detail.
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We modify the Riemannian metrics G1 and G2, given by the affine covariant structure tensors,
to also take into account the additional orthogonal transformation. Then,

G
− 1

2
1 (x) = Tu(x)−

1
2Ru(x)−1, G

− 1
2

2 (y) = Tv(y)−
1
2Rv(y)−1.

Then the similarity measure (1) becomes

Da(t, x, y) =

∫
∆t

gt(h)
∥∥∥u(x+ Tu(x)−

1
2Ru(x)−1h)− v(y + Tv(y)−

1
2Rv(y)−1h)

∥∥∥2

2
dh, (20)

where gt(h) is either a Gaussian of variance t, or an approximated geodesic weighting function, and
∆t is a disk centered at the origin with radius proportional to the scale t and big enough such that gt
has effective support in ∆t. In the geometrical interpretation of this similarity measure two elliptical
patches at points x and y are first normalized by Ru(x)Tu(x) and Rv(y)Tv(y) to disks of the same
size, and then compared within this common space.

3 Numerical Implementation

In this section we describe the numerical implementation of the proposed affine invariant patch
similarity measure (20). Throughout this work we always refer to u and v as images defined in
Ωu,Ωv ⊂ RN , respectively, and they might represent regular videos, sequences of 3D images captured
over time, etc. In this section we consider discrete images u : Ωu∩ZN → RM and v : Ωv ∩ZN → RM

defined on ZN with values in RM (or with values in ([0, range]∩Z)M). Actually, we will consider the
most practical case of N = 2 (the case of planar images) which is the one implemented in the source
code accompanying the manuscript. The case of N = 3 is described in detail in [7], Chapter 6. The
2D+time video case was also applied in [32] to obtain a spatio-temporal video segmentation method
that uses spatio-temporal adaptive patches. The number of color channels M is usually assumed to
be 1 or 3; however, since the particular choice of M does not affect the reasoning, we do not specify
it explicitly. Without loss of generality we assume that u = v.

The similarity measure (20) assigns a comparison distance to a pair of shape-adaptive patches
centered at two given points in the following way. The scheme described in Section 2.2 allows to
calculate at any given point x both the affine covariant structure tensor and the affine covariant
region (shape-adaptive patch) defined by it. In order to compare two shape-adaptive patches we
have to align (register) them first. A proper registration can be obtained from the structure tensors;
however, as commented in Section 2.4, we have to specify additional orthogonal transformations.
For the sake of simplicity in our implementation we restrict these orthogonal transformations to be
rotations only and ignore the possibility of mirroring. Therefore, from now on we will refer to them as
“additional rotations”. We estimate these rotations by extracting dominant orientations of gradients
within the patches. For the purposes of comparison we normalize shape-adaptive patches to disks
of the same radius and interpolate these normalized versions to the regular grid. In this way we
obtain a convenient representation of shape- and size-varying patches by arrays of interpolated color
values whose sizes are all equal and known in advance. Notice that there might be several dominant
orientations within a patch; therefore, for a single point x we might have multiple normalized versions
of the patch. We compare every version associated with the point x with every version associated
with the point y and finally assign to these points the smallest distance among all the combinations.

In the following sections we start by presenting a more formal overview of the numerical imple-
mentation and then describe specific parts of it in more detail.
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3.1 Outline of the Patch Similarity Computation

This section presents an overview of the numerical implementation of the proposed affine invariant
similarity measure. The following high-level outline of the algorithm is structured in the form of a
data flow, where every step is described by a set of inputs (“in”), a set of internal parameters (“prm”)
and a set of outputs (“out”). Figure 7 shows a data flow diagram that graphically represents the
outline. The locations x and y are the inputs of the algorithm itself. They can come from the same
image u or from two different images, u and v; however, for simplicity of notation we assume here
that u = v. The distance d, together with the corresponding configuration of additional rotations,
are the outputs of the algorithm.

Let us recall some useful notation from the previous sections. We denote by ∇u the gradient
of the given image u. We denote by Tu(x) the affine covariant structure tensor at point x and by
BTu(x) its corresponding affine covariant neighborhood. The parameter r controls the size of the
affine covariant neighborhoods in the construction scheme described in Section 2.2. The rest of the
notation used in the outline is explained upon appearance.

Let us note that in the provided code the discretization of the derivatives in the gradient com-
putation is implemented using image derivative filters [6, 28], in particular as convolution with
(−1, 8, 0,−8, 1)/12 kernel, and with Neumann boundary conditions.

3.1.1 Outline

P(x)x

y

1

1

2

2

3

3

3

3
P(y)

4 d,Θx,Θy

Θ1

ΘN

Θ1

ΘM

Figure 7: Data flow diagram for the patch similarity (distance) calculation between two given points x and y. The numbers
in the nodes correspond to the steps of the outline.

0. Build regular grid for interpolation

prm: g > 0, r > 0
out: G := {wi}

The parameter g controls the resolution of the regular grid, the set G contains coordinates of
the grid nodes. This is a preprocessing step that normally should be done only once and before
any patch distance computations. See Section 3.4 for details.

1. Calculate structure tensor and shape-adaptive patch

in: ∇u, x
prm: r > 0, nST > 0
out: Tu(x), BTu(x)
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The parameter nST controls the number of iterations in the construction scheme for the affine
covariant structure tensors and neighborhoods (Section 2.2). The construction of the structure
tensors in the discrete setting is shown in Algorithm 1. The algorithm for collecting points
belonging to the neighborhood BTu(x) is explained in Section 3.2.

2. Estimate dominant orientations

in: ∇u, BTu(x), Tu(x), x
prm: nbins > 0, σDO > 0, δ > 0, nDO > 0
out: {Θk}
The parameter nbins controls the number of bins in the gradient orientations histogram, the
parameter σDO controls the intra-patch weighting and the parameter δ is the cut-off threshold for
local maxima as in [18]. The parameter nDO limits the maximum number of output orientations
and {Θk} is the set of estimated dominant orientations. See Section 3.3 for details.

3. Normalize shape-adaptive patch and interpolate it to the grid G (for each Θk)

in: u, Tu(x), x, Θk, G
out: {c̄i}k
The output set contains interpolated color values. For every node wi of the regular grid G we
obtain the interpolated color value c̄i. See Section 3.4 for details.

Note: after this step all interpolated candidate normalizations, corresponding to the same
point x, are combined in a set P(x) := {({c̄i}k,Θk)}.

4. Calculate patch distance between points x and y

in: P(x), P(y)
out: d,Θx,Θy

Every candidate normalization from P(x) is compared with every candidate normalization from
P(y), and a configuration that gives the smallest distance is returned.

Algorithm 1: Iterative scheme for computation of the affine covariant structure tensors.

Input: ∇u, x ∈ R2 // gradient field, point of interest

Parameters: r, nST, threshold // nST is 60 by default

Output: Tu(x)

T
(0)
u (x)← Equation (15) followed by (13) // compute initial structure tensor

for 0 < k < nST do

T
(k)
u (x)← Equation (14) using T

(k−1)
u (x) followed by (13) // compute tensor at next iteration

if ||T (k)
u (x)− T (k−1)

u (x)||F < threshold then
break // stop when change in Tu(x) drops below threshold

Tu(x)← T
(k)
u (x)

3.2 Affine Covariant Regions

The numerical scheme for the construction of affine covariant structure tensors and neighborhoods
is described in Section 2.2. In this section we explain an efficient way to determine a set of points
that belong to a given affine covariant region.
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Throughout this section we use a different notation for points in images to simplify explicit
coordinates indication. Let p̄ be the central point of an affine covariant region BTu(p̄) and p be just
any point on the image domain of u. A point p belongs to the affine covariant region BTu(p̄) if and
only if

〈Tu(p̄)(p− p̄), (p− p̄)〉 ≤ r2.

The boundary of an affine covariant region BTu(p̄) is given by

∂BTu(p̄) =
{
p : 〈Tu(p̄)(p− p̄), (p− p̄)〉 = r2

}
. (21)

3.2.1 Affine Covariant Regions in R2

Let us indicate components of p̄ ∈ R2 and p ∈ R2 as p̄ = [x̄, ȳ]t and p = [x, y]t. From Equation (21)
we can compute two points on ∂BTu(p̄) with the biggest and the smallest y coordinates. Let us
introduce matrix coordinates for Tu(p̄), namely,

Tu(p̄) =

[
T00 T01

T10 T11

]
,

where T01 = T10. By taking partial derivative of (21) with respect to x (and using the implicit
function theorem) we obtain

T00(x− x̄) + T01(y − ȳ) + T01(x− x̄)
∂y

∂x
+ T11(y − ȳ)

∂y

∂x
= 0.

Then by setting ∂y
∂x

= 0 we have

x− x̄ = −T01

T00

(y − ȳ).

By substituting the above expression into (21) we obtain the y coordinates of the two extreme points
(shown in Figure 8)

y = ȳ ∓ r
(
T11 −

T 2
01

T00

)− 1
2

. (22)

Let us denote them y− and y+. To collect the points p that belong to BTu(p̄) we traverse rows lying
between the extreme points. For every row y (where y− ≤ y ≤ y+) we compute the x coordinates of
two its intersections with the elliptical boundary (21) as

x(y) = x̄− a(y − ȳ)±
√
b(y − ȳ)2 + c, (23)

where the constants are given by

a =
T01

T00

, b = a2 − T11

T00

and c =
r2

T00

.

Then we collect all points p belonging to that row and located within the boundary of BTu(p̄).
Figure 8 schematically illustrates this traversing.

At some points near high contrast edges, for small values of r, the numerical scheme may yield
degenerate structure tensors which are not positive definite, or close to it. This occurs when either
Tu(p̄) is close to the zero matrix (e.g. p̄ belongs to a region where u is constant) or Tu(p̄) is not zero
but so is its determinant (e.g. all ∇u(p) in BTu(p̄) are almost the same, which results in a extremely
elongated and narrow region). In both cases we output a region containing only the central point p̄
instead. To check that a matrix is strictly positive definite we check that det(A) > 0 and A00 > 0.
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y+

y-

x(y)+x(y)-

Figure 8: Schematic illustration of traversing of shape-adaptive elliptical patches in R2.

For the structure tensor, T00 is always greater than or equal to 0; thus it is sufficient to check only its
determinant. The elongation of an elliptical region can be found using the ratio between eigenvalues
of the corresponding structure tensor. As discussed in [18] (Section 4.1), since only the ratio is
needed, there is no need to compute the eigenvalues themselves. Let λ1 and λ2 be eigenvalues of a
structure tensor Tu(p). Then its trace and determinant are

Tr(Tu(p)) = λ1 + λ2,

Det(Tu(p)) = λ1λ2.

Let α = λ1/λ2 be the eigenvalue ratio. Then

Tr(Tu(p))2

Det(Tu(p))
=

(λ1 + λ2)2

λ1λ2

=
(αλ2 + λ2)2

αλ2
2

=
(α + 1)2

α
.

Notice that the previous expression, f(α) := (α+1)2

α
, is an increasing function of α (since f ′(α) ≥ 0).

Therefore, being ᾱ a given eigenvalue ratio threshold, we recognize the structure tensor Tu(p) at p
as degenerate if α = λ1/λ2 > ᾱ, which is equivalent to the condition

Tr(Tu(p))2

Det(Tu(p))
>

(ᾱ + 1)2

ᾱ
.

Throughout this work we set ᾱ = 100.
The whole procedure is summarized in Algorithm 2.

3.3 Dominant Orientations

In Section 2.3 it was shown that a local affine transformation can be estimated from two structure
tensors, but only up to a rotation. To compensate for the missing rotation we estimate dominant
orientations of the normalized patches using histograms of gradient orientations as in the SIFT
keypoints and descriptors of [18]. Notice that there might be several dominant orientations and
thus several equivalent options for the additional rotation. The procedure for estimating dominant
orientations is described below and summarized in Algorithm 3 for the case of images in R2. An
extension for the R3 case can be found in [7].

3.3.1 Dominant Orientations in R2

Recall that in order to compute affine covariant structure tensors we first compute the gradient
field ∇u. The same gradient vectors, when transformed appropriately, can be used to estimate the
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Algorithm 2: Assembly of affine covariant regions in R2.

Input: Tu(p̄), Ωu ⊂ R2, p̄ = [x̄, ȳ]t // structure tensor, domain of u, point of interest.

Parameters: r, ᾱ
Output: BTu(p̄)

T := Tu(p̄) // alias

BTu(p̄)← {}
// Ensure tensor is not degenerate

if det(T ) ≤ 0 or trace(T )2

det(T )
> (ᾱ+1)2

ᾱ
then

BTu(p̄)← BTu(p̄) ∪ p̄
Stop

// Compute offsets of extreme points from the center

oy ← r
(
T11 − T 2

01

T00

)− 1
2

// Equation (22)

// Compute auxiliary constants

a← T01
T00

b← a2 − T11
T00

c← r2

T00

// Traverse row by row

for ȳ − boyc ≤ y ≤ ȳ + boyc do
Skip y, if it is outside of Ωu // y ∈ R

x− ← x̄− a(y − ȳ)−
√
b(y − ȳ)2 + c // left intersection

x+ ← x̄− a(y − ȳ) +
√
b(y − ȳ)2 + c // right intersection

for dx−e ≤ x ≤ bx+c do
BTu(p̄)← BTu(p̄) ∪ p // p = [x, y]t

dominant orientation within normalized patches. Let us simplify the presentation and denote by
T̂ (x) := Tu(x)

1
2 the transformation that normalizes an elliptical patch at x to a disk of radius r. Of

course, this normalization does not yet take any additional rotation into account. It can be shown
that the suitable transformation to apply to the gradient vectors is (T̂ (x)−1)t.

For every point y ∈ BTu(x) we transform the corresponding gradient vector ∇u(y), compute its
direction and magnitude and use them to fill-in the circular histogram of orientations. Note that the
magnitude value is additionally weighted by the anisotropic Gaussian intra-patch weight, depending
on the distance to the center of the patch, given by

ωx(y) = exp

(
−〈Tu(x)(y − x), (y − x)〉

2σ2
DO

)
. (24)

The resulting value is then distributed linearly between the nearest bins of the histogram in proportion
to the distance to these bins. In that histogram we find the global maximum and all other local
maxima which are big enough. In order to improve the accuracy of the estimation, we fit a quadratic
function to the histogram values around every such maximum and take its argmax as orientation
Θ. Up to nDO highest peaks in the histogram are considered as dominant orientations and gathered
into the output set {Θk}. According to our observations, most commonly the number of dominant
orientations does not exceed two.
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Figure 9: Registration of two shape-adaptive patches for comparison by normalization and additional rotation.

The additional rotation Ru(x) can be computed as

Ru(x) := R(Θ) =

[
cos Θ sin Θ
−sin Θ cos Θ

]
, (25)

for Θ being a given dominant orientation.
In our experiments we set the number of bins in the histogram nbins = 72, the cut-off threshold

δ = 45% (see [18]), the weighting parameter σDO = 0.2 and the limit on the number of orientations
nDO = 3.

3.4 Normalization and Interpolation

In this section we delve into the details of registration of elliptical patches for comparison. In
our specific setting there are two approaches to registration: either one of the elliptical patches is
transformed using (18), or both elliptical patches are normalized to circular patches as shown in
Figure 9. The first approach can be exploited for image synthesis, for example, in exemplar-based
inpainting and denoising. Meanwhile the second option is particularly suitable for patch comparison,
because it allows intermediate data caching. That is, normalized patches can be computed once and
stored in memory, then every normalized patch can participate in multiple comparison operations
without any additional transformations required.

In order to normalize an elliptical patch we need a proper transformation. As was shown pre-
viously, an initial transformation is obtained directly from a corresponding structure tensor. This
preliminary normalization is used to estimate dominant orientations within the normalized patch.
Several dominant orientation might be estimated for every patch; therefore, there can be several
options for the normalizing transformations. Let us denote them here by Ak(x) = R(Θk)Tu(x)

1
2 ,

where R(Θk) is an additional rotation given by (25). Obviously, all the options are equivalent and
we should consider each of them.

Since in practice we deal with digital images which are discrete, after normalization every patch
turns into a set of scattered points (as illustrated by the blue dots in Figure 10, right). In principle, to
compare two normalized patches we could interpolate one set of scattered points directly to another;
however, we propose to instead interpolate these sets to a regular grid G (shown by the red asterisks
on the right side of Figure 10). The usage of the intermediate regular grid allows us to precompute all
normalized patches and store them in memory. If we store all possible normalized versions for every
elliptical patch, together with their corresponding candidate transformations Ak(x), the calculation
of the patch distance between two points boils down to several sums of squared differences. We
consider the resolution of the regular grid to be constant throughout a single run of any experiment;
thus, it can be built in the preprocessing phase. In terms of data structure, the grid is represented
by a set of real-valued coordinates of its nodes. Any normalized patch is contained within a circle
of radius r; therefore, the regular grid is built in such a way that its nodes evenly cover this circle
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Algorithm 3: Estimation of dominant orientations in R2.

Input: ∇u, BTu(x), Tu(x), x ∈ R2 // gradient field, neighbourhood, structure tensor, point

Parameters: nbins, σDO, δ, nDO

Output: {Θk}

A← ((Tu(x)
1
2 )−1)t // transformation for gradient vectors

H ← array of (nbins + 2) elements, all set to 0 // histogram

// Fill-in histogram H

foreach y ∈ BTu(x) do

∇̃u(y)← A∇u(y)

α← exp
(
− 〈Tu(x)(y−x),(y−x)〉

2σ2
DO

)∥∥∥∇̃u(y)
∥∥∥

γ ← angle between ∇̃u(y) and X axis in range [0, 2π]

p← γ nbins

2π
// real-valued position in the histogram

i← bp− 0.5c+ 1 // index of the left closest bin

d← p− i+ 0.5 // distance to the center of i-th bin

Hi ← Hi + (1− d) α
Hi+1 ← Hi+1 + d α

// Merge boundary values, because H should be circular

H0 ← H0 +H−2 // H−2 is the penultimate element

H−1 ← H−1 +H1 // H−1 is the last element

H−2 ← H0

H1 ← H−1

Smooth H by convolving it six times with
[

1
3
, 1

3
, 1

3

]
kernel

// Collect peaks that are big enough

C ← {} // set of candidate orientations

for 1 ≤ i ≤ nbins do
if Hi ≥ δ max(H) and Hi > Hi−1 and Hi > Hi+1 then

C ← C ∪ (Hi, i) // append tuple (Hi, i) to C

Sort C in descending order by histogram values

// Refine and collect dominant orientations

Θ← {}
for 0 ≤ j < min(nDO, size(C)) do

i← second element from tuple Cj

Θ← Θ ∪ 2π
nbins

(
i+ 0.5 + 0.5 Hi−1−Hi+1

Hi−1−2Hi+Hi+1

)
// refine by fitting a parabola
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Θk

Θk

1
2

1
2 -1-

Figure 10: Left to right (and in blue): transformation of an elliptical patch onto the normalized circular patch; right to
left (and in red): mapping of the regular grid G onto an elliptical patch. Points of an elliptical patch have color values
associated with them and are shown as blue dots. Nodes of G are shown as red asterisks. These are the locations where
color values have to be interpolated.

with a given resolution. It is convenient to specify the resolution of the grid by the number of nodes
that should fit along the diameter of the circle. We denote this free parameter of the method by g.
Algorithm 4 illustrates the construction of the regular grid.

A straightforward approach to interpolation would be to transform points of an elliptical patch
by R(Θk)Tu(x)

1
2 and then apply some kernel-based estimator, for instance, the simple Nadaraya-

Watson estimator [21, 34] with Gaussian kernel. This approach is illustrated in Figure 10, where
blue dots are the ones belonging to an elliptical patch and having color values associated with them,
red asterisks are the nodes of the regular grid G for which the color values have to be computed, and
the transformation brings color values from the elliptical patch on the left side into the normalized
patch on the right side. Immediately it can be seen that there is another approach. Using the inverse
transformation Tu(x)−

1
2R(Θk)

−1 coordinates of the grid nodes can be transferred onto the elliptical
patch. In this case the known color values are located on the regular grid of a discrete image,
while points to be interpolated are off the grid. Then the computationally less expensive bilinear
interpolation can be applied. Algorithm 5 describes this approach to interpolation of elliptical patches
in a more formal way.

Algorithm 4: Construction of a regular grid in R2.

Parameters: g, r
Output: G
s← 2r

g
// grid step

G ← {} // set of grid nodes

for 0 ≤ i < g do
for 0 ≤ j < g do

ω ← [j s+ 0.5 s− r, i s+ 0.5 s− r]t // ω ∈ R2

if ‖ω‖2
2 ≤ r2 then

G ← G ∪ ω
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Algorithm 5: Interpolation of normalized patches to a regular grid.

Input: u, Tu(x), x ∈ R2, Θk, G // image, structure tensor, point, angle, set of grid nodes

Output: C̄ := {c̄i}k

R←
[
cosΘk sinΘk

−sinΘk cosΘk

]
// additional rotation

A← Tu(x)−
1
2 R−1

C̄ ← {}
foreach ω ∈ G do

ω̄ = Aω + x
y = bω̄c
∆y = ω̄ − y

c̄ = u (y) (1−∆y1)(1−∆y2) + u

(
y +

[
1
0

])
∆y1(1−∆y2)+

+u

(
y +

[
0
1

])
(1−∆y1)∆y2 + u

(
y +

[
1
1

])
∆y1∆y2 // bilinear interpolation

C̄ ← C̄ ∪ c̄

4 Examples of Similarity Maps

The source code provided together with this paper implements the computation of the affine covariant
structure tensors, affine covariant regions, and affine invariant patch similarity. The implementation
is highly modular; therefore, it can be either used through the provided console applications, or
included as an integral part of some other project. In this section we demonstrate a few similarity
maps obtained with the provided implementation.

In the examples shown in Figure 11 each similarity map depicts similarity values between a given
point (let’s say x) and all the points y in an image. In other words, such a map identifies the locations
which are considered to be similar to a selected point of interest. For visualization purposes, the
distances Da(t, x, y) are converted into similarities and color-coded using the map

c(x, y, t) = 255 exp

(
−(Da(t, x, y)−Da

min)2

2σ2

)
, (26)

where x and y are two pixels, t > 0, σ =
Da

max−Da
min

γ
, Da

max and Da
min are the maximum and minimum

patch distance values, respectively, and γ > 0 is a visualization parameter. Notice that higher values
of c(x, y, t) correspond to more similar patches around x and y.

Finally, Figure 12 illustrates the multiscale nature of the proposed affine invariant patch similarity
measure (20). The selection of a bigger t (or r) in (20) results in bigger patches used in the patch
comparison. Figure 12 shows three similarity maps c(x, y, t) for x = (89, 178) (i.e., the point shown
in green in Figure 11), all y in the image domain and, from left to right, with increasing scale value
t. The scale is set as t = r/t̂, where radius r = 300, and t̂ = 6, t̂ = 3, t̂ = 1 (from left to right,
respectively). Let us notice that, as the patch size increases, the patch comparison allows to identify
similar texture content at a bigger scale. A more detailed study of the effects of r and t parameters
can be found in [9].
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Figure 11: Top-left is the original image with three points x of interest shown in different colors: red is x = (170, 205),
green is x = (89, 178), blue is x = (128, 234). The remaining three images show similarity maps (using Equation (26))
computed for each point of interest x and all y in the image domain. The map corresponding to each x is highlighted with
the same color.

Figure 12: Similarity maps c(x, y, t) for the point x = (89, 178) (shown in green in Figure 11) computed at different
increasing scales t. The scale is set as t = r/t̂, where radius r = 300, and t̂ = 6, t̂ = 3, t̂ = 1 (from left to right,
respectively). In other words, from left to right the increasing patch size used in the patch comparison allows to identify
similar texture content at a bigger scale.

5 Conclusions

In this work we have presented a detailed description and implementation of affine invariant patch
comparison by means of the similarity measure proposed in [9, 7]. We have briefly summarized the
theoretical premises of this similarity measure which exploits the affine covariant structure tensors for
defining and transforming shape-adaptive patches. For the sake of completeness we have also recalled
the particular definition and the iterative computational scheme for the affine covariant structure
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tensors and regions. In the rest of the paper we have documented at a high level the accompanying
open source implementation of the discussed affine invariant patch comparison.
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