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Abstract

In this paper we describe the implementation of state-of-the-art video denoising algorithm
SPTWO [A. Buades, J.L. Lisani, M. Miladinović, Patch Based Video Denoising with Opti-
cal Flow Estimation, IEEE Transactions on Image Processing 25 (6), 2573–2586]. This algo-
rithm, inspired by image fusion techniques, uses motion compensation by regularized optical
flow methods, which permits robust patch comparison in spatiotemporal volumes. Groups of
similar patches are denoised using Principal Component Analysis, which ensures the correct
preservation of fine texture and details.

Source Code

The reviewed source code and documentation for this algorithm are available from the web page
of this article1.

Keywords: video denoising; white Gaussian noise; motion compensation; optical flow

1 Introduction

Most video denoising methods assume the white Gaussian noise model. Let us denote the image
sequence by I(x, y, t), with (x, y) the spatial coordinates and t the temporal component, then this
model assumes that

I(x, y, t) = I0(x, y, t) + n(x, y, t),

where I0 is the true image sequence and n(x, y, t) the noise i.i.d. realizations of a Gaussian variable
of zero mean and standard deviation σ.

Early methods for video denoising simply extended the techniques developed for single images
to a sequence of frames. Besides the obvious use of these techniques on a frame by frame basis,
local average methods, such as the bilateral filter [19], or patch based methods such as NL-means [4]
or BM3D [7] and NLBayes [12] can be easily adapted to video just by extending the neighboring
area to the adjacent frames. Kervrann and Boulanger [3] extended NL-means to video by growing

1https://doi.org/10.5201/ipol.2018.224
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adaptively the spatio-temporal neighborhood. Arias et al. extended NL-Bayes [12] to video [1, 2]. The
BM3D extension, VBM4D [14], exploits the mutual similarity between 3-D spatio-temporal volumes
constructed by tracking blocks along trajectories defined by the motion vectors. Methods based on
sparse decompositions are extended to image sequences [15, 17, 20, 13], as well as approaches based
on low rank approximation [9, 10].

The performance of local average methods is improved by introducing motion compensation.
These compensated filters estimate explicitly the motion of the sequence and compensate the neigh-
borhoods yielding stationary data [16]. In [5] the authors proposed to combine optical flow estimation
and patch based methods for denoising. Their algorithm tends to a fusion of the neighboring frames
in the absence of occlusions and a dense temporal sampling. In this ideal scenario, an optical flow
or global registration is able to align the frames and fusion is achieved by simple averaging [8]. The
algorithm in [5] compensates the failure of these requirements by introducing spatiotemporal patch
comparison and denoising in an adapted PCA based transform.

In this paper we describe (Section 2) the method in [5] (the so-called SPTWO algorithm), we
discuss its parameters (Section 3) and computational complexity (Section 4) and we illustrate its
performance showing some experimental results (Section 5). Finally, some conclusions are exposed
in Section 6.

2 Complete Algorithm Description

The proposed algorithm is applied in two steps (see Algorithm 1). The denoised sequence from the
first step is used in the second step to improve the final denoising result. Algorithm 2 describes the
denoising method, which is applied in a frame by frame basis.

Algorithm 1: SPTWO Denoising Algorithm

Input : noisy video sequence I = I1, . . . , IN (Ii(x) ∈ Rd, d = 1 for gray images, d = 3
for color images), noise standard deviation σ

Output : denoised sequence Ĩ = Ĩ1, . . . , ĨN .
1 O = SPTWO single step(I, σ) //First iteration (Algorithm 2)

2 Ĩ = SPTWO single step(I,O, σ) //Second iteration, with oracle (Algorithm 2)

Frames alignment. Given a frame Ik from a sequence {I1, I2, · · · , IN}, a set of M neighboring
frames is first extracted and aligned with respect to Ik (Algorithm 3). This alignment implies the
computation of the optical flow2 between each of the neighboring frames and Ik, and the application of
the computed flow to warp each frame into the same spatial domain than Ik. The warping procedure
is implemented using bicubic interpolation. Ideally, at the end of the process, all the values in the
warped sequence associated to a given pixel x, should correspond to the same spatial location in
the scene. If registration was accurate and the sequence free of occlusions, a temporal average in
this aligned data would be optimal. However, the noise standard deviation would slowly decrease as
1/
√
M , where M is the number of aligned frames. Generally, this will not be the case, inaccuracies

and errors in the computed flow and the presence of occlusions make this temporal average likely to
blur the sequence and have artifacts near occlusions. The proposed approach tends to solve these
limitations.

2We use the method and code described in [18] to compute the optical flow.
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Algorithm 2: SPTWO single step

Input : noisy video sequence I = I1, . . . , IN , oracle video sequence O = O1, . . . , ON

(optional) , noise standard deviation σ
Output : denoised sequence Ĩ = Ĩ1, . . . , ĨN .

1 for k = 1, · · · , N do
//Get aligned sequence and detect occluded pixels in temporal neighborhood

2 if O then
3 [IW ,OW ,M] = Align Frames(I,O, k, σ) //Algorithm 3

4 else
5 [IW ,M] = Align Frames(I, k, σ) //Algorithm 3

//Denoise frame k

6 Ĩk = 0 //Initialize denoised frame

7 Counter = 0 //Initialize counter: for each pixel, count in how many

denoised patches it is contained

8 Label all the pixels in the domain of Ik as “not processed”
9 for each pixel x in the domain of Ik labeled as “not processed” do

10 if O then
11 (S,SO) = Get Similar Patches(IW ,OW ,M,x, k) //Algorithm 5

12 S̃ = Patches Denoising(S,SO, σ) //Denoised patches, Algorithm 7

13 else
14 S = Get Similar Patches(IW ,M,x, k) //Algorithm 5

15 S̃ = Patches Denoising(S, σ) //Denoised patches, Algorithm 7

//Aggregation

16 for each denoised patch P̃ in S̃ extracted from frame k do
17 Label as “processed” the center of the patch

18 for each pixel y in P̃ do

19 Ĩk(y) = Ĩk(y) + P̃ (y) //Accumulate denoised value at y
20 Counter(y) = Counter(y) + 1 //Increase counter

21 for each pixel x in the domain of Ik do

22 Ĩk(x) = Ĩk(x)/Counter(x) //Normalize accumulated values

Occlusions management. In order to take into account the presence of occlusions and flow
inaccuracies, an occlusion maskM is computed that indicates in which pixels of the spatial domain
the ideal situation holds (Algorithm 4). Occlusions are detected depending on the divergence of the
computed flow: negative divergence values indicate occlusions. Additionally, the color difference is
checked after flow compensation. A large difference indicates occlusion, or at least failure of the
color constancy assumption. We combine both criteria for a pixel x = (x, y) and the computed flow
between I0 and I1, into the weighting function

w(x) = e
−|I0(x)−I1(x+u(x))|2

σ2
i · e

−min(divu,0)2

σ2
d , (1)

where σd is fixed while σi depends on the noise standard deviation (σi = foσ, where fo is a tuning
parameter). This weight function is binarized by thresholding at 0.5, giving a mask of occluded
pixels (a ‘0’ value meaning “occluded”, and ‘1’ “non-occluded”). These occluded pixels having a
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Algorithm 3: Align Frames

Input : video sequence I = I1, . . . , IN , oracle video sequence (optional)
O = O1, . . . , ON , index of reference frame k, noise standard deviation σ

Parameters: radius of temporal neighborhood t (M = 2t+ 1 frames in neighborhood)
Output : set of aligned frames IW , set of aligned oracle frames (if O provided) OW

occlusion masks M.
1 IW = ∅, M = ∅
2 if O then OW = ∅ N t

k = {j ∈ 1, · · · , N/|j − k| ≤ t} //Temporal neighborhood of frame k

3 for j ∈ N t
k do

4 if j 6= k then
5 if O then
6 ukj = Optical Flow(Ok, Oj) //Optical flow from Ok to Oj: Ok(x) ' Oj(x+ ukj(x))

7 else
8 ukj = Optical Flow(Ik, Ij) //Optical flow from Ik to Ij: Ik(x) ' Ij(x+ ukj(x))

9 else
10 ukk = 0

//Warp (align) frame Ij using the computed flow

11 for each pixel x in the domain of Ij do
12 IWj (x) = Ij(x+ ukj(x))

13 if O then
//Warp (align) frame Oj using the computed flow

14 for each pixel x in the domain of Ij do
15 OW

j (x) = Oj(x+ ukj(x))

//Build occlusion mask (Algorithm 4)

16 if O then
17 Mj = Occlusion Mask(Ik, Ij, Ok, Oj,ukj, σ)

18 else
19 Mj = Occlusion Mask(Ik, Ij,ukj, σ)

20 M =M∪Mj

21 IW = IW ∪ IWj
22 if O then OW = OW ∪OW

j

negative divergence of the flow and a large color difference after flow compensation are located near
the discontinuities of the motion field. The left-right coherence of the computed flow is also checked:
ideally, for a given pixel, the flow from frame k to frame j should have the same magnitude and
opposite direction than the flow from frame j to frame k. Points that fail to satisfy, up to a tolerance
factor, this condition are labeled as “occluded” in the occlusion mask.

Selection of similar patches. Once all the frames in the temporal neighborhood have been
aligned, a set of patches is associated to each pixel x in the reference image (Algorithms 5 and 6).
Let {IWk−t, · · · , IWk+t} be the set of adjacent frames to Ik after warping with the computed optical flow,
and let Mj be the occlusion mask between frames Ik and IWj , j ∈ {k − t, · · · , k + t}. For each n× n
patch P of the reference frame Ik, we consider the patch (3D block) b3D referring to its extension
to the temporal dimension, having M times more pixels than the original one (assuming M patches
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Algorithm 4: Occlusion Mask

Input : source image I0, target image I1, oracle source image (optional) O0, oracle
target image (optional) O1, optical flow from I0 to I1 (or from O0 to O1, if
provided): u, noise standard deviation σ

Parameters: factor for gray level values fo (σi = foσ), factor for divergence values σd, binary
mask threshold τbin, left-right coherence threshold τdist

Output : binary labels for all the pixels of the image domain: “occluded”, “not occluded”
//Check for color differences and negative divergence values (Equation (1))

1 for each pixel x in the domain of Ik do

2 w(x) = e
−|I0(x)−I1(x+u(x))|2

σ2
i · e

−min(divu,0)2

σ2
d

//Check for left-right coherence of the flow

3 if O0 AND O1 then
4 u′ = Optical Flow(O1, O0) //Optical flow from O1 to O0

5 else
6 u′ = Optical Flow(I1, I0) //Optical flow from I1 to I0

7 for each pixel x in the domain of Ik do
8 v(x) = u(x) + u′(x+ bu(x)c) //buc denotes the floor operator applied on each

component of u
//Ideally v = (vx, vy) = (0, 0).

9 if (w(x) < τbin) OR (max{|vx|, |vy|} > τdist) then
10 Output label (x)= “occluded”

11 else
12 Output label (x)= “not occluded”

in the temporal neighborhood3, M = 2t + 1), b3D = {Pk−t, · · · , Pk+t}. The algorithm looks for the
extended patches (3D blocks) b′3D closest to b3D. These extended patches are centered at frame Ik
and the distance is written as

d(b3D, b′3D) =
∑

i∈{k−t,··· ,k+t}

||Pi − P ′i ||2.

If the K ′ closest 3D blocks were selected, then, as each extended patch contains M 2D image
patches, the group would contain K ′ ·M 2D patches of size n × n, from which patches containing
occluded pixels should be removed. In order to guarantee a minimum number of patches in the
subsequent denoising step, we select the closest 3D blocks until at least K non-occluded 2D patches
are obtained. In the second step of the algorithm, since the distances are computed over partially
denoised blocks of patches, all the closest 3D blocks whose distance is below a pre-defined threshold
are also selected.

Denoising blocks of similar patches. Each set of similar patches is denoised as described in
Algorithm 7. First, the average value and standard deviation of the set of patches is computed, for
each color channel. If the standard deviation is small, it is decided that the patches come from a

3 In practice, if the patch centered at the reference pixel x is occluded in some of the frames of the temporal
neighborhood, these frames are not used in the construction of the extended patch, resulting in less than M patches
in the 3D block.
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Algorithm 5: Get Similar Patches

Input : set of aligned frames IW , set of aligned oracle frames (optional) OW , occlusion
masks M, pixel location x, index of reference frame k

Parameters: radius of spatial neighborhood r (n = 2r + 1), radius of temporal neighborhood
t, minimum number of output patches K, distance factor fd

Output : set of similar patches S, set of similar oracle patches (if OW provided) SO
1 Ω=spatial domain of frames in IW//Same spatial domain for all aligned frames

2 N t
k = {j ∈ 1, · · · , N/|j − k| ≤ t} //Temporal neighborhood of frame k

3 N r
x = {z ∈ Ω/||x− z||∞ ≤ r} //Spatial (squared) neighborhood of pixel x

//Get set of valid frames in temporal neighborhood

4 NV
k = ∅

5 for j ∈ N t
k do

6 if Mj(zx) ∈M = “not occluded” ∀zx ∈ N r
x then

//Valid frame if patch around x does not contain occluded pixels

7 NV
k = NV

k ∪ {j}

8 (D3D, B3D, O3D)=Get Similar 3D Blocks(IW , OW , x, k, NV
k )//Algorithm 6

//Sort distances (and associated 3D blocks) in increasing order

9 (D3D
sorted,B3D

sorted,O3D
sorted)=Sort distances(D3D, B3D, O3D)

//Get output set of patches

10 S = ∅, npatches = 0
11 if OW then SO = ∅ //Maximum allowed 3D distance (#pixels patch = card(N r

x),
#valid frames = card(NV

k ))
12 τdistance3D=f 2

d × number of pixels in patch× number of channels× number of valid frames

//d3D
y , b3D

y , o3D
y , Py,j and Oy,j defined in Algorithm 6

13 for (d3D
y , b3D

y , o3D
y ) ∈ (D3D

sorted,B3D
sorted,O3D

sorted) do
14 if npatches < K OR d3D

y ≤ τdistance3D then
15 for (Py,j, Oy,j) ∈ (b3D

y , o3D
y ) do

//Use only patches that do not contain occluded pixels

16 if Mj(zy) ∈M = “not occluded” ∀zy ∈ N r
y then

//Add 2D patches to output sets

17 S = S ∪ Py,j

18 if OW then SO = SO ∪Oy,j npatches = npatches + 1

region with uniform color (a “flat” zone). For large values of noise standard deviation some residual
noise might be left in flat zones. This is a common issue to image denoising methods using an
adaptive basis [12]. The reason is that in flat zones, the selection of patches is taking into account
only noise because of the lack of geometry in these parts, which includes a bias in the selection
process. In addition, the PCA analysis with pure noise patches and a reduced number of samples
might generate principal values larger than expected. We apply the same solution to this issue as
proposed in [12]. Whenever a set of patches is detected to be flat up to the noise oscillations, a
simple average (per color channel) of all values in the patches is taken instead of computing a PCA
model (see Algorithm 8).

If the patches do not belong to a flat zone the denoising algorithm detailed in Algorithm 9 is
used. Assuming that K similar 2D patches are used, the PCA analysis of this set looks for the basis
of Rn2

better explaining its structure in the sense that most of the information describing all patches
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Algorithm 6: Get Similar 3D Blocks

Input : set of aligned frames IW , set of aligned oracle frames (optional) OW , occlusion
masks M, pixel location x, index of reference frame k, set of valid frames in
temporal neighborhood of reference frame NV

k

Parameters: radius of spatial neighborhood r, radius of spatial search region s
Output : set of distances between spatio-temporal blocks D3D, set of spatio-temporal

blocks B3D, set of spatio-temporal oracle blocks (if OW provided) O3D

1 Ω=spatial domain of frames in IW//Same spatial domain for all aligned frames

2 D3D = ∅ //Set of distances between spatio-temporal blocks

3 B3D = ∅ //Set of spatio-temporal blocks

4 if OW then O3D = ∅ //Set of spatio-temporal oracle blocks

5 N r
x = {z ∈ Ω/||x− z||∞ ≤ r} //Spatial (squared) neighborhood of pixel x

6 N s
x = {z ∈ Ω/||x− z||∞ ≤ s} //Spatial (squared) search region around pixel x

//For all pixels in search region

7 for y ∈ N s
x do

8 d3D
y = 0 //Distance between spatio-temporal blocks centered at x and y

9 b3D
y = ∅ //Spatio-temporal blocks centered at y

10 if OW then o3D
y = ∅ //Spatio-temporal oracle blocks centered at y

11 for j ∈ NV
k do

12 N r
y = {z ∈ Ω/||y − z||∞ ≤ r} //Spatial (squared) neighborhood of pixel y

13 Px,j = {IWj (z), z ∈ N r
x} //Patch centered at x in frame j (1D array)

14 Py,j = {IWj (z), z ∈ N r
y} //Patch centered at y in frame j (1D array)

15 if OW then
16 Ox,j = {OW

j (z), z ∈ N r
x} //Patch centered at x in oracle frame j

17 Oy,j = {OW
j (z), z ∈ N r

y} //Patch centered at y in oracle frame j

18 if OW then
19 d2D

x,y,j = ||Ox,j −Oy,j||22 //Squared distance between oracle patches

20 else
21 d2D

x,y,j = ||Px,j − Py,j||22 //Squared distance between patches

22 d3D
y = d3D

y + d2D
x,y,j

23 b3D
y = b3D

y ∪ Py,j

24 if OW then o3D
y = o3D

y ∪Oy,j

25 D3D = D3D ∪ d3D
y

26 B3D = B3D ∪ b3D
y

27 if OW then O3D = O3D ∪ o3D
y

is concentrated in a few vectors of the basis. The amount of information that each vector of the
basis conveys is coded in the n2 principal values. That is, by keeping only the coefficients associated
to the most important vectors (the ones with highest corresponding principal value) we keep the
maximum of information, while discarding coefficients related to less important vectors we remove
noise as proposed in [21]. We refer the reader to [11] for a comprehensive review on PCA theory.

The computation of the PCA of a set of patches is equivalent to the Singular Value decomposition
(SVD) of the matrix X having K rows and n2 columns with each selected patch in a different row,

X = UΣV T ,
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where UΣ are the coefficients in the new basis, Σ is a diagonal matrix containing the square root of the
principal values and each column of V contains a principal vector, that is an element of the new basis.
The decision of canceling a coefficient of a certain patch is not taken depending on its magnitude,
but the magnitude of the associated principal value. A more robust thresholding is obtained by
comparing the principal values to the noise standard deviation and canceling or maintaining the
coefficients of all the patches associated to a certain principal direction. The denoised set of patches
can be computed as

X̃ = FUΣV T ,

where F is a n2×n2 diagonal matrix such that Fii = 1 if Σii > τPCAσ and zero otherwise. The whole
patch is restored in order to obtain the final estimate by aggregation.

Algorithm 7: Patches Denoising

Input : set of similar 2D patches S, set of similar 2D oracle patches (optional) SO,
noise standard deviation σ

Parameters: flat parameter fflat

Output : denoised set of patches S̃
//Compute average value, per channel, from set S and average standard

deviation

1 (µ, s) = Average Patches(S) //Algorithm 8

2 if s < fflat × σ then
//All the patches in S have similar values

3 S̃ = µ //Assign the same constant value, per channel

4 else

5 S̃ = PCA Denoising(S,SO, σ) //Algorithm 9

Second “oracle” iteration. A second iteration of the algorithm is performed using the “oracle”
strategy. Once the whole sequence has been restored, we re-apply the algorithm on the initial noisy
sequence, but motion estimation and patch selection are performed on the result of the first iteration.

Let {IWk−t, · · · , IWk+t} and {I0W
k−t, · · · , I0W

k+t} be the warped noisy and initially restored images in
a temporal neighborhood of Ik where the optical flow has been computed using initially restored
images I0

k and I0
j . For each patch P of the reference frame Ik, we consider the extended patches b3D

and b03D referring to the extension to the temporal dimension of the patch and its counterpart in
the already denoised sequence. The extended patches that will be selected as similar are the ones
minimizing the distance

d(b03D, b′03D) =
∑

i∈{k−t,··· ,k+t}

||P 0
i − P ′0i ||2.

Now we have two different sets containing each one K 2D patches of size n×n. One set is formed
by the patches of the noisy sequence and the other one by the corresponding patches of the already
denoised sequence.

The PCA is computed in the set of already denoised patches. Let X denote the matrix containing
the selected patches of the noisy sequence as rows and X0 the corresponding matrix with the same
patches of the already filtered sequence. We compute the basis associated to X0 making use of the
SVD,

X0 = U0Σ0V 0T .
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Algorithm 8: Average Patches

Input : set of 2D patches S
Output : average value µ (per channel), average standard deviation of the channels s

1 ΩS=spatial domain of patches in S //All the patches share the same spatial domain

//Initialize variables

2 if color patches then
3 V R = ∅ //Set of red values in S
4 V G = ∅ //Set of green values in S
5 V B = ∅ //Set of blue values in S
6 else
7 V = ∅ //Set of gray values in S
8 for x ∈ ΩS do
9 for P ∈ S do

10 if color patches then
11 PR

x =red value of patch P at pixel x
12 PG

x =green value of patch P at pixel x
13 PB

x =blue value of patch P at pixel x
14 V R = V R ∪ {PR

x }
15 V G = V G ∪ {PG

x }
16 V B = V B ∪ {PB

x }
17 else
18 Px=gray value of patch P at pixel x
19 V = V ∪ {Px}

20 if color patches then
21 µ =

(
average(V R), average(V G), average(V B)

)
22 s = average{standard deviation(V R), standard deviation(V G), standard deviation(V B)}
23 else
24 µ = average(V )
25 s = standard deviation(V )

This basis is adapted to the already denoised patches which are noise-free. The coefficients of the
noisy patches are computed in this new basis and modified by a Wiener filter before reconstruction.
Let AD be the modified coefficients of the noisy patches, computed as AD = F ◦A, where A = XV 0

are the noisy coefficients, ◦ denotes the element-wise matrix product and F is a n2× n2 matrix such

that Fij =
(Aij)

2

(Aij)2+σ2
R

, with σR = τPCAσ. Then, the denoised patches are computed as

X̃ = ADV 0T .

Color image denoising. Color images are denoised directly without the use of any color decorre-
lating transform. Each color patch is considered as a vector with three times more components than
in the single channel case. The use of several frames makes the number of patches available much
larger. This permits the use of PCA with color patches. That is, PCA adapts a color decorrelation
transform for each group of patches, thus increasing the effectiveness of the model.

The final color algorithm is applied to vectorial patches, following the steps described in Algo-
rithm 7. The optical flow is in this case computed on the gray version of the color images. Each
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Algorithm 9: PCA Denoising

Input : set of similar 2D patches S, set of similar 2D oracle patches (optional) SO,
noise standard deviation σ

Parameters: denoising threshold τPCA

Output : denoised set of patches S̃
1 //Notation

2 K = number of patches in S (= number of patches in SO)
3 n2 = n× n = number of pixels in each patch
4 N = d× n2 = number of values in each patch //d = 1 for gray patches and d = 3 for

color patches

//Reorganize patches in S in matrix form

5 X = K ×N matrix containing the patches in S as row vectors
6 if SO then

//Reorganize patches in SO in matrix form

7 XO = K ×N matrix containing the patches in SO as row vectors

//Get centered patches (their barycenter is the null vector)

8 b = Barycenter of patches in X (row vector)
9 Xc = X − 1 · b //1 is a column vector of ones

10 (resp. XO
c = XO − 1 · bO, where bO is the barycenter of the patches in XO)

//Denoise patches

11 σ2
R = (τPCA)2 × σ2

12 if SO then

13 XO
c = UOΣOV OT //SVD decomposition of XO

c

14 AO = UOΣO //Coefficients of the patches in XO
c in the basis V O

15 A = XcV
O = UΣ //Coefficients of the patches in Xc in the basis V O

16 F = (Fij), Fij =
(Aij)

2

(Aij)2+σ2
R

17 AD = F ◦ A //Modified coefficients (◦ denotes element-wise matrix product)

18 XcD = ADV OT //Denoised patches (centered)

19 else
20 Xc = UΣV T //SVD decomposition of X
21 A = UΣ //Coefficients of the patches in Xc in the basis V

22 F = diagonal matrix, Fii =

{
1 if Σ2

ii ≥ σ2
R

0 otherwise

23 AD = FA //Modified coefficients

24 XcD = ADV T //Denoised patches (centered)

25 XD = 1 · b+XcD //Denoised patches (undo centering)

26 Store the denoised patches in S̃

channel is resampled with the same flow, and the same mask of occlusions is used for all the channels.

3 Parameters of the Method

Table 1 summarizes the parameters of the proposed denoising method.

• λ, is the main parameter of the optical flow computation. We use the method described in [18]
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Table 1: Parameters of the method.

Parameter Description Default value
λ data attachment weight in optical flow computation 1st step: 0.075

2nd step: 0.15
fo factor for gray level values in occlusions mask 5.5
σd factor for divergence values in occlusions mask 1
τbin threshold for binarization of occlusions mask 0.5
τdist threshold for left-right coherence in occlusions mask 1
t radius of temporal neighborhood 7
r radius of spatial neighborhood 2
s radius of spatial search region 12
K minimum number of patches Gray images: 55

Color images: 95
fd distance factor between 3D blocks 1st step: 0

2nd step: 2
fflat flat parameter 0.85
τPCA threshold for PCA denoising/Wiener filtering 1st step: 1.8

2nd step: 1.45

for this computation, and the rest of its parameters are set to the default values proposed in
this article. This parameter determines the smoothness of the obtained flow, the smaller the
parameter the smoother the result. In the first step of the denoising algorithm the input data
are noisy and the obtained flow will be spatially unstable, for this reason we use a smaller value
of the parameter to smooth the result. In the second step, since the flow is computed from
denoised data, we use a higher value.

• fo, this parameter controls the weight of the difference in gray levels in the occlusion mask
(σi = foσ, Equation (1)). As the value of the parameter increases less importance is given to
the gray level difference in determining that the flow is unreliable at a given pixel.

• σd, this parameter controls the weight of the divergence term in the occlusion mask (Equa-
tion (1)). This term is only accounted for when negative values of the divergence occur (since
they are associated to the presence of occlusions). In this case, as the value of the parameter
increases, less importance is given to the value of the divergence in determining that the flow
is reliable at a given pixel.

• τbin. Equation (1) produces a value in the range (0, 1] associated to the reliability of the flow
at a given pixel. Values close to 1 indicate that the flow is highly reliable while values close
to 0 indicate the opposite. The parameter τbin defines the threshold between “reliable” (i.e.
occluded) and “unreliable” pixels.

• τdist, is the threshold for left-right coherence of the computed flow. If the difference between
forward and backward flow at a given pixel is less than this threshold it is decided that the
flow is reliable at the pixel, and unreliable otherwise.

• t, is the radius of the temporal neighborhood in the vicinity of each frame. This implies that
M = 2× t+ 1 frames are aligned and processed every time that a frame is denoised.

• r, is the radius of the (square) patch around each pixel used to perform the denoising process.
This implies that each side of the patch has n = 2× r+ 1 pixels, and that the total number of
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pixels in the patch is (2× r + 1)× (2× r + 1).

• s, is the radius of the area around each pixel where similar patches are searched for.

• K, is the minimum number of similar 2D patches needed to perform the denoising process.
This number depends on the dimension of the patches. For color images, since the dimension
of the patches increases (three times more values are used per pixel), we use a higher value
than for gray level images.

• fd, determines the maximum distance factor between 3D blocks (used only in the second step
of the algorithm) below which all the patches in the block are used for denoising.

• fflat, determines the maximum standard deviation of the values of a 3D block of patches below
which the patches in the block are considered as “flat” patches.

• τPCA. In the first step of the method this parameter determines which vectors in the basis
obtained from PCA analysis of the set of similar patches are used to reconstruct the denoised
patch. The higher the value of this parameter the less vectors are used to reconstruct the final
result and the denoising effect is more apparent (at the expense of losing image details and
textures). In the second step, the parameter determines the attenuation of each coefficient in
the Wiener filtering.

The default values reported in the table were obtained by experimental evaluation and provide
the best denoising results over a wide range of test images. These default parameters have been used
in the experiments shown in the next section and also in the online demo associated to this paper.

In order to analyze how the variations of the different parameters affect the denoising result, we
modify the value of one parameter at each time, while keeping the rest of parameters fixed to their
default values. We use for our tests 5 gray sequences composed of 8 frames (sequences army, cars,
girls, statB and taxi, see Figure 4). White Gaussian noise is added to each sequence (we use two
different levels of noise in the tests) and the Root Mean Squared Error (RMSE) with respect to the
original (noise-free) sequences is computed for the central frame of each denoised sequence. The
average of RMSE values over the 5 sequences is displayed in Figures 1 and 2 for each combination
of parameters.

We observe (Figure 1 a and b) that the denoising results are quite stable to variations of the
parameter λ of the optical flow algorithm, although slightly better results are obtained with the
default values. A similar remark applies to the occlusion parameter fo (Figure 1 c), provided that its
value is high enough. Concerning the size of the patches (parameter r, Figure 1 d), if they are too
small or too large the denoising results deteriorate. The optimum result is obtained for 5×5 patches
(r = 2). The results improve when the size of the temporal neighborhood t increases (Figure 1 e). It
must be taken into account that a very short sequence (8 frames) was used in the tests and that for
t = 5 all the frames of the sequence were used for denoising. In practice, t = 7 (15 frames) is used as
the default parameter since larger values imply higher computation times. In Figure 1 f we observe
that an excessive increase in the number of patches K used for denoising may lead to worse results
in case of low levels of noise, while it improves the results when the noise level is higher. We use a
compromise value of K = 55 as default parameter.

In general, the denoising results deteriorate as the flat parameter fflat increases (see Figure 2 a).
This is because a high value of the parameter implies that more patches are replaced by a constant
value in the denoised frames, producing an excessive smoothing. However, slightly better results are
obtained with a relatively high value of the parameter for high levels of noise, which suggests that
the denoising method based on PCA is unable to faithfully reconstruct uniform regions of the image
when the noise is high. In Figure 2 b we observe that the denoising results are quite stable with
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respect to parameter fd. Finally, higher values of the threshold for PCA denoising (parameter τPCA,
Figure 2 c and d) produce better results, when used in the first step of the method. In the second
step, the results are quite stable with respect to the parameter.

4 Computational Complexity

It is difficult to give a theoretical estimate of the complexity of the proposed method due to the
large number of algorithms involved. Instead, we give an empirical estimate. We proceed as follows:
several versions of the same sequence are obtained at different resolutions by zooming out the original
frames with decreasing zoom factors; the zoom factors are chosen such that the size (in pixels, i.e.
width × height) of each frame is half the size of the frames in the previous sequence; we add noise to
the sequence and apply the proposed denoising method, recording the computation time per frame.

We have chosen for this experiment the sequence statB (see Figure 4), composed of 8 gray frames.
The initial size of the frames is 740 × 560 = 414400 pixels. The obtained result, for two levels of
noise (σ = 20 and σ = 40) is displayed in Figure 3-left. We observe a linear relation between the
computation time and the size of the frames. We also observe that the computation time slightly
increases with the level of noise. This is due to the fact that when noise increases less 3D blocks will
be considered as “flat” and therefore they will be processed using Algorithm 9, which implies more
computations than simply replacing the block by its average value. The reported computation times
where obtained with a Intel Xeon CPU X7560 @ 2.27GHz and 32MB RAM.

Remark that some parts of the method are easily parallelizable using OMP directives4. This
is possible in Algorithm 3, where all the neighbor frames of the reference frame can be aligned
simultaneously. Parallelism is also used when computing divergences and gradients for the optical
flow estimation and for image interpolation when warping the frames. Finally, the denoising of each
pixel of a given frame (lines 10 to 20 in Algorithm 2) can also be computed in parallel. The use
of OMP directives reduces significantly the computation time, as shown in Figure 3-right. In this
case, using the 32 cores of the processor mentioned above, the computation times where reduced by
a factor of 20.

5 Experimental Results

In this section we compare the proposed approach with state-of-the-art algorithms VBM3D [6] and
VBM4D [14]. The Matlab implementations of VBM3D and VBM4D were obtained from the author’s
web site and the default parameters were used in the tests.

Since VBM4D is the closest algorithm in the literature we briefly discuss the main differences in
both the selection and filtering stages. VBM4D uses a motion estimation based on block matching
while we use an optical flow estimation. There are two advantages in using optical flow: first the
minimization is global and contains a regularization term, which makes the motion selection more
independent of noise values. This might not be so important for other applications but it is crucial
for denoising. The second difference is that optical flow provides subpixel accuracy, permitting a
resampling of the images. This resampling improves the performance of the method. In the filtering
stage, VBM4D uses a fixed transform based on bi-orthogonal wavelets and DCT. This is the same
transform used by BM3D for images. However, in video we dispose of many more samples and we
can take advantage of this fact by learning a better model for denoising. PCA allows us to obtain
such an adaptive transform.

4http://www.openmp.org/
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Figure 1: Average RMSE over 5 sequences for varying values of the parameters.
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Figure 2: Average RMSE over 5 sequences for varying values of the parameters.

We compare the performance of VBM3D, VBM4D and the proposed algorithm (SPTWO) both
visually and numerically in several image sequences. Figure 4 displays the central frame of the used
sequences. Some of the sequences are composed of 8 frames while others consist of 30 frames. We
apply the proposed method with the default parameters listed in Table 1.

A Gaussian noise with increasing levels of standard deviation (σ ∈ {10, 20, 30, 40, 50}) was added
to the sequences (some examples are displayed in Figure 5), which were denoised using the compared
methods.

The Root Mean Squared Error (RMSE) with respect to the original (noise-free) sequences is
displayed in Table 2. The values in the table correspond to the RMSE computed for the central
frame of each sequence. Moreover, the average of these RMSE values, for each method and each
noise level, is also displayed in the last column. Notice that the smaller RMSE values are obtained,
in general, with the proposed algorithm. It is interesting to note that the performance of VBM3D
is slightly better than VBM4D for low levels of noise (below σ = 40), while for higher levels of noise
VBM4D is slightly better.

Figures 6, 7 and 8 display the denoising results of the compared algorithms. The figures also
display the difference of the denoised image with the noisy one, and the difference of the denoised
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Figure 4: Central frame of the original sequences used in our tests. From left to right and from top to bottom: girls, army,
truck, statB, taxi, iseq, army (color), cooper, girls (color), truck (color), gbus, gstennis, gsalesman, gbicycle. The last four
sequences are composed of 30 frames, while the rest are composed of 8 frames.

image with the original one. The difference with the noisy image displays the noise removed by each
algorithm. The absence of noticeable details in the removed noise should indicate the preservation
of all texture and features of the original image. However, as illustrated by the denoised images, this
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Figure 5: Three examples of noisy sequences (the central frame of the sequence is shown). From left to right: σ = 20,
σ = 30 and σ = 50.

girls army truck statB taxi iseq gbus gstennis gsalesman gbicycle average

σ = 10

VBM3D 3.86 3.49 3.07 3.11 3.01 2.89 5.73 4.75 3.92 3.78 3.76
VBM4D 3.66 3.33 3.28 3.16 3.21 2.80 5.62 4.83 3.93 3.88 3.77
SPTWO 3.53 3.08 3.18 3.02 3.03 2.06 4.05 4.85 3.85 3.52 3.41
σ = 20

VBM3D 5.48 4.93 4.63 4.22 4.26 4.36 9.03 7.42 5.57 5.84 5.57
VBM4D 5.31 4.87 5.05 4.67 4.67 4.26 8.87 7.89 6.01 5.90 5.75
SPTWO 4.77 4.12 4.65 3.99 4.15 2.88 6.27 8.49 5.46 5.66 5.04
σ = 30

VBM3D 6.78 6.06 5.96 5.39 5.43 5.71 11.41 10.88 7.27 7.54 7.24
VBM4D 6.58 6.02 6.41 5.89 5.93 5.58 11.25 11.84 7.84 7.63 7.50
SPTWO 5.73 4.99 5.93 4.91 5.15 3.63 8.01 12.40 6.68 6.96 6.44
σ = 40

VBM3D 7.91 6.90 7.18 6.50 6.41 6.70 13.25 13.45 8.82 9.10 8.62
VBM4D 7.75 6.85 7.62 6.94 6.89 6.52 13.11 13.96 9.33 9.26 8.82
SPTWO 6.72 5.76 7.11 5.81 5.92 4.23 9.44 14.06 7.77 8.37 7.51
σ = 50

VBM3D 9.23 7.88 8.69 7.61 7.63 7.63 15.37 14.87 10.73 11.67 10.13
VBM4D 8.75 7.62 8.77 7.81 7.81 7.33 14.81 14.92 10.77 10.65 9.92
SPTWO 7.61 6.50 8.27 6.75 6.78 4.92 10.75 14.56 8.81 9.63 8.45

Table 2: RMSE results. The values correspond to the RMSE computed for the central frame of each sequence. The average
RMSE for each method and each noise level is displayed in the last column.

absence of details in the removed noise does not guarantee that all meaningful information of the
original image has been kept. Indeed, the removed structure might be hidden by the noise. For this
reason, we also display the image error, actually containing removed information from the original
image.

A first visual inspection illustrates that VBM3D and VBM4D perform similarly and its main
weakness is the excessive blurring of image details. Not only texture but also geometry may be
removed by these approaches. This can be observed in the letters of the book in Figure 8. The
proposed algorithm recovers better all image details in all three cases, even in the presence of strong
noise.
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Figure 6: Denoising results for the gbus sequence with σ = 20. First row, from left to right: noisy frame, VBM3D
(RMSE=9.03), VBM4D (RMSE=8.87), SPTWO (RMSE=6.27). Second row: detail of the above images. Third row:
differences with respect to the noisy frame. Fourth row: differences with respect to the original (noise-free) frame.
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Figure 7: Denoising results for the army sequence with σ = 30. First row, from left to right: noisy frame, VBM3D
(RMSE=6.06), VBM4D (RMSE=6.02), SPTWO (RMSE=4.99). Second row: detail of the above images. Third row:
differences with respect to the noisy frame. Fourth row: differences with respect to the original (noise-free) frame.
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Figure 8: Denoising results for the iseq sequence with σ = 50. First row, from left to right: noisy frame, VBM3D
(RMSE=7.63), VBM4D (RMSE=7.33), SPTWO (RMSE=4.92). Second row: detail of the above images. Third row:
differences with respect to the noisy frame. Fourth row: differences with respect to the original (noise-free) frame.
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5.1 Results on Color Images

Four sequences, composed of 8 frames each, have been used to test the performance of the proposed
algorithm on noisy color sequences (see Figure 4).

The results of the compared algorithms, in terms of RMSE, are shown in Table 3. In this case
we display the average RMSE value of the three channels. Again, it can be observed that the
proposed method outperforms state-of-the-art methods VBM3D (in this case the color version of the
algorithm) and VBM4D. Surprisingly, for color sequences the performance of VBM3D is better than
that of VBM4D, even for high levels of noise.

army cooper dog truck average
σ = 10

VBM3D 2.96 4.31 4.48 3.76 3.88
VBM4D 3.26 4.48 4.47 4.04 4.06
SPTWO 2.78 4.07 4.07 3.62 3.63
σ = 20

VBM3D 4.42 6.84 6.37 5.70 5.83
VBM4D 5.02 7.15 6.46 6.32 6.24
SPTWO 3.95 6.21 5.67 5.32 5.28
σ = 30

VBM3D 5.54 8.87 7.75 7.30 7.37
VBM4D 6.40 9.25 8.00 8.12 7.94
SPTWO 4.70 7.86 6.82 6.66 6.51
σ = 40

VBM3D 6.40 10.49 8.76 8.63 8.57
VBM4D 7.62 10.99 9.25 9.67 9.38
SPTWO 5.32 9.21 7.72 7.81 7.51
σ = 50

VBM3D 7.34 12.01 9.90 9.92 9.79
VBM4D 8.71 12.49 10.55 11.01 10.69
SPTWO 5.93 10.38 8.56 8.77 8.40

Table 3: RMSE results for color sequences. The values correspond to the RMSE (averaged over the three channels)
computed for the central frame of each sequence. The average RMSE for each method and each noise level is displayed in
the last column.

Finally, Figures 9 and 10 show details of the denoising results. As in the case of gray level
images, the proposed method preserves better the textures and details of the scene, while VBM3D
and VBM4D tend to blur them.

6 Conclusions

We have described a denoising algorithm combining motion estimation and patch-based denoising
algorithms. Motion compensation permits the use of spatio-temporal patches for a more robust
comparison while the use of PCA for patch denoising preserves texture and details. Implementation
details have been provided and the influence of the different parameters in the denoising result has
been analyzed. Finally, the results of the proposed method have been compared with the state-of-
the-art. The obtained results (both qualitative and quantitative) illustrate the gain in performance
of the proposed approach.
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Figure 9: Denoising results for the army color sequence with σ = 30. First row, from left to right: noisy frame, VBM3D
(RMSE=5.54), VBM4D (RMSE=6.40), SPTWO (RMSE=4.70). Second row: detail of the above images. Third row:
differences with respect to the noisy frame. Fourth row: differences with respect to the original (noise-free) frame.
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Figure 10: Denoising results for the cooper color sequence with σ = 50. First row, from left to right: noisy frame, VBM3D
(RMSE=12.01), VBM4D (RMSE=12.49), SPTWO (RMSE=10.38). Second row: detail of the above images. Third row:
differences with respect to the noisy frame. Fourth row: differences with respect to the original (noise-free) frame.
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