
Published in Image Processing On Line on 2018–10–03.
Submitted on 2018–06–04, accepted on 2018–09–18.
ISSN 2105–1232 c© 2018 IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
https://doi.org/10.5201/ipol.2018.229

2
0
1
5
/
0
6
/
1
6

v
0
.5
.1

IP
O
L

a
rt
ic
le

c
la
ss

An Analysis and Implementation of the Harris Corner

Detector

Javier Sánchez1, Nelson Monzón2, Agust́ın Salgado1

1 CTIM, Department of Computer Science, University of Las Palmas de Gran Canaria, Spain
({jsanchez, agustin.salgado}@ulpgc.es)
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Abstract

In this work, we present an implementation and thorough study of the Harris corner detector.
This feature detector relies on the analysis of the eigenvalues of the autocorrelation matrix. The
algorithm comprises seven steps, including several measures for the classification of corners, a
generic non-maximum suppression method for selecting interest points, and the possibility to
obtain the corners position with subpixel accuracy. We study each step in detail and pro-
pose several alternatives for improving the precision and speed. The experiments analyze the
repeatability rate of the detector using different types of transformations.

Source Code

The reviewed source code and documentation for this algorithm are available from the web page
of this article1. Compilation and usage instruction are included in the README.txt file of the
archive.

Keywords: Harris corner; feature detector; interest point; autocorrelation matrix; non-maximum
suppression

1 Introduction

The Harris corner detector [9] is a standard technique for locating interest points on an image.
Despite the appearance of many feature detectors in the last decade [11, 1, 17, 24, 23], it continues to
be a reference technique, which is typically used for camera calibration, image matching, tracking [21]
or video stabilization [18].

The main idea is based on Moravec’s detector [14], that relies on the autocorrelation function
of the image for measuring the intensity differences between a patch and windows shifted in several
directions. The success of the Harris detector resides in its simplicity and efficiency. It depends on
the information of the autocorrelation matrix, and the analysis of its eigenvalues, in order to locate
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points with strong intensity variations in a local neighborhood. This matrix, also called structure
tensor, is the base for several image processing problems, such as the estimation of the optical flow
between two images [19, 13, 12].

In this work, we propose an efficient implementation of the method, which comprises seven steps.
The autocorrelation matrix depends on the gradient of the image and the convolution with a Gaus-
sian function. We study the influence of several gradient masks and different Gaussian convolution
methods. The aim is to understand the performance of each strategy, taking into account the runtime
and precision.

From the eigenvalues of the autocorrelation matrix, it is possible to define several corner response
functions, or measures, for which we implement the best known approaches. A non-maximum sup-
pression algorithm is necessary for selecting the maxima of these functions, which represent the
interest points. In the following step, the algorithm permits to sort the output corners according
to their measures, select a subset of the most distinctive ones, or select corners equally distributed
on the image. Finally, the location of the interest points can be refined in order to obtain subpixel
accuracy, using quadratic interpolation.

We analyze the method following the same approach as in [20]. In particular, we rely on the
repeatability rate measure to study the performance of our implementation with respect to several
geometric transformations, such as rotations, scalings, and affinities, as well as illumination changes
and noise.

The basics of the Harris corner detector are explained in Section 2. Then, we analyze the steps
of the algorithm in depth and study several alternatives in each one. Section 3 describes details
of implementation and the parameters of the online demo. The experiments in Section 4 show the
performance of the method with respect to the repeatability of the detector and the speed of our
implementation. Finally, the conclusions are given in Section 5.

2 The Harris Corner Detector

The idea behind the Harris method is to detect points based on the intensity variation in a local
neighborhood: a small region around the feature should show a large intensity change when compared
with windows shifted in any direction.

This idea can be expressed through the autocorrelation function as follows: let the image be a
scalar function I : Ω → R and h a small increment around any position in the domain, x ∈ Ω.
Corners are defined as the points x that maximize the following functional for small shifts h,

E(h) =
∑

w(x) (I(x+ h)− I(x))2 , (1)

i.e. the maximum variation in any direction. The function w(x) allows selecting the support region
that is typically defined as a rectangular or Gaussian function. Taylor expansions can be used to
linearize the expression I(x+h) as I(x+h) ' I(x)+∇I(x)Th, so that the right hand of (1) becomes

E(h) '
∑

w(x) (∇I(x)h)2 dx =
∑

w(x)
(
hT∇I(x)∇I(x)Th

)
. (2)

This last expression depends on the gradient of the image through the autocorrelation matrix, or
structure tensor, which is given by

M =
∑

w(x)
(
∇I(x)∇I(x)T

)
=

( ∑
w(x)I2x

∑
w(x)IxIy∑

w(x)IxIy
∑
w(x)I2y

)
. (3)

The maxima of (2) are found through the analysis of this matrix. The largest eigenvalue of M
corresponds to the direction of largest intensity variation, while the second one corresponds to the
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intensity variation in its orthogonal direction. Analyzing their values, we may find three possible
situations:

• Both eigenvalues are small, λ1 ≈ λ2 ≈ 0, then the region is likely to be a homogeneous region
with intensity variations due to the presence of noise.

• One of the eigenvalues is much larger than the other one, λ1 � λ2 ≈ 0, then the region is
likely to belong to an edge, with the largest eigenvalue corresponding to the edge orthogonal
direction.

• Both eigenvalues are large, λ1 > λ2 � 0, then the region is likely to contain large intensity
variations in the two orthogonal directions, therefore corresponding to a corner-like structure.

Based on these ideas, the Harris method can be implemented through Algorithm 1. In the first
step, the image is convolved with a Gaussian function of small standard deviation, in order to reduce
image noise and aliasing artifacts.

Algorithm 1: harris

input : I, measure, κ, σd, σi, τ , strategy, cells, N, subpixel
output: corners

Ĩ ← gaussian(I, σd) // 1. Smoothing the image

(Ix, Iy)← gradient(Ĩ) // 2. Computing the gradient of the image

(Ã, B̃, C̃)← compute autocorrelation matrix(Ix, Iy, σi) // 3. Computing autocorrelation matrix

R ← compute corner response(Ã, B̃, C̃, measure, κ) // 4. Computing corner strength

corners ← non maximum suppression(R, τ , 2σi) // 5. Non-maximum suppression

select output corners(corners, strategy, cells, N) // 6. Selecting output corners

if subpixel then
compute subpixel accuracy(R, corners) // 7. Calculating subpixel accuracy

The autocorrelation matrix is calculated from the gradient of the image, and its eigenvalues are
used to identify any of the previous situations. A non-maximum suppression process allows selecting
a unique feature in each neighborhood. In this function, it is necessary to specify a threshold to
discard regions with small values. This threshold depends on the corner strength function used and
is related with the level of noise in the images. In the last two steps, the points can be selected in
several ways and the precision of the corners can be improved by using quadratic interpolation. The
following sections explain each of these steps in detail and analyze different alternatives.

In order to improve the stability of the response, we propose a simple scale space approach in
Algorithm 2. The stability is measured by checking that the corner is still present after a zoom out.
At each scale, we first zoom out the image by a factor of two and compute the Harris’ corners. This
is done in a recursive way, as many times as specified by the number of scales chosen (NScales).
Then, we compute the corners at the current scale and check that they are present in both scales
(through function select corners). The algorithm stops at the coarsest scale (NScales = 1).

Note that the value of σi is also reduced by a factor of two at the coarse scales. This allows to
preserve the same area of integration. Algorithm 3 selects the points at the finer scale for which there
exists a corner at a distance less than σi. The corner position is divided by two inside the distance
function.
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Algorithm 2: harris scale

input : I, NScales, measure, κ, σd, σi, τ , strategy, cells, N, subpixel
output: corners

if NScales≤ 1 then
// Compute Harris’ corners at coarsest scale

corners← harris(I, measure, κ, σd, σi, τ , strategy, cells, N, subpixel)

else
// Zoom out the image by a factor of two

Iz ← zoom out(I)

// Compute Harris’ corners at the coarse scale (recursive)

cornersz ←
harris scale(Iz, NScales-1, measure, κ, σd, σi/2, τ , strategy, cells, N, subpixel)

// Compute Harris’ corners at the current scale

corners← harris(I, measure, κ, σd, σi, τ , strategy, cells, N, subpixel)

// Select stable corners

corners← select corners(corners, cornersz, σi)

Algorithm 3: select corners

input : corners1, corners2, σi
output: corners

foreach corner in corners1 do
j ← 0

// Search the corresponding corner

while j < size(corners2) and distance2(corner, corners2(j)) > σ2
i do

j ← j+1

if j < size(corners2) then
corners.insert(corner)

return corners

Step 1. Smoothing the Image

The purpose of this step is to reduce image noise and aliasing artifacts through the convolution
with a Gaussian function. This step was not included in the original proposal, but it improves the
performance of the method, as shown in [20]. In that case, the authors used Deriche’s recursive
filter [5] for computing the derivatives of a Gaussian (with σ = 1), so that the first two steps
(convolution with a Gaussian and gradient estimation) are calculated in a single step.

In order to convolve the image with a Gaussian function, we use the implementations given in [8].
Since we are interested in a fast implementation, we chose the method based on stacked integral
images (SII) [2], which is the fastest approach.

In the experiments, we use the two images shown in Figure 1, of a building and a calibration
pattern. We analyze the behavior of the feature detector using the repeatability rate measure as
defined in [20] (see Section 4 for more details).

Figure 2 compares the repeatability rate using different Gaussian convolution implementations:
‘No Gaussian’ means that no smoothing was applied to the image, as in the original Harris method;
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Figure 1: Test sequences used in the experiments and their Harris corners: on the left, the building sequence and, on the
right, the calibrator sequence.

‘Discrete Gaussian’ stands for a convolution with a discrete Gaussian kernel; ‘Fast Gaussian’ uses
the SII method, which is faster but less accurate than the previous one. A Gaussian convolution
is also used for computing the autocorrelation matrix in Step 3. In each case, we used the same
Gaussian filter and, for the ‘No Gaussian’ graphic, we chose the SII strategy. The repeatability rate
is computed for rotation angles between 00 and 1800. This detector is rotationally invariant, so we
expect to obtain a high repeatability rate in general.

From these graphics, we conclude that the Gaussian convolution improves the repeatability rate,
as shown in [20], and the precision is apparently similar regardless of the Gaussian implementation.

Figure 3 shows the repeatability rate with respect to different values of ε (see Section 4). At the
top, we present the results for the discrete Gaussian filter —using building on the left and calibrator
on the right— and, at the bottom, the results for the SII implementation.

Analyzing the results of the building, we may conclude the following: The precision is better for
00, 900 and 1800, which has to do with the accuracy of the gradient in these orientations; although
the results are similar, we observe a slightly better behavior of the discrete Gaussian convolution;
the result for values smaller than ε = 1.5 is definitely better for the discrete Gaussian.

In the case of calibrator, the results are similar in both cases. The repeatability rate is very high
—almost 100%— for ε ≥ 1.5. This is due to the simplicity of this image, where corners are easily
detected on the pattern.
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Figure 2: Comparison using several Gaussian filter implementations. We compare the performance of the method using a
discrete Gaussian filter, stacked integral images (SII) [2] and no Gaussian convolution, in the first step. On the left, we
show the result for the building sequence and, on the right, the result for the calibrator sequence. The precision is high
in both cases, with nearly 100% precision for the calibration pattern series. The use of Gaussian convolutions is important
for improving the accuracy. The parameters used for this test are: Harris measure, κ = 0.06, σd = 1, σi = 2.5, τ = 130,
subpixel accuracy, and ε = 1.
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Figure 3: Comparison using two different Gaussian filter implementations. On the top row, we show the results for the
discrete Gaussian with the building and calibrator images, respectively. On the bottom, the results for the SII convolutions.
Using a more precise Gaussian implementation improves the repeatability rate, especially at orientations where the estimation
of the gradient is less accurate. The parameters used for this test are: Harris measure, κ = 0.06, σd = 1, σi = 2.5, τ = 130,
and subpixel accuracy.
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Table 1: Gradient masks: ∂x and ∂y masks for central differences and Sobel operator.
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Figure 4: Comparison using two different gradient masks. The repeatability rate is in general high using any of the gradient
masks. The result for the building sequence, on the left, is slightly better if we use the Sobel operator. The result for the
calibrator sequence, on the right, is similar in both cases.

Step 2. Computing the Gradient of the Image

Hereinafter, we choose the SII filter for the convolution with a Gaussian function in the first and
third steps. In order to study the influence of the gradient in the detector, we analyze the gradient
masks given in Table 1.

Harris and Stephens [9] used central differences in their work. Figure 4 compares the repeatability
rate for these gradient masks and rotations between 00 and 1800. We observe that the precision is
similar in all cases. The Sobel operator is slightly better than central differences for building although
it is not relevant. Note that this mask introduces an additional smoothing, which is aggregated to
the previous Gaussian convolution. The precision is better at 00, 900 and 1800, where the gradient
is more accurate. For the calibrator sequence, the results are very precise in both cases. We may
conclude that the influence of the gradient mask is not meaningful.

Step 3. Computing the Autocorrelation Matrix

Algorithm 4 shows the steps for computing the autocorrelation matrix (3). The products of the
derivatives are calculated at each position and the coefficients of the matrix are convolved with a
Gaussian function. By default, we use the SII method. The standard deviation, σi, defines the region
of integration.

This step is the slowest of the method because of the three Gaussian convolutions. The SII
method is very fast and the execution time remains constant independently of the value of σi, except
for border initializations. Typically, the runtime of the algorithm increases with the value of σi for
other similar filters.
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Algorithm 4: compute autocorrelation matrix

// Gradient of the image and standard deviation

input : Ix, Iy, σi
// Coefficients of the autocorrelation matrix

output: Ã, B̃, C̃

// Compute coefficients of the autocorrelation matrix in each pixel

foreach pixel at (i, j) do
A(i,j) ← I2x(i,j)
B(i,j) ← Ix(i,j) Iy(i,j)
C(i,j) ← I2y(i,j)

// Convolve its elements with a Gaussian function

Ã← gaussian(A, σi)

B̃ ← gaussian(B, σi)

C̃ ← gaussian(C, σi)

Step 4. Computing the Corner Strength Function

The autocorrelation matrix is symmetric and positive semidefinite, yielding two real non-negative
eigenvalues. Analyzing these eigenvalues, we may define corner response functions that are invariant
to in-plane rotations. We implement the following standard functions (see also Table 2):

Harris and Stephens [9] RH = λ1λ2 − κ · (λ1 + λ2)
2

Shi and Tomasi [21] RST =

{
λmin if λmin > τ

0 Otherwise

Harmonic mean [3] RHM = 2λ1λ2
λ1+λ2

Table 2: Typical corner strength functions used in the literature. These are based on the analysis of the eigenvalues, λ1 and
λ2, of the autocorrelation matrix (3); λmin = min(λ1, λ2).

Harris measure [9]: The measure proposed by Harris and Stephens is given by

RH = λ1λ2 − κ · (λ1 + λ2)
2 = det(M)− κ · trace(M)2,

where κ is a value typically between 0.04 or 0.06. This function not only allows to calculate interest
points but also to detect edges. Figure 5 depicts the regions of this detector in the λ1 − λ2 plane.
When the value of R is negative, it means that one of the eigenvalues is much larger than the other
one and the pixel is likely to belong to an edge. When R is positive and large, both eigenvalues are
large, then it is likely to be a corner. If both eigenvalues are small, R is small and it is part of a flat
region.

Shi and Tomasi [21]: This is based on the minimum eigenvalue of the autocorrelation matrix,
which is given by

λmin =
Ã+ C̃ −

√
(Ã− C̃)2 + 4B̃2

2
. (4)
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“Edge”
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R>0
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R small

Figure 5: Harris measure. If both eigenvalues are large, then R is large and positive, providing a clue to detect a corner. If
both eigenvalues are small, then R is also small and positive, which means that the point is probably part of a homogeneous
region. Finally, if one of the eigenvalues is much larger than the other, R becomes negative, and the point belongs to an
edge.

The corner response function is

RST =

{
λmin if λmin > τ

0 otherwise
. (5)

Although the discriminant function is more intuitive than the Harris measure, it requires more
operations for computing the minimum eigenvalue.

Harmonic mean [3]: The shape of this function is similar to the Harris measure, with the benefit
that it does not require an additional parameter. It is defined by

RHM =
λ1λ2
λ1 + λ2

=
det(M)

trace(M)
.

The Harris and harmonic mean functions are similar, as we can see in Figure 6. However, the Harris
measure may have negative values, which allows to differentiate between corners and edges. On
the other hand, the range of values of both functions is different —see the corresponding values for
the level lines in each figure—. This means that the threshold used in the following step has to be
adapted to each function.

Step 5. Non-Maximum Suppression

The purpose of the non-maximum suppression step is to find the best interest point in each local
neighborhood. This technique is typically used for refining edge-like structures [4, 22], selecting
points [10, 7, 15, 16], or discriminating among simultaneous object detections [6].

The maxima of the corner strength function contain the interest points. However, many of these
points will be located close to each other, thus, it is necessary to select the best candidates.

In several works, the maxima are obtained from the 3 × 3 neighbors around the feature, as
in [9, 20]. This means that two interest points can be separated by one pixel only. This can be
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(a) Harris measure: plot of RH = λ1λ2− κ · (λ1 +
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Figure 6: Corner response functions. The shapes of the Harris and the harmonic mean measures are similar but the range of
values is very different. Additionally, the Harris measure can have negative values, which can be used to detect edge points.

an acceptable distance for low resolution images, however, this is not convenient for high resolution
ones.

For this reason, we chose to implement a generic algorithm that extracts points using a radius
r. Intuitively, this radius must be related to the size of the integration kernel, σi, used in Step 3. A
reasonable choice is to calculate the radius as r = 2σi. In this way, the features will be separated by
the area of influence of the Gaussian function.

Computing the maximum of an array only requires one comparison per pixel, but finding the
local maxima is much more cumbersome. A brute force algorithm has a computational cost of
O((2r + 1)2N), with N the number of pixels. Current methods require around two comparisons per
pixel on average [15, 16].

Algorithm 5 shows the steps of our method, which is similar in spirit to the method proposed
in [16]. Since the number of local maxima is expected to be much smaller than the number of pixels,
the key idea is to reject points as soon as a bigger value is detected —this is the reason to use so
many conditional loops—.

At the beginning, we take into account a threshold to skip low values in the corner strength
function. This threshold depends on the level of noise in the image and on the function selected.
The Harris measure and the harmonic mean are similar but the threshold must be higher in the first
function to approximately select the same number of points, as depicted in Figure 6. The threshold
for the Shi-Tomasi function should be in general smaller than the previous ones.

For each line, we first reject border points. The next peak is found and compared with the pixels
on the right and then on the left. We use an array, skip, that allows us to jump positions that have
been already visited and are smaller than a neighbor. It is interesting to prioritize the non-visited
neighbors first so that the number of comparisons are reduced and new positions are marked as
skippable. If the selected point is the maximum in its line, it is then compared with the 2D regions,
of size (2r + 1)× r, below and above the current line.

Some improvements can be made in this algorithm. The method proposed in [15], for instance,
only requires two comparisons with the previous pixels in the same line, but it is more complex to
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Algorithm 5: non maximum suppression

input : R, τ , radius
output: corners
foreach pixel at (i, j) do

if R(i, j) < τ then skip(i,j) ← true // apply threshold

else skip(i,j) ← false // initialize variable

for i← radius to Ny − radius do
j ← radius
while j < Nx − radius and (skip(i, j) or R(i, j − 1) ≥ R(i, j)) do

j ← j+1 // avoid the downhill at the beginning

while j < Nx − radius do
while j < Nx − radius and (skip(i, j) or R(i, j + 1) ≥ R(i, j)) do

j ← j+1 // find the next peak

if j < Nx − radius then
p1 ← j+2
while p1 ≤ j + radius and R(i, p1) < R(i, j) do

skip(i,p1) ← true
p1 ← p1+1 // find a bigger value on the right

if p1 > j + radius then
p2 ← j-1 // if not found

while p2 ≥ j − radius and R(i, p2) ≤ R(i, j) do
p2 ← p2 − 1 // find a bigger value on the left

if p2 < j − radius then
k ← i+radius // if not found, test the 2D region

found ← false
while not found and k > i do

l ← j+radius // first test the bottom region

while not found and l ≥ j − radius do
if R(k,l) > R(i,j) then found ← true
else skip(k,l) ← true
l ← l-1

k ← k-1

k ← i-radius
while not found and k < i do

l ← j-radius // then test the top region

while not found and l ≤ j + radius do
if R(k, l) ≥ R(i, j) then found ← true
l ← l+1

k ← k+1

if not found then
corners.add(i,j,R(i,j)) // a new local maximum detected

j ← p1
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implement.

Step 6. Selecting Output Corners

We implemented the following strategies for selecting the output corners:

• The simplest one is to select all the corners detected. In this case, the sorting is given by the
non-maximum suppression algorithm, i.e. sorted by rows and then by columns.

• In the second strategy, all the corners are sorted by their corner strength values in descending
order. This is interesting for applications that need to process the more discriminant features
first.

• Another alternative is to select a subset of the corners detected. The user specifies a number
of corners to be found and the application returns the set with the highest discriminant values.
The corners are also sorted in descending order. It is possible that the number specified by the
user is bigger than the corners detected.

• Finally, we may also select a set of corners equally distributed on the image, which is interesting
for several applications such as camera calibration, panorama stitching [3] or video stabiliza-
tion [18]. In that case, the user specifies a number of cells and the total number of points to
be detected. The algorithm tries to find the same amount of points in each cell. It is possible
that no distinctive points are detected in some cells, so, in general, the number of features will
be smaller than the target number of points specified by the user.

Another interesting alternative is the adaptive non-maximum suppression algorithm proposed
in [3], which generates spatially well distributed features over the image.

Step 7. Calculating Subpixel Accuracy

Given any of the corner strength functions of Section 2, it is possible to refine the features with
subpixel accuracy. For this, we need to estimate an approximate function in a local neighborhood
around each feature and then find its maximum. We implemented two interpolation methods based
on quadratic and quartic polynomials, respectively.

Quadratic Approximation

We follow the same approach as in [3]. The corner strength function is approximated by a quadratic
polynomial around each feature, xf = (xf , yf ), as

P (x) = R(xf ) +
∂R(xf )

T

∂x
x +

1

2
xT
∂2R(xf )

∂x2
x. (6)
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The derivatives of the function are calculated as

∂R(xf )

∂x
=

(R(xf + 1, yf )−R(xf − 1, yf ))

2
∂R(xf )

∂y
=
R(xf , yf + 1)−R(xf , yf − 1)

2

∂2R(xf )

∂2x
= R(xf + 1, yf )− 2R(xf , yf ) +R(xf − 1, yf )

∂2R(xf )

∂2y
= R(xf , yf + 1)− 2R(xf , yf ) +R(xf , yf − 1)

∂2R(xf )

∂x∂y
=
R(xf + 1, yf + 1) +R(xf − 1, yf − 1)−R(xf + 1, yf − 1)−R(xf − 1, yf + 1)

4
.

(7)

Deriving (6) to find its maximum, and shifting to the feature position, gives the subpixel location as

xmax = xf −
∂2R(xf )

∂x2

−1
∂R(xf )

∂x
. (8)

Quartic Interpolation

Another possibility is to calculate an interpolation polynomial using the nine points around the
feature. This polynomial must have nine degrees of freedom and can be expressed as

P (x, y) = a0x
2y2 + a1x

2y + a2xy
2 + a3x

2 + a4y
2 + a5xy + a6x+ a7y + a8. (9)

The coefficients of this polynomial are easily obtained if we assume that it is centered at the feature
position. Indeed, substituting x ∈ [−1, 1] and y ∈ [−1, 1] in the polynomial, we obtain the following
system of equations

1 −1 −1 1 1 1 −1 −1 1
0 0 0 0 1 0 0 −1 1
1 −1 1 1 1 −1 1 −1 1
0 0 0 1 0 0 −1 0 1
0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0 1
1 1 −1 1 1 −1 −1 1 1
0 0 0 0 1 0 0 1 1
1 1 1 1 1 1 1 1 1





a0
a1
a2
a3
a4
a5
a6
a7
a8


=



R(xf − 1, yf − 1)
R(xf , yf − 1)

R(xf + 1, yf − 1)
R(xf − 1, yf )
R(xf , yf )

R(xf + 1, yf )
R(xf − 1, yf + 1)
R(xf , yf + 1)

R(xf + 1, yf + 1)


. (10)

The solution is given by

a0
a1
a2
a3
a4
a5
a6
a7
a8


=



R0,0 − R0,−1+R0,1+R−1,0+R1,0

2
+ R−1,−1+R−1,1+R1,−1+R1,1

4
R0,−1−R0,1

2
+ −R−1,−1+R−1,1−R1,−1+R1,1

4
R−1,0−R1,0

2
+ −R−1,−1−R−1,1+R1,−1+R1,1

4
R−1,0+R1,0

2
−R0,0

R0,−1+R0,1

2
−R0,0

R−1,−1−R−1,1−R1,−1+R1,1

4
R1,0−R−1,0

2
R0,1−R0,−1

2

R0,0


, (11)
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Figure 7: Comparison of subpixel accuracy strategies. These graphics compare the repeatability rate using quadratic and
quartic interpolation for the building and calibrator test sequences, respectively. Both approaches provide similar results,
although the quartic interpolation is slightly more accurate.

with subscripts denoting shifts around the feature. Since the degree of the polynomial is four, it may
have several extrema. We implement the Newton method in order to find a maximum. The iterative
scheme is given by

xn+1 = xn − ∂2P (xn)

∂x2

−1
∂R(xn)

∂x
, (12)

with x0 = 0. The final solution is obtained as

xmax = xf + xn+1. (13)

This algorithm is typically very fast and converges in a few iterations (3–5 on average). We define a
maximum number of iterations in order to stop the process.

Figure 7 compares both approaches. We observe that the results of the quartic interpolation are
better for both ε values, but the difference is not meaningful. The quadratic approach provides a
closed-form solution, is simpler to implement and faster. The runtime of the quadratic approximation
is between two and three times faster than the quartic interpolation on average. Note, however, that
the time spent in this step is very small in comparison with other steps in the algorithm, as we can
see in the following section.

3 Details of Implementation and Online Demo

The online demo allows selecting the options in each step. The user can choose between different
Gaussian and gradient strategies. The rest of parameters of the demo are explained in Table 3.

Choosing the Discrete or Fast Gaussian strategies results in less features detected. They usually
provide a similar number of features. The No Gaussian alternative produces many more features in
general due to the effect of noise. The Sobel operator provides slightly fewer features than central
differences, because of the additional smoothing.

The zoom out reduces the number of features by approximately a factor of z2. If we want to
obtain a similar number of features, we can divide σi by z. Increasing the value of σd has a behavior
similar to the zoom factor, thus, we can again decrease the value of σi to maintain the same amount
of corners. If we increase σi, the features tend to get farther from the true corners. Additionally, the
selection area in the non-maximum suppression algorithm is bigger, therefore, it obtains less points.
Each corner strength function needs a different τ for selecting the same amount of points.
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Parameter Description
Zoom Zoom out the input image by a factor of 1, 2, 4, 8 and 16. Default value 1.
Scale check Number of scales used in Algorithm 2 for checking corner stability. Default 1.
Gaussian Determines the Gaussian convolution method to be used (Discrete Gaussian, Fast

Gaussian – SII method – and No Gaussian). Default value ‘Discrete Gaussian’.
Gradient Choose between central differences or the Sobel operator for computing the gra-

dient of the image. Default value ‘central differences’.
σd Standard deviation of the Gaussian used for smoothing the image (step 1). De-

fault value 1.
σi Standard deviation of the Gaussian used for computing the autocorrelation ma-

trix (step 3). Default value 2.5.
Corner function Specifies the corner strength function to be computed (Harris, Shi-Tomasi or

Harmonic Mean, in step 4)
κ Value of the Harris constant. Default value 0.006.
τ Threshold used for rejecting small values (step 5). Default values are 130 for the

Harris function, 10 for Shi-Tomasi and 15 for the Harmonic mean.
Output Strategy for selecting the output corners (All, Sorted, N Sorted and N Dis-

tributed, in step 6)
Number of corners Number of output corners in the third and fourth previous strategies.
Cells Number of cells to distribute the selected points (3 means a mesh of 3× 3 cells

of equal size on the image).
Subpixel accuracy Choose between no subpixel accuracy, quadratic or quartic interpolation (step

7).

Table 3: Parameters of the method

Table 4 shows the execution times for the building sequence, whose size is 1600x1200 pixels. The
number of corners detected is 1722. The output corners are sorted.

Step Time
1. Smoothing the image 9.51 ms
2. Computing the gradient 4.16 ms
3. Computing the autocorrelation matrix 50.03 ms
4. Computing corner strength function 2.83 ms
5. Non-maximum suppression 4.48 ms
6. Selecting output corners 0.08 ms
7. Calculating subpixel accuracy 0.13 ms

Total: 71.22ms

Table 4: Execution times for each step using the building sequence. The size of this image is 1600 × 1200 pixels and the
number of features detected was 1722. We set default parameters.

The time of the last two steps is negligible in comparison with the previous steps. These depend
on the detected corners and not on the image itself. The most expensive process is the estimation of
the autocorrelation matrix, which depends on the convolution with a Gaussian function. To improve
the runtime of the algorithm, it would be necessary to accelerate the Gaussian convolutions. Another
alternative is to replace it with a box-filter. The non-maximum suppression algorithm is efficient: it
is as fast as the computation of the gradient.
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4 Experiments

In our experiments, we used the two images shown in Figure 1. We analyzed the behavior of the
feature detector using the repeatability measure as defined in [20]. The main idea was to apply a
known transformation to the input image and to study the rate of features that appear in both cases.
This measure was computed from points that lie in all images.

First, we selected the interest points in each image by checking if, after applying the transforma-
tion, they lie inside the dimensions of the image, after having removed a margin of radius = 2σi.
The transformation was synthetically generated as a homography. For the second image, we used the
inverse homography. Then, the set with the smaller number of points was selected as the reference
set. As in [20], the ε− repeatability was used to represent the ratio of points that are at a distance
smaller than ε of their corresponding point. The set of point pairs (x̃1, x̃i), which correspond within
an ε-neighborhood, is defined by

Ri(ε) = {(x̃1, x̃i)|dist(H1,ix̃1, x̃i) < ε)}.

The repeatability rate is defined as

ri(ε) =
‖Ri(ε)‖

min(n1, ni)
.

The type of transformations used in these experiments were rotations, scale changes, illumination
variations and affine transformations. We also analyzed the behavior with respect to image noise.
For a more realistic behavior, we added white Gaussian noise to the images after each transformation.
For the first image, and after adding noise, we computed the reference set of features.

4.1 Repeatability with Respect to Geometric Transformations

The Harris detector is in principle invariant to in-plane rotations. Figure 9 shows the repeatability
rate for different values of ε and rotations between 00 and 1800 (see Figure 8). These are the same
used in the graphics of Figure 3.

Figure 8: Several images of the rotation test.

The repeatability rate is especially higher for 00, 900 and 1800, and, as explained above, this has
to do with the accuracy of the gradient at these orientations.

Figure 11 shows the behavior of the Harris detector with respect to scale changes. We chose zoom
factors between 0.2 and 4, as shown in Figure 10.

The maximum rate is obtained around 1, where the image has the same scale as the original
image. The graphics show that this detector is not invariant to scale changes.

Finally, we examined its behavior with respect to affine transformations. Figure 12 depicts the
images used in this experiment, where we have changed the skew parameter.

The graphics in Figure 13 show that the repeatability rate decreases fast with the increase of the
skew parameter.
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Figure 9: Repeatability rate for rotations. On the left, we show the repeatability rate for the building sequence and, on the
right, for the calibrator sequence.

Figure 10: Several images of the scale test.
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Figure 11: Repeatability rate for scalings. On the left, we show the repeatability rate for the building sequence and, on the
right, for the calibrator sequence.

4.2 Repeatability with Respect to Changes in Illumination

Next, we changed the luminance conditions of the input image as I ′ = αI, with α ∈ [0.2, 6]. Figure 14
shows several images used in the test and Figure 15 depicts the results of the repeatability rate for
the building and calibrator sequences, respectively.

The change in intensity has a direct relation with the magnitude of the eigenvalues of the auto-
correlation matrix. The repeatability measure remains high as long as the chosen threshold is below
the Harris measure of the selected corners. With a small α, the value of the corners will be below
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Figure 12: Several images used for the affine transformation test.
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Figure 13: Repeatability rate for affinity transformations. On the left, we show the repeatability rate for the building
sequence and, on the right, for the calibrator sequence.

Figure 14: Several images of the change in illumination test. These images are obtained as I ′ = αI, with α ∈ [0.2, 6].

the threshold, and a large constant will saturate the image.
In the case of the building sequence, the repeatability measure decreases fast, with maximum

coincidence around α = 1. For the calibrator, this rate stays high because there is a good contrast
at the corners of the square pattern.

4.3 Repeatability with Respect to Noise

In the last experiment, we studied the behavior of the detector with respect to noise. Figure 16
shows several images for this test. We added white Gaussian noise of increasing standard deviation
(σ ∈ [0, 30]). The number of features augments with the level of noise.

Figure 17 depicts the evolution of the repeatability rate for increasing levels of noise. The graphic
decreases very fast for the building sequence.
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Figure 15: Repeatability rate for illumination changes. On the left, we show the repeatability rate for the building sequence
and, on the right, for the calibrator sequence.

Figure 16: Several images of the noise test. We added white Gaussian noise of standard deviation σ ∈ [0, 30].

This shows that the detector is not robust against noise. One way to tackle this problem is to
adapt the values of σd, to reduce the level of noise, or σi, to integrate in larger regions. However,
these strategies are limited, since they affect the structures of the objects or obtain features which
represent larger regions of support, respectively.
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Figure 17: Repeatability rate for additive white Gaussian noise. On the left, we show the repeatability rate for the building
sequence and, on the right, for the calibrator sequence.
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4.4 Comparison with OpenCV

In this section, we compare the OpenCV 3.4.1 implementation with our own. We use the cornerHarris
function, which is based on the Sobel operator, for computing the gradient of the image, box filter-
ing, for calculating the autocorrelation matrix, and the Harris function. It does not use Gaussian
convolutions, which makes it faster. If we compare it with our implementation, it only includes
steps 1 through 4, until the computation of the corner strength function, and does not include the
subsequent steps. Thus, for comparison purposes, we utilize as input the OpenCV estimation and
then use our implementation for the last steps. We adapt the input parameters in order to obtain
similar results.

Figures 18 and 19 compare the repeatability rate of both implementations. We selected the best
1500 features using the building sequence. The threshold is set to 0, so that it was always possible
to select that number of features.
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Figure 18: Comparison between the OpenCV implementation and ours. On the left column, we show the results using our
implementation and the building sequence. On the right, we show the results of the OpenCV method. The graphics in the
first row correspond to the evolution of the repeatability rate with respect to increasing rotations (from 00 to 1800) and the
second row contains the graphics for scale changes.

Looking at the first two rows of the first image, corresponding to the rotation and scale graphics,
we observe that the behavior of the OpenCV implementation is poor. The repeatability rate for
rotations is very low for ε < 1.5. This is probably caused by the aliasing artifacts that are not
reduced by the Sobel operator or the use of box filtering. Indeed, using Gaussian convolutions is key
for improving the repeatability.

Our method also presents a better behavior under scale changes. We observe that the measure
for the OpenCV implementation varies very fast around scale 1 (the initial image resolution). The
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Figure 19: Comparison between the OpenCV implementation and ours. On the left column, we show the results using our
implementation and the building sequence. On the right, we show the results of the OpenCV method. The graphics in
the first row correspond to the evolution of the repeatability rate with respect to affine transformations (varying the skew
parameter) and the second row shows the repeatability rate with respect to changes in illumination.

analysis with respect to affine transformations (first row in Figure 19) is also favorable to our approach
for small skew changes, although the differences are not so noticeable for larger ones. The results
corresponding to illumination changes (second row) are similar in both cases, with a slightly better
accuracy in our implementation.

Table 5 compares the execution times for both approaches. Note that we have used the same
values for Steps 5–7, so that the difference is related to the first steps. In this case, the OpenCV
method is faster than our approach. The reason is that it does not convolve the image with a Gaussian
function (Step 1) and the autocorrelation matrix is calculated through a box filtering, which is faster
than Gaussian convolutions. On the other hand, the OpenCV implementation includes more code
optimizations.

As a conclusion, the OpenCV implementation is interesting if speed is the most important issue
for the application. However, the repeatability rate is in general not so good.

5 Conclusion

In this work, we presented an implementation of the Harris corner detector. We explained every step
of the method and analyzed different alternatives for each one.

We found that, if we are interested in improving the repeatability rate measure, it is important
to use Gaussian convolutions. Additionally, the use of an accurate Gaussian technique makes the
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Step Ours (milliseconds) OpenCV
1. Smoothing the image 10.46 ms –
2. Computing the gradient 4.84 ms –
3. Computing the autocorrelation matrix 46.67 ms –
4. Computing corner strength function 2.94 ms 23.06 ms
5. Non-maximum suppression 4.92 ms 4.92 ms
6. Selecting output corners 0.11 ms 0.11 ms
7. Calculating subpixel accuracy 0.15 ms 0.15 ms

Total: 70,09ms 28.24ms

Table 5: Comparison of the execution times between our implementation and OpenCV.

method more stable to the use of different gradient masks.
We implemented a generic non-maximum suppression algorithm that allows to select the promi-

nent features on the image. We compared the use of quadratic and quartic interpolation in order to
obtain interest points with subpixel accuracy. The quadratic approach is as accurate as the quartic
strategy but much faster and simpler to implement.

To improve the speed of the method, it is necessary to implement a faster Gaussian convolution
technique, or to replace it with a box filter, at the expense of an accuracy loss.

Acknowledgments

Work partly financed by Office of Naval research grant N00014-17-1-2552, DGA Astrid project “filmer
la Terre” no ANR-17-ASTR-0013-01, DGA Defals challenge no ANR-16-DEFA-0004-01.

Image Credits

All the images in this work are provided by the authors.

References

[1] H. Bay, T. Tuytelaars, and L. Van Gool, SURF: Speeded Up Robust Features, in Euro-
pean Conference on Computer Vision (ECCV), Springer Berlin Heidelberg, 2006, pp. 404–417.
https://doi.org/10.1007/11744023_32.

[2] A. Bhatia, W. E Snyder, and G. Bilbro, Stacked integral image, in IEEE International
Conference on Robotics and Automation (ICRA), IEEE, 2010, pp. 1530–1535. https://doi.

org/10.1109/ROBOT.2010.5509400.

[3] M. Brown, R. Szeliski, and S. Winder, Multi-image matching using multi-scale oriented
patches, in IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR), vol. 1, IEEE, 2005, pp. 510–517. https://doi.org/10.1109/CVPR.2005.235.

[4] J. Canny, A computational approach to edge detection, IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, (1986), pp. 679–698. https://doi.org/10.1109/TPAMI.1986.

4767851.

[5] R. Deriche, Recursively implementating the Gaussian and its derivatives, Research Report
RR-1893, INRIA, 1993. https://hal.inria.fr/inria-00074778/file/RR-1893.pdf.

326

https://doi.org/10.1007/11744023_32
https://doi.org/10.1109/ROBOT.2010.5509400
https://doi.org/10.1109/ROBOT.2010.5509400
https://doi.org/10.1109/CVPR.2005.235
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1109/TPAMI.1986.4767851
https://hal.inria.fr/inria-00074778/file/RR-1893.pdf


An Analysis and Implementation of the Harris Corner Detector

[6] P.F. Felzenszwalb, R.B. Girshick, D. McAllester, and D. Ramanan, Object detec-
tion with discriminatively trained part-based models, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 32 (2010), pp. 1627–1645. https://doi.org/10.1109/TPAMI.2009.167.

[7] W. Förstner and E. Gülch, A fast operator for detection and precise location of distinct
points, corners and centres of circular features, in Proceedings of ISPRS Intercommission Con-
ference on Fast Processing of Photogrammetric Data, 1987, pp. 281–305.

[8] P. Getreuer, A Survey of Gaussian Convolution Algorithms, Image Processing On Line, 3
(2013), pp. 286–310. https://doi.org/10.5201/ipol.2013.87.

[9] C. Harris and M. Stephens, A combined corner and edge detector, in Alvey Vision Confer-
ence, vol. 15, Manchester, UK, 1988, pp. 10–5244.

[10] L. Kitchen and A. Rosenfeld, Gray-level corner detection, Pattern Recognition Letters, 1
(1982), pp. 95–102. https://doi.org/10.1016/0167-8655(82)90020-4.

[11] D.G. Lowe, Distinctive image features from scale-invariant keypoints, International Journal
of Computer Vision, 60 (2004), pp. 91–110. https://doi.org/10.1023/B:VISI.0000029664.

99615.94.

[12] N. Monzón, A. Salgado, and J. Sánchez, Regularization strategies for discontinuity-
preserving optical flow methods, IEEE Transactions on Image Processing, 25 (2016), pp. 1580–
1591. https://doi.org/10.1109/TIP.2016.2526903.

[13] N. Monzón, A. Salgado, and J. Sánchez, Robust Discontinuity Preserving Optical Flow
Methods, Image Processing On Line, 6 (2016), pp. 165–182. https://doi.org/10.5201/ipol.
2016.172.

[14] H.P. Moravec, Obstacle avoidance and navigation in the real world by a seeing robot rover,
tech. report, Stanford University (CA), Department of Computer Science, 1980.

[15] A. Neubeck and L. Van Gool, Efficient non-maximum suppression, in International Con-
ference on Pattern Recognition (ICPR), vol. 3, 2006, pp. 850–855. https://doi.org/10.1109/
ICPR.2006.479.

[16] T.Q Pham, Non-maximum suppression using fewer than two comparisons per pixel, in In-
ternational Conference on Advanced Concepts for Intelligent Vision Systems, Springer, 2010,
pp. 438–451. https://doi.org/10.1007/978-3-642-17688-3_41.

[17] E. Rosten and T. Drummond, Machine learning for high-speed corner detection, in European
Conference on Computer Vision (ECCV), Springer Berlin Heidelberg, 2006, pp. 430–443. https:
//doi.org/10.1007/11744023_34.

[18] J. Sánchez, Comparison of Motion Smoothing Strategies for Video Stabilization using Para-
metric Models, Image Processing On Line, 7 (2017), pp. 309–346. https://doi.org/10.5201/
ipol.2017.209.

[19] J. Sánchez, N. Monzón, and A. Salgado, Robust Optical Flow Estimation, Image Pro-
cessing On Line, 3 (2013), pp. 252–270. https://doi.org/10.5201/ipol.2013.21.

[20] C. Schmid, R. Mohr, and C. Bauckhage, Evaluation of interest point detectors, Inter-
national Journal of Computer Vision, 37 (2000), pp. 151–172. https://doi.org/10.1023/A:

1008199403446.

327

https://doi.org/10.1109/TPAMI.2009.167
https://doi.org/10.5201/ipol.2013.87
https://doi.org/10.1016/0167-8655(82)90020-4
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1109/TIP.2016.2526903
https://doi.org/10.5201/ipol.2016.172
https://doi.org/10.5201/ipol.2016.172
https://doi.org/10.1109/ICPR.2006.479
https://doi.org/10.1109/ICPR.2006.479
https://doi.org/10.1007/978-3-642-17688-3_41
https://doi.org/10.1007/11744023_34
https://doi.org/10.1007/11744023_34
https://doi.org/10.5201/ipol.2017.209
https://doi.org/10.5201/ipol.2017.209
https://doi.org/10.5201/ipol.2013.21
https://doi.org/10.1023/A:1008199403446
https://doi.org/10.1023/A:1008199403446


Javier Sánchez, Nelson Monzón, Agust́ın Salgado

[21] J. Shi and C. Tomasi, Good features to track, in IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR), IEEE, 1994, pp. 593–600. https://doi.

org/10.1109/CVPR.1994.323794.

[22] C. Sun and P. Vallotton, Fast linear feature detection using multiple directional non-
maximum suppression, Journal of Microscopy, 234 (2009), pp. 147–157. https://doi.org/

10.1109/ICPR.2006.548.

[23] Richard Szeliski, Computer vision: algorithms and applications, Springer Science & Business
Media, 2010. ISBN 1848829345.

[24] T. Tuytelaars and K. Mikolajczyk, Local invariant feature detectors: a survey, Founda-
tions and Trends R© in Computer Graphics and Vision, 3 (2008), pp. 177–280.

328

https://doi.org/10.1109/CVPR.1994.323794
https://doi.org/10.1109/CVPR.1994.323794
https://doi.org/10.1109/ICPR.2006.548
https://doi.org/10.1109/ICPR.2006.548

	Introduction
	The Harris Corner Detector
	Details of Implementation and Online Demo
	Experiments
	Repeatability with Respect to Geometric Transformations
	Repeatability with Respect to Changes in Illumination
	Repeatability with Respect to Noise
	Comparison with OpenCV

	Conclusion

