
Published in Image Processing On Line on 2018–12–23.
Submitted on 2018–12–10, accepted on 2018–12–17.
ISSN 2105–1232 c© 2018 IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
https://doi.org/10.5201/ipol.2018.242

2
0
1
5
/
0
6
/
1
6

v
0
.5
.1

IP
O
L

a
rt
ic
le

c
la
ss

EPLL: An Image Denoising Method using a Gaussian

Mixture Model Learned on a Large Set of Patches

Samuel Hurault, Thibaud Ehret, Pablo Arias

CMLA, ENS Cachan, CNRS, Université Paris-Saclay, 94235 Cachan, France
thibaud.ehret@cmla.ens-cachan.fr

Communicated by Pablo Arias Demo edited by Thibaud Ehret

Abstract

The Expected Patch Log-Likelihood method, introduced by Zoran and Weiss, allows for whole
image restoration using a patch-based prior (in the likelihood sense) for which a maximum
a-posteriori (MAP) estimate can be calculated. The prior used is a Gaussian mixture model
whose parameters are learned from a dataset of natural images. This article presents a detailed
implementation of the algorithm in the context of denoising of images contaminated with white
additive Gaussian noise. In addition, two possible extensions of the algorithm to handle color
images are compared.

Source Code

The reviewed source code and documentation for this algorithm are available at the web page
of this article1. Compilation and usage instructions are included in the README.txt file of the
archive.

Keywords: denoising; multiscale; patch based

1 Introduction

Image denoising aims to restore the latent clean image x from its noise-corrupted version y = x+ v,
where v is commonly assumed to be additive white Gaussian noise of standard deviation σ. In this
work we will reproduce and optimize the EPLL denoising algorithm introduced by [19] which is
a Bayesian patch-based method [11]. Image priors are a popular tool for image restoration tasks.
However, the high dimension of images makes learning or optimization with such priors very hard.
This is why state-of-the art methods learn priors over small image patches ([10, 9, 18]).

A part of these denoising methods have attempted to take advantage of the internal self-similar
structures present in most images. Early approaches like non-local means (NL-means) [1] and

1https://doi.org/10.5201/ipol.2018.242

Samuel Hurault, Thibaud Ehret, Pablo Arias, EPLL: An Image Denoising Method using a Gaussian Mixture Model Learned on a Large
Set of Patches, Image Processing On Line, 8 (2018), pp. 465–489. https://doi.org/10.5201/ipol.2018.242

https://doi.org/10.5201/ipol
https://doi.org/10.5201/ipol
http://creativecommons.org/licenses/by-nc-sa/3.0/
https://doi.org/10.5201/ipol.2018.242
https://doi.org/10.5201/ipol.2018.242
https://doi.org/10.5201/ipol.2018.242
https://doi.org/10.5201/ipol.2018.242

Samuel Hurault, Thibaud Ehret, Pablo Arias

UINTA [2] proposed to look for similar patches of an image and average them. Patch-based de-
noising methods [10, 9, 18] have since then developed into attempting to model the patch space of
an image.

Instead of using similar patches of the same image, EPLL uses a prior (namely a Gaussian mixture
model) learned from a very large set of patches taken from several images. It can thus be considered
an external denoising method (the target image is denoised using other images), or what [11] calls a
“shotgun method”. EPLL can be seen as an external version of the piecewise linear estimator (PLE)
method [18]: PLE learns a GMM specific to each noisy image, whereas EPLL uses a fixed GMM
learned once from a collection of clean patches.

Thus, the first step in EPLL will be to extract patches from a dataset of clean images and to learn
a GMM prior from them by maximizing the likelihood. Once a prior is set, given a noisy image y,
a first approach to perform denoising could be to decompose it into overlapping patches, to denoise
every patch separately and finally to aggregate the results by simple averaging. This aggregation of
overlapping patch estimates is common in patch-based algorithms [10, 9]; it improves the estimation
as it averages for any pixel a set of different estimates.

However, applying the prior only on patches without any control on the whole image is not
optimal. Indeed, averaging the values obtained for each pixel from the patches that contain it
creates new patches in the constructed image, which might be unlikely under our prior. The EPLL
(Expected Patch Log Likelihood) method by Zoran and Weiss [19] addresses this very problem. The
aim of the method is simple: suppose we take a random patch from our reconstructed image, we
wish this patch to be likely under our prior. In other words, we wish to find a reconstructed image
in which every patch is likely under our prior while keeping the reconstructed image still close to the
corrupted one. This variational approach is still popular as shown by recent denoising papers [5, 8].
In [17] a general approach to aggregate local patch models into a global image model is proposed.

A flaw in patch-based modeling is the enforced locality of the model. Even if EPLL endeavors
to work globally on the image, when working with small sized patches we neglect the long-range
interactions present in the image. Based on this observation, we shall invoke here the general multi-
scale framework of [14], which can be applied to any denoising algorithm. A different multiscale
version of EPLL was proposed by Papyan and Elad [16] by applying the EPLL prior of different
image scales simultaneously. This results in a unique energy, and has the advantage that it can be
applied as a prior in other restoration problems.

The contributions of this article are to provide an implementation of the EPLL method, to
optimize the choice of its parameters, to adapt it to color image denoising and to improve it with a
general multi-scale approach.

2 Description of the EPLL Method

2.1 Learning: Gaussian Mixture Prior and Expectation Maximization

The patch prior assumed by EPLL is a Gaussian mixture model (GMM). The probability density of
a patch x, represented by a vector of Rd, is assumed to satisfy

p(x) =
K∑
k=1

wkN (x|µk,Σk). (1)

Here, N (x|µk,Σk) is a d-dimensional Gaussian density (a patch in the image is
√
d ×
√
d) of mean

µk (d × 1) and covariance matrix Σk (d × d). The coefficients wk represent the mixing weights for
each mixture component. They add to one i.e.

∑
k wk = 1.

466

EPLL: An Image Denoising Method using a Gaussian Mixture Model Learned on a Large Set of Patches

Learning is performed using the Expectation Maximization (EM) algorithm. It is computed over
N natural patches xi with their DC component removed (the DC component corresponds to the
mean intensity value of the patch). The DC component is the direction of dominant variation in the
patch space, and it can be estimated from the noisy patch with a residual noise of standard deviation
σ/
√
d. By removing it, the GMM focuses on other patch structures.

We review here the classic EM algorithm as explained in more detail in [3]. The goal is to
maximize the likelihood function

∏N
i=1 p(xi) with respect to the parameters (comprising the means,

covariances of the components and the mixing coefficients). We introduce the posterior probability
γik, which represents the responsibility that takes the component k for generating the patch xi,

γik =
wkN (xi|µk,Σk)∑K
j=1wjN (xi|µj,Σj)

. (2)

The EM algorithm alternates between an expectation step and a maximization step:

1. Initialize the responsibilities γik randomly.

2. M step: Estimate the parameters using the current responsibilities

µnew
k =

1

Nk

N∑
i=1

γikxi, Σnew
k =

1

Nk

N∑
i=1

γik(xi − µnew
k)(xi − µnew

k)T , wnewk =
Nk

N

where Nk =
∑N

i=1 γik.

3. E step: Re-evaluate the responsibilities using formula (2) with the current parameter values.

4. Evaluate the log-likelihood of the image x

L(x|µ,Σ, w) =
N∑
i=1

log

(
K∑
k=1

wkN(xi|µk,Σk)

)
,

and check for convergence of the log-likelihood. If the convergence criterion is not satisfied
return to step 2.

It was observed in [19] that the means of the components µk for the GMM learned from datasets
of patches were almost 0. In the following we will assume that µk = 0.

2.2 Denoising of Grayscale Images

In all this section we consider a grayscale image x defined over a rectangular grid Ω of size n ×m.
The image x is considered in a vectorized form so that xk corresponds to the kth pixel, and Pi is a
matrix which extracts the ith patch from the image so that xi = Pix.

2.2.1 Energy to Minimize

Computing the maximum a posteriori (MAP) to estimate the clean patch xi given a noisy patch yi
and a local prior p leads to the following energy to minimize for each image patch

Ei(xi; yi) =
‖xi − yi‖2

2σ2
− log p(xi).

467

Samuel Hurault, Thibaud Ehret, Pablo Arias

However, as explained in the introduction, we want to work globally on the image in order to remain
close to the noisy image. The basic idea behind the method is to maximize the expected patch log-
likelihood (EPLL) computed over the whole image while still being close to the corrupted image in
a way which is dependent on the corruption model. Given an image x, the EPLL under the patch
prior p is defined as

EPLLp(x) =
∑
i∈ΩP

log p(Pix) =
∑
i∈ΩP

log p(xi), (3)

where ΩP ⊂ Ω is a set of patches which covers the image domain Ω.
Assuming a patch location in the image is chosen uniformly at random, EPLL can be interpreted

as the expected log likelihood of a patch in the image (up to a multiplication by 1/N). It serves as
a global prior for an image (although it doesn’t define a probability in the space of images). Given a
noisy image y, the energy to minimize in order to find the denoised image using the patch prior p is

E(x; y) =
∑
k∈Ω

Nk
‖xk − yk‖2

2σ2
− EPLLp(x), (4)

where Ω is the image domain and Nk represents the number of overlapping patches in which the
pixel k appears (pixels close to the border of the image have smaller Nk).

2.2.2 Optimization

Direct optimization of the energy in (4) may be very hard, depending on the prior used. The authors
of EPLL propose to use an optimization method called Half-Quadratic Splitting [6]. We introduce as
auxiliary variables a set of patches {zi}N1 , one for each patch Pix in the image, yielding the following
energy to minimize

Eβ(x, {zi}; y) =
∑
k∈Ω:w

Nk
‖xk − yk‖2

2σ2
+
∑
i∈ΩP

β
‖Pix− zi‖2

2σ2
− log p(zi). (5)

Note that as β → +∞ we restrict the patches Pix to be equal to the auxiliary variables {zi} and
the solutions of (5) can be considered as approximations of solutions for (4). For a fixed value of β,
optimizing (5) can be done iteratively, first solving for x while keeping {zi} constant, then solving
for {zi} with the newly found x kept constant. The algorithm initializes x with the noisy image y
and iterates the process about six times. After each iteration the value of β is increased according
to a predefined schedule.

Step 1 : Solving for {zi} given x : Patch MAP Estimation

The problem of minimizing (5) with respect to {zi} is separable, meaning that it is equivalent to
minimizing for each patch zj independently of the rest. Each of these problems can be seen as a MAP
for an individual patch, with prior p and noise level σ√

β
. Given a noisy patch Pix, the MAP problem

with a GMM prior is non-convex. Computing a local maximum can be too costly, considering that
it is done for each image patch. This is addressed in [19] with the following approximate MAP
estimation procedure:

1. Given a noisy patch Pix, remove its DC component (as the GMM was learned over zero-mean
patches) and compute the conditional mixing weights γik = P (k|Pix).

2. Choose the component with the highest conditional mixing weight k∗i = argmaxkγik.

468

EPLL: An Image Denoising Method using a Gaussian Mixture Model Learned on a Large Set of Patches

3. Estimate the MAP by a Wiener filter solution for the k∗i -th component

zi =

(
Σk∗i

+
σ2

β
I

)−1

Σk∗i
Pix. (6)

This follows from differentiating the reduced quadratic function Eβ(x, {zi}; y) (5) with respect
to zi and equating to zero.

4. Add the previously removed DC component to each estimated patch.

Step 2 : Solving for x given {zi}

If we fix {zi}, the energy (5) is quadratic in x thus allows a closed form solution. Taking the derivative
of (5) w.r.t to the vector x, setting to 0 and solving the resulting equation yields

x =

(
(1 + β)

∑
i∈ΩP

P T
i Pi

)−1((∑
i∈ΩP

P T
i Pi

)
y + β

∑
i∈ΩP

P T
i zi

)
=
y + (

∑
i∈ΩP

P T
i Pi)

−1
∑

i P
T
i zi

1 + β
. (7)

P T
i zi represents the adjoint transformation of Pi. It creates an image where the values in the patch zi

are put in their appropriate position and the rest of the image is set to zero. The matrix
∑

i∈ΩP
P T
i Pi

is diagonal of size nm× nm. Each element in the diagonal is associated to a pixel and equal to the
number of patches that contain it. Then, we set z to be the image after averaging the overlapping
patches zi. It is given by

z =

(∑
i∈ΩP

P T
i Pi

)−1 ∑
i∈ΩP

P T
i zi. (8)

Finally we have

x =
y + βz

1 + β
. (9)

This means that the solution for x at each optimization step is just a weighted average between the
noisy image y and the image z resulting from the aggregation of the auxiliary patches.

3 Implementation

3.1 Algorithms

We present the pseudo-code for the EPLL denoising framework in Algorithm 1, the MAP approxi-
mation in Algorithm 2 and the computation of the log probability in Algorithm 3.

In order to be faster, we pre-compute and store the eigen-decomposition of each covariance matrix
of the GMM. These are then used in Algorithm 3 and the Wiener filtering in Algorithm 2. We denote
by vk1 , . . . , v

k
d the eigenvalues of Σk and by Qk the d× d eigenvector matrix,

For the Wiener filtering (6) we need to invert a d× d matrix, an operation which is O(d3). This
inversion can be done efficiently if we store the eigen-decompositions of the covariance matrices of
the GMM. Indeed, we have that

zi =

(
Σk∗i

+
σ2

β
I

)−1

Σk∗i
Pix = Qk∗i

Sk∗iQ
T
k∗i
Pix,

469

Samuel Hurault, Thibaud Ehret, Pablo Arias

Algorithm 1: EPLLhalfQuadraticSplit

input : y Noisy image

σ Noise standard deviation

betas List of beta values

T Number of times the optimization is done

step Patches sampling step

GMM Gaussian mixture model used for denoising

output: x̂ Estimate of clean image

x̂← y Initialization

foreach β in betas do
for t = 1 to T do

z ← aprxMAPGMM (x̂, σ/
√
β, step, GMM) Calculate aggregate image of MAP estimates

x̂← y + βz

1 + β
Calculate the current estimate for the clean image

end

end

Algorithm 2: aprxMAPGMM

input : x The noisy image

s Noise standard deviation for the current estimate = σ√
β

step Patch-sampling step

GMM Gaussian mixture model used for denoising

output: z Output image, aggregated of patch MAPs

Extract all patches xi in x with a step step
for each patch xi do

x′i ← xi −mean(xi) Remove DC component from each patch

for each (Σj, wj) in GMM do Σj is the cov. and wj the weight of the jth component

W [j, ·]← logGaussPDF(X ′,Σj + s2I, wj) X ′ is a matrix containing the patches x′i as rows

for each patch x′i do
k∗i ← argmax(W [· , i])

zi = (Σk∗i
+ s2I)−1Σk∗i

x′i + mean(xi)

Aggregate patches ẑi into z

Algorithm 3: logGaussPDF

input : X Matrix with patches as rows

Σ The covariance matrix of the Gaussian model

w The weight of the Gaussian model in the GMM

output: W The log probability associated to each patch in Y

W ← log(w)− d log(2π) + log det(Σ) +XΣ−1XT

2
d is the dimension of a patch

470

EPLL: An Image Denoising Method using a Gaussian Mixture Model Learned on a Large Set of Patches

where Sk∗i is a diagonal matrix with the Wiener shrinkage coefficients

Sk∗i = diag

(
v
k∗i
j

v
k∗i
j + σ2

β

)
1≤j≤d

.

For Algorithm 3, we have to calculate for a patch xi = Pix the value of terms xTi (Σk + σ2/βI)
−1

xi,
where Σk is a covariance matrix of the mixture. Using the eigen-decomposition of Σk and the diagonal
matrix

Rk = diag

(
vkj +

σ2

β

)
1≤j≤d

,

we have that

xTi
(
Σk + σ2/βI

)−1
xi = ‖R−1/2

k QT
k xi‖2. (10)

3.2 Learning Results

We used the database of images [15] composed of TIF images of size 768× 576. In order to consider
them noiseless, we zoomed out these images by a factor of 2. To do so, the images were filtered by
a Gaussian kernel of standard deviation 1.4 and every pixel out of 4 was selected. Among the 419
images of size 384×288 , we selected uniformly about 70% images to perform learning, the remaining
30% becoming a test dataset. We transformed them to grayscale images by extracting the Y channel
from Y UV color space

Y = 0.30R + 0.59G+ 0.11B,

where R,G,B are the channels of the color image. The learning step was realized independently from
the denoising step. The GMM was learned once, and then used for the different denoising tasks.

A patch x is represented by a vector x ∈ Rd. From this database, we extracted around 30× 106

patches and removed their DC component, then we randomly selected 2 × 106 patches to perform
EM. Training with the above training set took around 30h with a MATLAB code2 on an Intel Xeon
E5-2650 v2 at 2.60GHz CPU.

In Figures 1, 2, 3 and 4 we represent 4 of the 200 Gaussian components learned. They are
ordered decreasingly with respect to the mixing weight coefficients πk. The means of the learned
components are very close to zero and therefore modified to be zero. The eigenvectors (represented
as 8 × 8 patches) are sorted by eigenvalue from largest to smallest. Given a mixture component,
to understand what kind of patch it represents, we compute and display 8 patches sampled from
the Gaussian model. They are obtained with a weighted average of the eigenvectors, the weights
following a normal distribution of mean 0 and variance equal to the corresponding eigenvalue. We
note that the components have very rich structures, while some resemble the DCT bases (1), some
model edges (2,3) or textures (4).

The first Gaussian has its mixing weight πk bigger than the others (π1 = 0.10, π2 = 0.06,
π2 = 0.02). It is represented in Figure 1, this Gaussian has a covariance matrix with very small
eigenvalues. This means that it has a very small variance in every direction, and it can be seen
as a peak at the zero patch. Thus, it models the flat patches of the dataset. Moreover, we can
notice that among its very low eigenvalues, two of them, and particularly the first one, are significant
compared to the others. They give importance to the two first eigenvectors represented, which
represent horizontal and vertical smooth gradings. That may be explained by the fact that a flat
patch in the nature is never completely flat but always shows some shading.

2http://www.mathworks.com/matlabcentral/fileexchange/26184-em-algorithm-for-gaussian-mixture-model

471

http://www.mathworks.com/matlabcentral/ fileexchange/26184-em-algorithm-for-gaussian-mixture-model

Samuel Hurault, Thibaud Ehret, Pablo Arias

(a) eigenvectors

(b) corresponding eigenvalues

(c) 8 simulated patches

Figure 1: Component 1 of the Gaussian Mixture Model. The very low eigenvalues indicate that it represents flat patches.
The eight simulated patches are scaled from black to white for a better understanding of their structure, but would look
uniformly black otherwise.

(a) eigenvectors

(b) corresponding eigenvalues

(c) 8 simulated patches

Figure 2: Component 11 of the Gaussian Mixture Model. The sharp decay of the eigenvalues gives importance only to the
top eigenvectors in the simulated patches: it simulates horizontal edges.

472

EPLL: An Image Denoising Method using a Gaussian Mixture Model Learned on a Large Set of Patches

(a) eigenvectors

(b) corresponding eigenvalues

(c) 8 simulated patches

Figure 3: Component 13 of the Gaussian Mixture Model. The decay of the eigenvalues is slower and gives importance to
many eigenvectors in the simulated patches: it therefore simulates a texture patch.

(a) eigenvectors

(b) corresponding eigenvalues

(c) 8 simulated patches

Figure 4: Component 14 of the Gaussian Mixture Model. The sharp decay of the eigenvalues gives importance only to the
top eigenvectors in the simulated patches: it simulates patches with an edge at the bottom.

4 Influence of the Parameters on the Performance of the

Algorithm

We applied the previously described algorithm to noiseless images to which a simulated white Gaus-
sian noise had been added. For every study and for a given combination of parameters, 10 images will

473

Samuel Hurault, Thibaud Ehret, Pablo Arias

be chosen uniformly in the dataset of test images. To evaluate quantitatively the denoising results
we use the PSNR.

4.1 Learning

In the following we evaluate the influence and optimize the various parameters which take part in
the learning of the GMM. The parameters are N , the size of the dataset of patches used to perform
EM and K the number of components in the GMM.

4.1.1 Number of Gaussian Components K

A visual inspection of the Gaussian components shows that many of them are similar to another one.
To verify if these were redundant, we tested reducing the number of components in the Gaussian
Mixture. Like in [19], we fixed N = 2 · 106 and modified K. We chose 10 images of the test dataset
of images and found the average PSNRs presented in Table 1.

σ K=200 K=100 K=50
5 40.443 40.379 40.298
10 36.575 36.523 36.447
20 32.915 32.893 32.840
30 30.814 30.765 30.743
40 29.385 29.185 29.178
50 28.307 27.854 27.861

Table 1: Influence of K

We observe that the denoising performance decreases when K is reduced. Yet, this decay is
negligible for small σ. For large noise values, the drop in performance is larger. This makes sense:
the higher the noise, the more the estimation shrinks the patches toward the prior model.

On the other hand, the number of components has a strong influence on the running time. We
would need to minimize this number without influencing the denoising performances. According to
these experiments, we will choose the following values for K:

5 ≤ σ < 30 30 ≤ σ
K = 100 K = 200

4.1.2 Size of the Dataset of Patches N

We now keep K = 200 and modify N to obtain Table 2.
N = 2 · 106 yields a better performance, especially for high values of the noise. As the choice of

N does not influence the execution time of the algorithm, we decided to keep N = 2 · 106.

4.2 Denoising

We now want to evaluate and optimize the various parameters which take part in the denoising
process. The parameters are: s, the step used to extract and aggregate the overlapping patches; and
the schedule of β values in use to minimize the energy.

474

EPLL: An Image Denoising Method using a Gaussian Mixture Model Learned on a Large Set of Patches

σ N = 5 · 105 N = 1 · 106 N = 2 · 106

5 40.277 40.281 40.286
10 36.303 36.307 36.306
20 32.480 32.482 32.476
30 30.237 30.238 30.321
40 28.570 28.567 28.843
50 27.073 27.066 27.692

Table 2: Influence of N

4.2.1 Extracting Step s

Originally set to be 1, we try in Table 3 to change the step s used to extract and aggregate patches.

σ s=1 s=2 s=3 s=4
5 40.505 40.440 40.360 40.230
10 36.662 36.585 36.469 36.311
20 32.974 32.889 32.747 32.553
30 30.890 30.755 30.603 30.427
40 29.435 29.173 29.044 28.879
50 28.395 27.842 27.736 27.601

Table 3: Influence of the step of patch extraction

For high values of the noise, details are easily lost, a pixel of the noisy image requires thus more
estimations to reduce the variance from the right estimation. Between a step of 1 and a step of 2,
the number of estimations for each pixel (except on edges) goes from 64 to 16. This explains the
increasing difference in PSNR with the noise standard deviation. We therefore keep a step of 1.

4.2.2 Choice of β Values

Zoran and Weiss [19] proposed the values of β to be (β1, β2, β3, β4, β5) = (1, 4, 8, 16, 32, 64). In this
section we verify that these betas are indeed the best. For that we tried a range of different βs centered
around the value proposed by [19] and we kept the value which gave the best final PSNR. The βs
were changed one at a time. We keep the growth which gives the best final PSNR. In Table 4, we
give for different values of σ, the optimized list (β1, β2, β3, β4, β5) and the gain in PSNR with respect
to the schedule proposed by [19]. This optimization hardly changes the denoising efficiency except
for high values of the noise. We keep the value for β presented in Table 5.

5 Low-Rank Covariance Matrices for Speed-Up

Most Gaussian components learned have most of the variance concentrated on very few eigenvalues,
as showed in Section 3.2. Following this observation, we tested speeding-up the computation by
reducing the ranks of the covariance matrices. For that we selected the x% first eigenvalues and
eigenvectors for the computations. In practice, as can be seen in Table 6, reducing the rank greatly
reduces the PSNR for small noise (σ < 20). It can be used for a gain in computation time with large
noise (σ > 20), with a small drop in PSNR though.

475

Samuel Hurault, Thibaud Ehret, Pablo Arias

σ β1 β2 β3 β4 β5 β6 PSNR gained
5 1 2 5 10 18 30 +0.03
10 1 3 6 12 25 60 +0.02
20 1 4 8 10 30 70 +0.04
25 1 5 8 16 32 64 +0.02
30 1 2 8 16 32 64 +0.03
40 1 2 8 16 32 64 +0.21
50 1 2 8 16 32 64 +0.53

Table 4: Optimization of the β values

5 ≤ σ < 30 30 ≤ σ
β = (1, 4, 8, 16, 32, 64) β = (1, 2, 8, 16, 32, 64)

Table 5: Optimized betas that should be used for the best results

6 Multi-Scale Denoising

In [16] the authors propose a specific multi-scale version for EPLL based on the definition of a complex
energy combining the energy introduced in Section 2.2.1 at different scales. It produced improvements
in performance both visually and quantitatively. We choose here to add the general multiscale
denoising framework [14] which can be applied to any existing single-scale denoising algorithm.

The DCT multiscaler [14] builds a DCT image pyramid. The down-sampling of the image is simply
done by extracting the low frequencies from the DCT transform of the image, and by computing the
inverse DCT (IDCT) on just those frequencies. Each layer of the pyramid has half the width and
half the height of the previous one. In addition, the DCT of an image transforms additive Gaussian
white noise into additive Gaussian white noise with its standard deviation getting halved at each
successive scale. Thus, no particular adaptation of the initial single scale denoising algorithm is
needed to denoise the coarse layers. Recomposing the pyramid is trivial, since it can be reduced to
substituting the low frequencies of a layer with the frequencies of the coarser layer.

The drawback of this substitution is that, since each layer is essentially the result of the convolu-
tion of the previous one with a sinc-like function, ringing artifacts due to the Gibbs effect unavoidably
appear in the result. Thus, if the denoising algorithm alters the high frequencies of the coarse layer,
the recomposed image inevitably presents unpleasant ringing artifacts. This ringing is reduced by
the “soft fusion” method described in [7].

Facciolo et al. [14] already showed that applying this multiscale fusion to the original EPLL

σ 5% 10% 25% 50% 75% 100%
5 23.07 23.46 27.33 31.50 35.52 37.73
10 23.04 23.42 27.08 30.42 32.75 33.41
20 22.97 23.31 26.46 28.63 29.65 29.87
30 22.90 23.18 25.89 27.32 27.86 27.99
40 22.79 23.03 25.37 26.40 26.74 26.82

Speed-up ×3.55 ×3.23 ×2.46 ×1.82 ×1.43 ×1

Table 6: Denoising using only a given percentage (in number) of the best eigenvectors, 100% corresponds to full rank. The
extra line compares the computation time with the 100% reference time.

476

EPLL: An Image Denoising Method using a Gaussian Mixture Model Learned on a Large Set of Patches

yields improvements comparable to those obtained by [16]. Hence, we limit ourselves to examine
the multiscale improvement obtained by the “soft fusion” method. We tested the algorithm with 10
images randomly chosen from the test set. We show the results in Table 7. The size of these images
is 768× 576 and the multiscale approach uses 3 scales.

σ EPLL MS EPLL
5 43.389 43.325
10 39.513 39.476
20 35.592 35.652
30 33.308 33.471
40 31.662 31.909

Table 7: Influence of multi-scale denoising.

For a small amount of noise, denoising is easy and it is not necessary to add a complicated
multi-scale method which ringing artifacts would worsen the estimation. Furthermore, multi-scale
denoising tends to damage thin textures still present for slight noise. However, as soon as σ = 30,
these artifacts are negligible beyond the ones due to the noise and the contribution brought by the
multi-scale method begins to be serious. Figure 5 shows an example of multi-scale denoising.

(a) Original image (b) noisy image σ = 30

(c) EPLL PSNR=33.256 (d) MS EPLL PSNR=33.451

Figure 5: Visual comparison between single and multi-scale denoising on an image from the test set.

477

Samuel Hurault, Thibaud Ehret, Pablo Arias

7 Oracular Denoising

To have an idea of the performance of our algorithm, we can try to run the algorithm with the clean
image as oracle. At each iteration (each value of β), we keep the conditional mixing weight from
the clean image instead of from the current estimate. Therefore, each patch has always the same
Gaussian assigned to calculate the MAP estimate. Table 8 gives the results on the image Lena.

σ Normal Oracle
5 37.96 38.41
10 33.96 34.63
20 30.58 31.44
30 28.59 29.41
40 27.13 27.80

Table 8: Denoising taking the clean image as oracle

This experiment shows that the learned GMM has a very good denoising potential and that one
of the main difficulties is to determine the right Gaussian to calculate the MAP estimate.

A second experiment shows the impact of the DC component estimation. While it is not realistic
to have an algorithm that uses the oracle to choose the Gaussian assigned to a patch, it is actually
reasonable to see how well the algorithm performs with a better estimate of the DC component.
Table 9 shows the results of such an experiment. Overall using a better estimation of the DC
components can really improve the quality of denoising.

σ Normal
mean from

cleanI
5 37.88 38.28
10 34.12 34.70
20 30.51 31.44
30 28.60 29.68
40 27.27 27.41

Table 9: Denoising using the mean from the original clean image

8 Denoising of Color Images

To perform color denoising, we use three different methods. The first one is to denoise each channel
R, G and B of the noisy image independently using the previous algorithm and to recombine them
together. The second one follows the same principle but on a different color basis. These two methods
use the GMM learned previously for grayscale patches. The third one is to learn a GMM for color,
using a database of color patches.

8.1 Denoising Channel by Channel

Using the R, G and B channels independently creates noticeable color artifacts. The noisy image
y in the usual RGB color space can be converted to a different color space where an independent
denoising of each channel will reduce these artifacts.

478

EPLL: An Image Denoising Method using a Gaussian Mixture Model Learned on a Large Set of Patches

We tested 2 transformations: the YUV transform denoted by the matrix AYUV and the opponent
transform used in [4], AOPP.

AYUV =

 0.30 0.59 0.11
−0.15 −0.29 0.44
0.61 −0.51 −0.10

 ,

AOPP =

1
3

1
3

1
3

1
2

0 −1
2

1
4
−1

2
1
4

 .

We wrote the matrices above without normalization for readability, but we worked with normal-
ized versions of the matrices where each row has unit norm (the normalized AOPP is an orthogonal
matrix, and keeps the noise in the channels uncorrelated). In that way, σ still is the value of the
standard deviation of the noise on each channel. The compared denoising performances with these
different color transforms are shown in Table 10.

The YUV and OPP color basis lead to much better results in PSNR than the RGB basis. As
was observed in 10, the first channel of the OPP transform is an average of the three colors, which
captures the geometry of the patch. The average improves the signal to noise ratio, allowing for
a better performance of the algorithm in this component. The remaining components express the
chromatic content of the patch. They are differences of channels, which cancel or attenuate the
signal. Although the SNR is worse for these components, it can be expected that the remaining
signal has a higher regularity and is easier to denoise. A similar reasoning can be applied to the
YUV color space. However, AOPP is an orthogonal matrix and keeps the noise decorrelated, while
AYUV does not. This might be the reason for the better performance of the OPP color space.

8.2 Learning in Color

To learn in color, we used the original database of color images [15] with size reduced by 2 as explained
in 3.2.

We extracted color patches setting the d-dimensional patches from each channel R, G and B
together in a 3d vector. We used the exact same learning method as before (EM) to learn a GMM,
in this case with a dimensionality of 3d. We kept N = 2 · 106 and K = 200 but we now use a smaller
patch size

√
d = 6 because of memory limitations. Four components of the GMM are represented in

Figures 6, 7, 8, 9.
In Table 10, we compare all the denoising methods previously introduced: channel by channel

with the 3 different color bases and with the prior learned in color. The study was conducted on 10
test images from the test set of images. The RMSE between the clean image and the denoised is
computed on all channels.

479

Samuel Hurault, Thibaud Ehret, Pablo Arias

(a) eigenvectors

(b) corresponding eigenvalues

(c) 10 simulated patches

Figure 6: Component 2 of the Gaussian Mixture Model. The very low eigenvalues indicates that it represents flat patches
with blue as a dominant color.

(a) eigenvectors

(b) corresponding eigenvalues

(c) 10 simulated patches

Figure 7: Component 6 of the Gaussian Mixture Model. The sharp decrease of the eigenvalues gives importance only to
the top eigenvectors in the simulated patches: it simulates horizontal edges.

480

EPLL: An Image Denoising Method using a Gaussian Mixture Model Learned on a Large Set of Patches

(a) eigenvectors

(b) corresponding eigenvalues

(c) 10 simulated patches

Figure 8: Component 34 of the Gaussian Mixture Model. The sharp decrease of the eigenvalues gives importance only to
the top eigenvectors in the simulated patches: it simulates a corner.

(a) eigenvectors

(b) corresponding eigenvalues

(c) 10 simulated patches

Figure 9: Component 45 of the Gaussian Mixture Model. The sharp decrease of the eigenvalues gives importance only to
the top eigenvectors in the simulated patches: it simulates diagonal edges.

481

Samuel Hurault, Thibaud Ehret, Pablo Arias

σ RGB YUV OPP GMM color
5 41.300 41.954 42.239 42.508
10 37.367 38.066 38.457 38.716
20 33.544 34.316 34.745 34.944
30 31.321 32.150 32.609 32.690
40 29.757 29.909 31.106 31.069
50 28.560 29.509 29.910 29.766
60 28.560 29.509 29.910 29.766

Table 10: Comparison between the different color denoising methods

For σ ≤ 30, the color Gaussian mixture on the color image leads to better results than the
grayscale one on each channel. However, for σ > 30, the opposite is true. We show in Figures 12,13, 14
the visual difference between the “OPP” and the “GMM-color” methods. It shows that for high noise
level, the Gaussian mixture sometimes fails to reconstruct the right color. Indeed, with the second
option, we realize three different estimations for each patch. One mistake on one channel is less likely
to affect the visual result. For example, in Figure 14, the color on flat regions (sky and road) has not
been reconstructed correctly. Even if the PSNR is sometimes close (12,13, 14), the “OPP-method”
gives a better visual quality, especially for flat regions or textures in color. Nevertheless, denoising
with a color GMM is likely to be improved using more components. Due to memory limits, this
experience has not been realized.

Although we didn’t perform a detailed study of the multi-scale version of the algorithm in color,
we show in Figure 10 one example of color single and multi-scale denoising. It has been computed
with the denoising channel by channel. The contribution of the multi-scale version on flat regions is
clear.

9 Comparison with Other Algorithms

In order to evaluate the real capacity of the algorithm, we compared it to state-of-the-art methods
implemented in IPOL: BM3D [9], Non-local Bayes [10], DCT [7] and K-SVT [13]. It is also interesting
to compare visually all methods. We present in Figures 11, 12, 13, 14, for each algorithm, the
denoising of different images and the corresponding PSNR.

10 Conclusions

In this work we studied in detail the EPLL algorithm, which performs denoising based on the
assumption that the distribution of image patches can be modeled by a GMM. We proposed two
extensions of it: a multi-scale version and a color version for which we tested several approaches.
Our work has led us to the following conclusions:

• The algorithm stands among the best denoising algorithms.

• The prior learned over a large database of images models efficiently, only with 200 Gaussians,
the diversity of patches. Indeed, the denoising performance is close to that of NL-Bayes, a
method that learns an appropriate Gaussian for each group of some 100 similar patches in the
image. Using 200 Gaussian components seems to be enough to reach a similar performance.

• The parameters introduced by [19] are close to be optimal. The parameter optimization did
not lead to significant gains in denoising quality.

482

EPLL: An Image Denoising Method using a Gaussian Mixture Model Learned on a Large Set of Patches

(a) Original image (b) noisy image σ = 40

(c) EPLL PSNR=31,124 (d) MS EPLL PSNR=31.255

Figure 10: Single and multi-scale color denoising

• We have shown that the multi-scale framework [14] improves significantly the treatment of
low-frequency noise.

• There is still room for improvements on color denoising. The parameters of the learning have
not been optimized and gain in PSNR is likely to be possible by improving the number of
components in the Gaussian Mixture.

• The influence of the size of the patch is also to be studied in further experiments.

• The data plays a fundamental role in the quality of the denoising result. In the article we
presented results on a base of TIF images. The learning had also been realized on the JPEG
database [12] used by [19]. Each prior gave better denoising results on test images extracted
from its original database. This JPEG influence could be studied in further experiments.

483

Samuel Hurault, Thibaud Ehret, Pablo Arias

(a) Original image (b) noisy image σ = 30

(c) BM3D PSNR=29.89 (d) NL-Bayes PSNR=29.719

(e) DCT PSNR=29.175 (f) K-SVD PSNR=28.871

(g) EPLL PSNR=29.886

Figure 11: Comparison with a black and white image from the test dataset

484

EPLL: An Image Denoising Method using a Gaussian Mixture Model Learned on a Large Set of Patches

(a) Original image (b) noisy image σ = 30 (c) K-SVD PSNR=32.847

(d) BM3D PSNR=33.950 (e) NLBayes PSNR=32.833 (f) DCT PSNR=32.941

(g) GMM-color PSNR=33.466 (h) OPP PSNR=33.477

Figure 12: Comparison with a color image from the test dataset

485

Samuel Hurault, Thibaud Ehret, Pablo Arias

(a) Original image (b) noisy image σ = 60

(c) K-SVD PSNR=28.63 (d) BM3D PSNR=29.52

(e) NLBayes PSNR=29.59 (f) DCT PSNR= 28.42

(g) GMM-color PSNR=29.516 (h) OPP PSNR=29.610

Figure 13: Comparison with a color image from the test dataset

486

EPLL: An Image Denoising Method using a Gaussian Mixture Model Learned on a Large Set of Patches

(a) Original image (b) noisy image σ = 50

(c) K-SVD PSNR=26.14 (d) BM3D PSNR=26.44

(e) NLBayes PSNR=26.83 (f) DCT PSNR=26.00

(g) GMM-color PSNR=25.78 (h) OPP PSNR= 26.14

Figure 14: Comparison using the image traffic

487

Samuel Hurault, Thibaud Ehret, Pablo Arias

Acknowledgment

Work partly financed by IDEX Paris-Saclay IDI 2016, ANR-11-IDEX-0003-02, Office of Naval re-
search grant N00014-17-1-2552, DGA Astrid project “filmer la Terre” no ANR-17-ASTR-0013-01,
DGA Defals challenge no ANR-16-DEFA-0004-01, MENRT and a scholarship of the French Ministry
for Higher Studies, Research and Innovation.

Image Credits

The McGill Calibrated Colour Image Database for the images used in Figures 5, 10, 11, 12, 13 and
Miguel Colom for the traffic image used in Figure 14.

References

[1] B.Coll A.Buades and JM.Morel, Non-Local Means Denoising, Image Processing On Line,
1 (2011), pp. 208–212. http://dx.doi.org/10.5201/ipol.2011.bcm_nlm.

[2] S. P. Awate and R. T. Whitaker, Unsupervised, information-theoretic, adaptive image
filtering for image restoration, IEEE Transactions on Pattern Analysis and Machine Intelligence,
28 (2006), pp. 364–376. http://dx.doi.org/10.1109/TPAMI.2006.64.

[3] C.M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006. ISBN 0387310738.

[4] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, Color image denoising via sparse
3d collaborative filtering with grouping constraint in luminance-chrominance space, in Proceed-
ings of IEEE International Conference on Image Processing (ICIP), vol. 1, IEEE, 2007, pp. I–313.
https://doi.org/10.1109/ICIP.2007.4378954.

[5] C-A. Deledalle, S. Parameswaran, and T.Q. Nguyen, Image denoising with generalized
Gaussian mixture model patch priors, SIAM Journal on Imaging Sciences, 11 (2018), pp. 2568–
2609. https://doi.org/10.1137/18M116890X.

[6] D. Geman and C. Yang, Nonlinear image recovery with half-quadratic regularization, IEEE
Transactions on Image Processing, 4 (1995), pp. 932–946.

[7] G.Yu and G.Sapiro, DCT Image Denoising: a Simple and Effective Image Denoising Algo-
rithm, Image Processing On Line, 1 (2011), pp. 292–296. https://doi.org/10.5201/ipol.

2011.ys-dct.

[8] A. Houdard, C. Bouveyron, and J. Delon, High-dimensional mixture models for unsu-
pervised image denoising (HDMI), (2018). https://doi.org/10.1137/17M1135694.

[9] M. Lebrun, An Analysis and Implementation of the BM3D Image Denoising Method, Image
Processing On Line, 2 (2012), pp. 175–213. http://dx.doi.org/10.5201/ipol.2012.l-bm3d.

[10] A. Buades M. Lebrun and J.M. Morel, Implementation of the Non-Local Bayes (NL-
Bayes) Image Denoising Algorithm, Image Processing On Line, 3 (2013), pp. 1–42. http:

//dx.doi.org/10.5201/ipol.2013.16.

[11] A. Buades J.M. Morel M. Lebrun, M. Colom, Secrets of image denoising cuisine, Acta
Numerica, 21 (2012), pp. 475–576. https://doi.org/10.1017/S0962492912000062.

488

http://dx.doi.org/10.5201/ipol.2011.bcm_nlm
http://dx.doi.org/10.1109/TPAMI.2006.64
https://doi.org/10.1109/ICIP.2007.4378954
https://doi.org/10.1137/18M116890X
https://doi.org/10.5201/ipol.2011.ys-dct
https://doi.org/10.5201/ipol.2011.ys-dct
https://doi.org/10.1137/17M1135694
http://dx.doi.org/10.5201/ipol.2012.l-bm3d
http://dx.doi.org/10.5201/ipol.2013.16
http://dx.doi.org/10.5201/ipol.2013.16
https://doi.org/10.1017/S0962492912000062

EPLL: An Image Denoising Method using a Gaussian Mixture Model Learned on a Large Set of Patches

[12] D. Martin, C. Fowlkes, D. Tal, and J. Malik, A database of human segmented natu-
ral images and its application to evaluating segmentation algorithms and measuring ecological
statistics, in Proceedings of International Conference on Computer Vision, vol. 2, July 2001,
pp. 416–423. https://doi.org/10.1109/ICCV.2001.937655.

[13] M.Lebrun and A.Leclaire, An Implementation and Detailed Analysis of the K-SVD Image
Denoising Algorithm, Image Processing On Line, 2 (2012), pp. 96–133. https://doi.org/10.

5201/ipol.2012.llm-ksvd.

[14] G. Facciolo N. Pierazzo, J.M. Morel, Multi-scale DCT denoising, Image Processing On
Line, (2017), pp. 288–308. https://doi.org/10.5201/ipol.2017.201.

[15] A. Olmos and A.A Kingdom, A biologically inspired algorithm for the recovery of shading
and reflectance images, in Perception, vol. 33, 2004, pp. 1463–1473. https://doi.org/10.

1068/p5321.

[16] V. Papyan and M. Elad, Multi-scale patch-based image restoration, IEEE Transactions on
image processing, 25 (2016), pp. 249–261. https://doi.org/10.1109/TIP.2015.2499698.

[17] A. Saint-Dizier, J. Delon, and C. Bouveyron, A unified view on patch aggregation.
working paper or preprint, Aug. 2018.

[18] G. Yu, G. Sapiro, and S. Mallat, Solving inverse problems with piecewise linear estimators:
From Gaussian mixture models to structured sparsity, IEEE Transactions on Image Processing,
21 (2012), pp. 2481–2499. https://doi.org/10.1109/TIP.2011.2176743.

[19] D. Zoran and Y. Weiss, From learning models of natural image patches to whole image
restoration, in Proceedings of the 13th International Conference on Computer Vision (ICCV),
2011, pp. 479–486. http://dx.doi.org/10.1109/ICCV.2011.6126278.

489

https://doi.org/10.1109/ICCV.2001.937655
https://doi.org/10.5201/ipol.2012.llm-ksvd
https://doi.org/10.5201/ipol.2012.llm-ksvd
https://doi.org/10.5201/ipol.2017.201
https://doi.org/10.1068/p5321
https://doi.org/10.1068/p5321
https://doi.org/10.1109/TIP.2015.2499698
https://doi.org/10.1109/TIP.2011.2176743
http://dx.doi.org/10.1109/ICCV.2011.6126278

	Introduction
	Description of the EPLL Method
	Learning: Gaussian Mixture Prior and Expectation Maximization
	Denoising of Grayscale Images
	Energy to Minimize
	Optimization

	Implementation
	Algorithms
	Learning Results

	Influence of the Parameters on the Performance of the Algorithm
	Learning
	Number of Gaussian Components K
	Size of the Dataset of Patches N

	Denoising
	Extracting Step s
	Choice of Values

	Low-Rank Covariance Matrices for Speed-Up
	Multi-Scale Denoising
	Oracular Denoising
	Denoising of Color Images
	Denoising Channel by Channel
	Learning in Color

	Comparison with Other Algorithms
	Conclusions

