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Abstract

This article analyzes and discusses a well-known paper [D. Li, R.M. Mersereau and S. Simske,
IEEE Letters on Geoscience and Remote Sensing, 3:4 (2007), pp. 340–344] that applies principal
component analysis in order to restore image sequences degraded by atmospheric turbulence.
We propose a variant of this method and its ANSI C implementation. The proposed variant
applies to image sequences acquired with short as well as long exposure times. Examples of
restored images using sequences of real atmospheric turbulence are presented. The acquisition
of a dataset of image sequences with real atmospheric turbulence is described and the dataset
is made available for download.

Source Code

The ANSI C implementation of the source code, the code documentation, and the online demo
are accessible at the web page of this article1.

Supplementary Material

The image sequences used in this publication are available for download at the web page of the
article.
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Study of the Principal Component Analysis Method for the Correction of Images Degraded by Turbulence

1 Introduction

Atmospheric turbulence induces troublesome effects on the image formation of an optical instru-
ment for long-range imaging. These effects result from the propagation of light through a turbulent
medium, whose structural characteristics and evolution have been described by Kolmogorov [5].
Tatarski developed a theoretical model of the propagation of the light wave in this medium [10]. The
image degradation phenomena associated with the imaging optical system were modeled by Fried [2]
depending on the characteristics of the instrument, including the exposure time, the spatial resolution
and the level of turbulence. Fried distinguishes between two classes of image degradation, depending
on the exposure time used for image capture: the very long exposure and the very short exposure.
From the perspective of the effects on the image, the short exposure (� 10 ms) corresponds to an
exposure time below which image degradation is not changing anymore. The degradation is thus
not isoplanetic on the field of view. Some blur and spatial shift are randomly distributed in the
image. An estimate of the average equivalent short exposure MTF (Modulation Transfer Function)
is given by Fried [2]. A short exposure image taken at a later time (� 10 ms) provides a totally
different distribution of degradation. At long exposure capture, there is an accumulation of short
exposure images taken at different times, which averages the non-isoplanetic effects. Degradation is
then like a linear blur, similar to a convolution operator with a steady PSF (Point Spread Function),
spatially and temporally. The long exposure MTF is estimated by Fried [2]. It appears from these
analysis that the short exposure MTF provides, in general, according to the imaging configuration, a
theoretical resolution substantially higher than the long exposure MTF, but at the cost of significant
spatial distortion. To satisfy a criterion of sufficient image quality in short exposure imaging, it
is necessary to correct these image defects. This can be achieved by two techniques. By optical
correction of the light wavefront which aims to reverse, by optical methods applied in real time [1],
the wavefront deformation induced by turbulence. By image processing, considering that the spatial
and temporal variability of turbulence makes possible the probable finding of a resolution optimum
in an image sequence, for every given locality; with the proviso that the observed scene is fixed. This
is the principle of “lucky imaging” [3].

Most of the time, principal components analysis (PCA) is used in image processing as an inter-
mediate step. PCA extracts an orthonormal basis adapted to the observed data. The basis vectors
are usually sorted in order to obtain a decreasing variance of the data projected onto them. For
example in the works of Liu et al. [9], the PCA is employed with optical flow in order to discriminate
a moving vehicle from its moving environment. In the work of Turk et al. [11] the PCA permits to
reduce the space of example images used during the learning stage of a recognition algorithm.

In [7] Li et al. propose to use PCA to restore turbulence degraded image sequences (see Figure 1).
This paper proposes a variant of [7] and its implementation. We provide numerical results on real
turbulence degraded image sequences. The sequences used for the experiments are made available
for download.

The paper is divided in five sections. Section 2 provides the PCA formalism. Section 3 gives
the numerical method of Li et al. as it is given in [7] and discusses it. Section 4 proposes a vari-
ant of the Li et al. method. Section 5 provides the details and implementation of the proposed
numerical method. Section 6 gives experimental results obtained from real atmospheric turbulence.
Appendix A describes the experimental protocol used to acquire the sequences used for the exper-
iments. Appendix B gives a practical computation of the eigenvectors and Appendix C provides
informations about the online demonstrator.
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Figure 1: Examples of images deteriorated by atmospheric turbulence with a dominant blur on the left panel, dominant
distortion in the middle and the ground truth on the right panel.

2 PCA Concept

Let Φ be a dataset described by N parameters subject to M observations Φm ∈ RN . These obser-
vations Φm are represented by M points in the parameters space RN . The PCA allows to reduce
the number of parameters N to q ≤ N with a linear transformation, while retaining as much of the
“variability” of the observed data as possible. In other words, the PCA method consists in deter-
mining a sub-space of q ≤ N dimensions which captures as much of the variance of the dataset as
possible. Alternatively, the subspace found by the PCA method is the one that minimizes the pro-
jection error, measured as the sum of squared Euclidean norms between each point an its projection.
For this purpose, a basis v of vectors vi ∈ Rq is iteratively built. The first vector v1 is obtained by
maximizing the following quantity

σ2
v1

=
1

M

M∑
m=1

(π(Φm − µ))T (π(Φm − µ)) = vT1
1

M

[
M∑
m=1

(Φm − µ)(Φm − µ)T

]
︸ ︷︷ ︸

Σ

v1 = vT1 Σv1, (1)

where µ = 1
M

∑M
m=1 Φm is the barycenter of the M observations Φ1, · · · ,ΦM , π(Φm) = 〈Φm, v1〉v1

the projection of Φm upon v1, (Φm−µ)T denotes the transpose of Φm−µ and Σ ∈MN×N(R) is the
covariance matrix of the vectors Φ1, · · · ,ΦM . Remark that the quantity σ2

v1
in (1) is the variance of

the observations projected on the vector v1. The maximization of σ2
v1

defined in (1) is an optimization
problem that can be formulated by the Lagrangian equation

L = vT1 Σv1 + λ(1− vT1 v1),

which extremum condition ∂vL = 0 leads to the eigenvalues equation

Σv1 = λv1.

From a numerical point of view, the iterative building of the basis v boils down to computing
the q first eigenvectors related to the q greatest eigenvalues of the covariance matrix Σ defined in
Equation (1).

3 The Method of Li et al.

In [7, 8] Li et al. propose to apply PCA to a sequence of M image frames (Im)m∈{1,··· ,M} degraded by
atmospheric turbulence in order to produce one corrected image J (J is an estimation of an “ideal”
image I). This section studies the Li et al. method [7, 8]. Section 3.1 gives the numerical procedure
as it is given in their publications [7, 8]. Section 3.2 discusses the numerical method proposed by Li
et al. in [7, 8].
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3.1 Description

In [7, 8] Li et al. consider each frame Im of size N pixels rearranged in the form of column vectors
so that Im ∈ RN . Consequently, hereinafter we shall define the m-th image frame denoted Im by

Im : {0, · · · , N − 1} → [0, 1]

j 7→ Im(j).

This discrete image frame Im has pixel values in the interval [0, 1] and is considered to be a degraded
version of a crisp image I. Here and in the sequel, we shall denote by (Im)m∈{1,··· ,M} a sequence of
M degraded images that we observe. The goal of the Li et al. method is to estimate the crisp image
I given the observed image sequence (Im).

With the above conventions, Im corresponds to Φm of Section 2. Indeed, each image frame
Im ∈ RN is one of the M observations. In addition, the N pixel values of each frame Im are the
measurement parameters.

In [7, 8] the authors assume that the degradation model is given by a convolution, i.e., formally

Im := hm ∗ I (see [7, equation 2, page 2]), (2)

where each hm is an unknown convolution kernel at time m ∈ {1, · · · ,M} and ∗ denotes the standard
discrete convolution. The convolution kernels hm are assumed to be low-pass filters. In [7] Li et al.
provide an intuitive explanation on how the PCA can restore turbulence degraded images that we
quote extensively [7, page 1]:

“The first principal component can be used as such an estimate since it has maximum
variance and it contributes most to the variance of the observed dataset. Intuitively, blur-
ring is a smoothing process in which the high-frequency components are removed and the
variance is reduced. Thus, deblurring should be able to boost high- frequency compo-
nents to some extent to restore the image. Variance can be viewed as a measurement of
high-frequency components in an image. Previously, we developed a constrained variance
maximization method for blind image deconvolution [8]. That variance maximization is
equivalent to a PCA.”

Li et al. seem to identify variance of a dataset of images (the one maximized by the subspace
defined by PCA) with the high frequency content in an image, although these are different things.
A priori there is no evident relation between these two things. However, as we show later, for a
dataset generated by applying different amounts of blur to a given image, the principal component
can indeed be related to the high frequencies of the image.

Having described the observation model proposed in [7] we are now in position to detail the
numerical method as it is proposed [7, section II, pages 2-3].

The first step centers the input data (Im)m∈{1,··· ,M}. We recall that each Im ∈ RN is an ob-
served image frame degraded by turbulence. Thus, the temporal average µ of the image sequence is
computed

RN 3 µ :=
1

M

M∑
m=1

Im. (3)

The observed data is then centered by subtracting the average image µ as

RN 3 Gm := Im − µ for m ∈ {1, · · · ,M}.

The second step consists in computing the PCA. Therefore, the matrix A := [G1 . . . GM ] ∈
MN×M(R) is built by a straightforward concatenation of the Gm vectors. The covariance matrix
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Σ ∈MN×N(R) associated with A is Σ := 1
M
AAT , where AT denotes the transpose of the matrix A.

A direct computation of eigenvalues and eigenvectors of Σ is not numerically tractable. Indeed, N
is the number of pixels of the observed images and is therefore large.

To circumvent this issue, we notice that to compute the eigenvectors of Σ it suffices to calculate
the eigenvectors vi of the much smaller matrix ATA ∈MM×M(R) where M � N . (A proof is given
in Annex B.)

From the previous step, extract v1 the eigenvector of Σ associated to the eigenvalue of highest
absolute value. The last step consists in computing the restored frame J

J := µ+ Av1 [7, equation 11 page 3]. (4)

Assuming that formula (4) makes sense, it is interpreted by Li et al. [7, 8] as follows. On the one
hand, it is clear that the average image µ contains temporal low frequencies of the image sequence.
It is a rough estimate of the ideal underlying observed scene I. On the other hand, Av1 acts as a
“filter to boost the high frequency content” [7, section II, page 3].

Note that the number M of frames used in reconstruction is specified in [7, 8] as nine frames.
Having recalled the numerical method proposed by Li et al. as it is given in [7, 8] we are now in
position to discuss it.

3.2 Discussion of the Method of Li et al.

The algorithm of Li et al. leads to three remarks.

First of all, formula (4) is not well defined. Indeed, an eigenvector is only defined up to a
multiplicative constant. As a consequence:

1. µ and Av1 can have arbitrarily different norms. Therefore, adding them as in Equation (4)
requires a normalization so that they have compatible dynamics;

2. Av1 can also change direction (sign) depending on the numerical implementation of the method
that extracts the eigenvector v1. Therefore, adding Av1 to µ without fixing the direction of the
vector Av1 does not make sense.

This lack of definition is illustrated in Figure 2. In principle the numerical method proposed
in [7] and described in Section 3.1 is invariant with respect to time indexes permutation. Indeed,
neither the mean µ nor the first PCA component Av1 that appears in (4) depends on the order of
the observations. However, Figure 2 shows that for a fixed numerical implementation of the PCA
the output depends on the order of the input frames. In the first case, ten inputs frames are used
as input in the order acquired by the camera W1 = (I1, I2, I3, . . . , I8, I9, I10). In the second case
two images are permuted so we have W2 = (I8, I2, I3, . . . , I1, I9, I10). (In practice, this permutation
situation can occur due to the randomness of the turbulence.) The two obtained images differ, as
illustrated on the right panel of Figure 2 and illustrates the fact that the Li et al. method [7, 8] is
not correctly defined.

Lastly, in [7, 8] Li et al. the use of the single first principal component is justified by an intuitive
reasoning that does not imply that the others components are useless. As a matter of fact, Fig-
ure 3 shows that the use of the second component can yield better results that the use of the first
component.

We have reviewed the method proposed in [7]. The next section proposes a variant of the method
proposed in [7] that solves the theoretical and practical issues raised in Section 3.2.
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(a) JW1
(b) JW2

Figure 2: On the left panel the image produced using the image sequenceW1 = (I1, I2, I3, . . . , I8, I9, I10). On the right the
image produced using W2 = (I8, I2, I3, . . . , I1, I9, I10) as input sequence. Both result differ. This is a direct consequence
of mathematical indefiniteness of (4).

(a) Av1 (b) µ (c) µ+ α1Av1

(d) Av2 (e) µ (f) µ+ α2Av2

Figure 3: These figures show that the second component Av2 can yield better results than the first component Av1 on a real
turbulence degraded image sequence. Indeed, the second component depicted in Figure 3(d) is much sharper that the first
component depicted in Figure 3(a). Figures 3(b) and 3(e) depict the temporal average image µ. Figure 3(c) (resp. 3(f))
depicts a possible result using the first component (resp. the second component). For these experiments, the values of α1

and α2 have been tuned manually.
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4 Selected Principal Component Algorithm (SPCA)

As we have seen in Section 3.2, the Equation (4) that underlies the method proposed in [7, 8] is not
well-defined. The goal of this section is to propose a variant of [7, 8] that circumvents this issue.

To cope with the fact that eigenvectors vi are defined up to a sign and that Avi can have arbitrary
norms our first goal is to propose an adequate normalization. Therefore, we propose

1. to normalize the norms of the first component Avi by wi = Avi
‖Avi‖ , where ‖ · ‖ denotes the

`2-norm;

2. to normalize the directions by using the inner product 〈∆µ,wi〉
|〈∆µ,wi〉| rather than wi where ∆µ denotes

the Laplacian of µ.

Using these two modifications we can define the restored image J as

J = µ− ε 〈∆µ,wi〉
|〈∆µ,wi〉|

wi, (5)

where we assume that 〈∆µ,wi〉 6= 0. Index i allows us to select which component is used in the
reconstruction and ε > 0 is a sharpening parameter.

We justify these modifications as follows. First, if we choose i = 1 in Equation (5) we retrieve a

well defined variant of Equation (4). Secondly, the vector 〈∆µ,wi〉
|〈∆µ,wi〉|wi has always the same direction

as ∆µ. This means that (5) behaves similarly to an inverse heat equation and tends to sharpen the
average image µ.

Principal component selection. Our goal is to remove the blur caused by the turbulence. As
we have seen in Section 3.2, Li et al.’s method has a natural interpretation in terms of inverse heat
equation. Therefore, we propose to choose the (normalized) principal component wi that maximizes
|〈∆µ,wi〉|. This means that we use the wi that produces the most sharpening effect.

In principle, we should compute |〈∆µ,wi〉| for every principal component wi. However, experi-
mentally it is enough to compute |〈∆µ,w1〉| and |〈∆µ,w2〉|. This fact is experimentally illustrated
in Figure 4 that depicts the four first principal components on two examples. Experimentally, the
components of order higher than 2 are very noisy.

4.1 Analysis of the Gaussian Convolution Model

We study the principal direction of a set of Gaussian blurred versions of an image. The sequence of
turbulence degraded images is assumed to follow the convolution degradation model

Im = hm ∗ I.

We will additionally assume that the low-pass filters hm are Gaussian filters with different variances

hm(x) =
1

2πσ2
m

exp

(
− |x|

2

2σ2
m

)
.

According to the results of Hufnagel and Stanley [4], this is a reasonable approximation for long
exposures. In the following we will use the notation hσm = hm.

A first order Taylor approximation around σ0 for the filtered images Im reads as follows

Im = I ∗ hσm = I ∗ hσ0 +
d

dσ
(I ∗ hσ)|σ0(σm − σ0) +O((σm − σ0)2).
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Figure 4: From top to bottom, the first four components of the PCA decomposition of Lena and the poem. The presence
of noise is more apparent as the order of the components increase.
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Due to the linearity of the convolution we have that d
dσ

(I ∗ hσ) = I ∗ d
dσ
hσ. For a Gaussian filter, we

have that
d

dσ
hσ = − 1

πσ3

(
1− |x|

2

2σ2

)
exp

(
−|x|

2

2σ2

)
= σ∆hσ.

Thus d
dσ

(I ∗ hσ) = I ∗ σ∆hσ = σ∆(I ∗ hσ), and we have that

Im = I ∗ hσ0 + σ∆(I ∗ hσ0)(σm − σ0) +O((σm − σ0)2). (6)

According to this simple model, the family of turbulence degraded images describes a curve. The
line tangent to the curve is given by the first two terms in the Taylor polynomial. If we assume that
δσ is sufficiently small, we can neglect the second order error term, and approximate the curve by
its tangent line at σ0.

If we perform PCA on a set of images generated by drawing σ ∼ U([σ0 − δσ, σ0 + δσ]), for a
sufficiently small δσ, we would get

µ =
1

N

N∑
m=1

I ∗ hm ≈ I ∗ hσ0 and v1 ∝ σ∆(I ∗ hσ0) = σ∆µ,

where v1 is the first principal direction. The other principal direction should have negligible variance.
In summary, if the turbulence is modeled as a convolution with Gaussian low-pass filters with

variances distributed around a given σ0, then the first principal direction approximates ∆µ. Under
this assumptions the “inverse heat equation” method is therefore closely related to the proposed
method.

The approximation is good when all variances σm are close to a mean variance σ0, and worsens as
their spread increases. The reason is that the linear approximation to the curve I ∗ hσ is less valid.
In this case, not only v1 is not aligned with ∆µ, but also the other principal directions become more
important, due to the curvature of the set.

An advantage of the proposed method is that it is more robust to noise. If the acquired images
are noisy, the mean µ has still some noise, which is amplified severely by the Laplacian operator. On
the other hand, the principal component v1 is less affected by noise.

5 Numerical Implementation

This section gives the implementation details of the SPCA method described in Section 4. Algo-
rithm 1 provides the pseudo code that is implemented in the files pca_method.c and ccmath.c.

Input/Output re-quantification. The input images Im are read in PNG 8-bit format (Im
takes values in {0, . . . , 255}) and are re-quantized to have values in [0, 1] by dividing every pixel
values by 255. We now justify this re-quantification.

Consider an image of size N = 640× 480 ≈ 3 · 105. On the one hand, if the pixel value is around
2 · 102 then ATA(i, j) =

∑N
n=1 A

T (i, n)A(n, j) ≈ N(2 · 102)2 ≈ 7 · 109. This very large values lead to
numerical issues when calculating eigenvalues (step 1 of Algorithm 1) because of the lack of single
point precision. On the other hand, if the pixel value is 2·102

255
then ATA(i, j) ≈ 2 ·105 which is enough

to solve the numerical issue.
This re-quantification is inverted in step 4 of Algorithm 1. To be precise, the pixel values of the

output images are point-wise multiplied by 255.
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Algorithm 1: The Selected Principal Component Algorithm (SPCA).

input : M image frames Im, m ∈ {1, · · · ,M}
input : ε > 0 sharpening parameter
output: J the corrected image
output: µ the temporal mean image
output: L the Laplacian subtraction comparison image, optional

Compute the temporal mean image µ := 1
M

∑M
m=1 Im

for m← 1 to M do
Gm ← Im − µ

build matrix A← [G1 . . . GM ]
compute the M eigenvalues and eigenvectors (λi, vi) of ATA1

sort the eigenvectors vi according to the decreasing order of |λi|
compute the orthonormal vectors wi ← Avi/‖Avi‖2

compute ∆µ, the Laplacian of µ3

select wa ← arg max
wi

|〈∆µ,wi〉| with i ∈ {1, 2}

if 〈∆µ,wa〉 > 0 then
wb ← +wa

else
wb ← −wa

J ← µ− ε.wb
record J4

optionally L← µ− ε.∆µ/‖∆µ‖ (classical inverse heat equation)5

optionally record L,µ6

Step 1 (Computation of the principal components). The determination of eigenvalues and
eigenvectors is carried out by using a three-step general algorithm for singular value decomposition:

1. Householder transforms, starting with ATA, in order to compute U1, V1 and F so that ATA =
U1FV

T
1 , where U1 and V1 are orthogonal matrices and F is a bidiagonal matrix;

2. matrix reduction of type QR starting with F so that F = U2DV
T

2 where D is the eigenvalues
matrix of ATA;

3. recomposition of ATA = UFV T = U1(U2DV
T

2 )V T
1 = (U1U2)D(V1V2)T where U = U1U2 (resp.

V T = (V1V2)T ) is the eigenvectors matrix (resp. transpose) of ATA.

The functions used to calculate these quantities are part of the C library “Ccmath”.

Step 2 (Computation of wm). As vectors Gi are centered around µ they are not linearly
independent and belong to a hyperplane of dimension M−1. So the M th vector no longer belongs to
this hyperplane (explanation specified in [6] paragraph 1.3.7). So we do not consider vector vM in the
composition of J . More specifically, the computation wM := AvM

||AvM ||
can cause infinite or non-numeric

values. Therefore vM is set to zero.

Step 3 (Computation of ∆µ the Laplacian of µ). The Laplacian filter is defined as the
3× 3 discrete filter, explicitly given in (7)

L =

1 1 1
1 −8 1
1 1 1

 . (7)
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The Laplacian of µ is computed by a discrete convolution (with periodic boundaries conditions) of
µ and L.

Step 5. To compare the effects of the proposed SCPA filter with the Laplacian filter on a given
image and a similar filter coefficient ε, these filters should have the same order of magnitude. On the
one hand, the vectors of the SPCA are normalized with zero mean and their variance is 1

N
(according

to the König-Huyghens theorem). On the other hand, the Laplacian is zero mean and it suffices to
normalize the vector ∆µ by its `2 norm to retrieve the same variance. Thus, the time step of the
inverse heat equation is compatible with the parameter of the SPCA algorithm and conducts to the
relation

L = µ− ε ∆µ

‖∆µ‖
. (8)

6 Examples and Experiments

We conducted two experiments using three sets of sequences marked A, B and C. Dataset A contains
images as they were acquired by the camera; it is composed of six real image sequences distorted
and blurred by atmospheric turbulence. Appendix A details the acquisition protocol. Each sequence
contains 200 images. Dataset B (resp. C) consists of images of A which were averaged on 20 (resp.
10) frames so that each sequence contains 10 (resp. 20) images. The first experiment was to study
the behavior of SCPA with respect to the Laplacian filter in the case of sequences acquired using
short exposure time. The second experiment was to get closer to the assumptions of Li et al. [8] by
considering a long exposure time and to observe the influence of the SCPA filter when varying M
and the exposure time. We performed measurements of PSNR and MSSIM in these experiments.
The PSNR is defined by

PSNR(J, Ir) = −10 log10(MSE(J, Ir)/Q
2),

where

MSE(J, Ir) =
1

N

N−1∑
k=0

(J(k)− Ir(k))2,

is the mean square error between image J and the reference image Ir and Q is the quantification,
worth 255 in our case. The structural similarity index from Wang et al. [12] is defined by

MSSIM(J, Ir) =
(2µIrµJ + c1)(2covJ,Ir + c2)

(µ2
Ir

+ µ2
J + c1)(σ2

Ir
+ σ2

J + c2)
,

where µIr (resp. µJ) is the mean image Ir (resp. J), σ2
Ir

its variance and both coefficients are as
follows: c1 = 0.012 and c2 = 0.032.

In each experiment the enhancement parameter ε was set to 40. This coefficient is deliberately high
to better discriminate the possible trends of the results. These two metrics were calculated between
an undistorted and unsaturated reference image IR (the dynamic is in [0, 255]) and unsaturated
images obtained after filtering (dynamics can thus be outside the [0, 255] range). In the images
displayed in the following figures the values out of the [0, 255] range are clipped to 0 or 255.

6.1 Experiment 1

Only the first ten frames of each sequence of dataset A were used, with a window size of M = 10.
The results are presented in Table 1 and Figure 5 – in this illustration, only the pictures at 5 meters
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are shown as they are more degraded by turbulence than images at 10 meters. This experiment,
applied to sequences which can be considered short exposure, gives quite varied results: the values
of PSNR and MSSIM are best for the SPCA method in four out of the six tests, which concern Lena
and the boat. The most important difference being for Lena (10 m). Visually, the SPCA includes
deformations and accentuates rebounds, as can be seen with respect to the hat of the Lena image.
However the noise seems more penalizing with the Laplacian filter when trying to distinguish the
letters of the poem.

Figure 5: Results of experiment 1 applied on sequences at 5m of dataset A with M = 10 and ε = 40. From top to bottom:
µ the average of 10 images, L computed with the Laplacian filter, J computed with the SPCA filter.

Boat 5 m Lena 5 m Verse 5 m Boat 10 m Lena 10 m Verse 10 m
Dataset A
PSNR Laplacian 15.89 13.26 14.67 16.61 13.43 15.75
PSNR SPCA 17.08 13.52 13.97 16.68 19.64 14.15
MSSIM Laplacian 0.09 0.11 0.15 0.26 0.21 0.35
MSSIM SPCA 0.14 0.15 0.12 0.28 0.36 0.19

Table 1: PSNR and MSSIM obtained from the first experiment with the A dataset.
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6.2 Experiment 2

In Experiment 2 we used the sequence B (resp. C) with a window of size M = 10 (resp. M =
20). These sequences can be considered as obtained with long exposure times. In both cases, the
average of µ is theoretically identical since it is the average of 200 images. It is the same for images
enhanced by the Laplacian filter. Table 2 contains numerical results while Figure 6 shows the results
for turbulence with a dominant blur and Figure 7 for turbulence with dominant deformation. Strictly
speaking the results of the Laplacian PSNR and MSSIM should be identical as µ is the average of
20 images averaged over 10; and, in the third case, the average of 10 images averaged over 20. The
slight numerical differences observed are due to the production protocol of these averaged pictures:
they were averaged and saved in PNG format: decimal values have been rounded.

We observe that the Laplacian PSNR is higher than that of SCPA in 4 out of 6 cases but the
MSSIM measure is better for the SPCA in 4 out of 6. In the images of Figure 6, where the blur
of turbulence is dominant, we find that the Laplacian is visually noisy especially in the case of the
poem. In the case where the deformations are more important than the blur (Figure 7), the SPCA
induces local phase shifts, more visible for the boat and the poem.

When the tests on B (with M = 10) and C (M = 20) are compared, the latter gives better
numerical results. In 4 out of 6 cases PSNR is higher, and in 5 out of 6 cases the MSSIM measure
is better. This can be explained by the fact that the images used for the input of the SPCA, in case
B, are averaged over 20; while they are averaged over 10 in case C. The vector wB patch calculated
from B, remains more blurred than that calculated from C. This indicates that an increase of the
exposure time in image acquisition does not necessarily lead to better results and that an intermediate
exposure time should be favored, long enough to limit the effects of deformation but no more.

Boat 5 m Lena 5 m Verse 5 m Boat 10 m Lena 10 m Verse 10 m
Dataset B, M = 10
PSNR Laplacian 17.18 13.06 15.28 17.32 13.17 16.17
PSNR SPCA 17.20 12.43 14.58 17.69 15.01 13.79
MSSIM Laplacian 0.20 0.11 0.21 0.39 0.24 0.42
MSSIM SPCA 0.25 0.09 0.25 0.33 0.33 0.03

Dataset C, M = 20
PSNR Laplacian 17.24 13.06 15.28 17.33 13.17 16.17
PSNR SPCA 16.19 12.64 15.05 17.80 14.88 13.98
MSSIM Laplacian 0.20 0.12 0.22 0.40 0.24 0.43
MSSIM SPCA 0.29 0.17 0.33 0.30 0.34 0.10

Table 2: PSNR and MSSIM obtained from the second experiment with the B and C datasets.

7 Conclusion

This paper has studied a well known method [7, 8] that proposes to use the PCA to restore image
sequences degraded by turbulence. The study led us to develop a variant of the method proposed
in [7, 8] named SPCA. The proposed variant applies to image sequences acquired with short as
well as long exposure times which is an improvement over [7, 8]. The effectiveness of the variant
that has been proposed in this paper is demonstrated on real turbulence degraded image sequences.
Comparative tests show that the results are less noisy than the contrast enhancement by Laplacian
filtering. However, the observed local irregularities indicate that Li et al.’s method and its extension
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Figure 6: Results of experiment 2 applied on sequences at 5m with ε = 40. From top to bottom : µ the average of 200
images, L computed with the Laplacian filter, J computed from the SPCA filter with dataset B and M = 10, J computed
from the SPCA filter with dataset C and M = 20.
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Figure 7: Results of experiment 2 applied on sequences at 10m with ε = 40. From top to bottom : µ the average of 200
images, L computed with the Laplacian filter, J computed from the SPCA filter with dataset B and M = 10, J computed
from the SPCA filter with dataset C and M = 20.
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the SPCA, should be applied in limited cases of atmospheric turbulence. In addition, a dataset of real
atmospheric turbulence degraded sequences has been recorded and is made available for download.
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All the sequences used in this article are the work of Stéphane Landeau, and available under the
CC-BY license. You can use these videos for scientific purpose by citing the article. The poem was
composed by Victor Hugo.

A Acquisition of Image Sequences Seen Through Turbu-

lence

A.1 Description

Video footage of image sequences through turbulence was done at the Centre de Mathématiques et
de Leurs Applications of the École Normale Supérieure Cachan. The experiments consist in filming
printed image records. Heat sources were placed on the light path between the printed images and
the camera. The camera was mounted on a telescope and placed at a distance of 10 m from the
printed image records as depicted in Figure 8. The narrow line of sight of the telescope permitted
us to avoid the use of very large heat sources.

Turbulence was created by placing three heat sources along the optical path between the tele-
scope and the printed images. The turbulence zone thus obtained is approximatively 1.20 m long.
These three heating elements allowed us to maintain an uniform and constant temperature of ap-
proximatively 240oC at their surface and to stabilize the intensity of the turbulence during the whole
experiment.

We obtained several image sequences varying the printed image, the position of the heat sources
and the exposure time of the image frames.

Note that in order to record images with a very short time exposure (1 ms), each print is strongly
illuminated with halogen lamps (neon lamps are unsuitable because they produce scintillations). The
duration of each sequence is 15 s with an acquisition frequency of 13 Hz.

The equipments details are given in Section A.3 and the produced dataset is described in Sec-
tion A.4.

A.2 Acquisition

Once the telescope has been focused on each print at a distance of 10 m without turbulence, three
video sequences are filmed for each print:

• a reference sequence without turbulence;
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printed
photo

heat
sources

telescope

turbulence length path

optical length path

Figure 8: Device and acquisition protocol

• a sequence for which the heat source is placed close to the print, i.e. between 8.80 m and 10.0
m from the telescope;

• a sequence for which the heat source is placed midway between the telescope and the print, i.e.
between 4.40 m and 5.60 m from the telescope;

Videos are recorded in AVI format, then frames are extracted in PNG 8-bit format without dynamic
stretching between [0, 255] using the software tool convert. To attenuate flicker, each sequence has
been stretched to reach the boundaries 0 and 255, by an affine contrast change using its absolute
minimum and maximum values.

A.3 Equipment details

The telescope is a LXD75 6” Newton with a focal length of 762 mm and an aperture of f/5. The
field of view is 0.27o (H) ×0.20o(V) and covers a surface of 4.70 cm × 3.53 cm at 10 m. At the focal
point is placed the CCD module of a Philips spc900nc webcam equipped with a Sony ICX098 1/4”
CCD sensor. The acquisition image format is set to 320×240 with a progressive scan.

A.4 Dataset description

The image sequence dataset is available both in AVI format and coded in PNG 8-bit grayscale format
with a size of 320×240. There are four kinds of sequences: the classical Lena, the classical boat “La
Cornouaille”, a mire of black round points, and a typeset verse with different font sizes, as listed
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below. We varied the exposure time so that the blur (long exposure time) or the deformations (short
exposure time) dominate.

video name images name number blur/deformation comment
of
images

lena_05m_a.avi lena_05m_a-xxx.png 200 dominant/weak
lena_10m_a.avi lena_10m_a-xxx.png 200 weak/dominant
lena_10m_R.avi lena_R-xxx.png 200 no reference
bateau_05m_a.avi bateau_05m_a-xxx.png 200 dominant/weak
bateau_10m_a.avi bateau_10m_a-xxx.png 200 weak/dominant
bateau_10m_R.avi bateau_R-xxx.png 200 no reference
points_05m_a.avi points_05m_a-xxx.png 200 dominant/weak
points_10m_a.avi points_10m_a-xxx.png 200 weak/dominant
points_10m_R.avi points_R-xxx.png 200 no reference
poeme_05m_a.avi poeme_05m_a-xxx.png 200 dominant/weak
poeme_10m_a.avi poeme_10m_a-xxx.png 200 weak/dominant
poeme_10m_R.avi poeme_R-xxx.png 200 no reference

B Practical computation of the eigenvectors

This section gives the proof that in order to compute the eigenvectors of Σ it suffices to calculate
the eigenvectors vi of the much smaller matrix ATA ∈MM×M(R) where M � N .

For any eigenvector vi ∈ RM of ATA ∈MM×M(R) we have ATAvi = λivi for some eigenvalue λi.
Therefore, by multiplying the above equation on the left by A we have AAT (Avi) = λi(Avi). Hence,
we deduce that Avi is an eigenvector (with eigenvalue Mλi) of Σ. This means that the computation
of any eigenvector of ATA provides an eigenvector of Σ. It remains to show that by computing the
eigenvectors of ATA we obtain, in fact, all the eigenvectors of Σ. Since rank(ATA) = rank(AAT )
we deduce that rank(ATA) = rank(Σ). Therefore, the number of eigenvectors of ATA equals the
number of eigenvectors of Σ. Consequently, to compute all the eigenvectors of Σ ∈ MN×N(R), it
suffices to calculate all the eigenvectors of ATA ∈MM×M(R).

C Online demonstrator setup

The online demonstrator presents an extension of the SPCA algorithm in the sense that we consider
a temporal sliding window of length M applied on an input sequence of images (It)1≤t≤T of duration
T, T ≥ M . The SPCA is applied for t = 1, . . . , T − M to the sequence (Im)t≤m≤t+M so that
Equations (3), (5) and (8) are respectively rewritten with the t index

µt =
1

M

t+M∑
m=t

Im, (9)

Jt = µt − ε
〈∆µt, wit〉
|〈∆µt, wit〉|

wit, (10)

Lt = µt − ε
∆µt
‖∆µt‖

. (11)

The demonstrator shows for each time t (up to t = 9) the different filtered frames and components.
Image wbt corresponds to the selected image vector among w1

t and w2
t (see Figure 9). External input
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I1 J1 L1 wb1 w1
1 w2

1

Figure 9: Example of frames shown in the demonstrator corresponding to the “verse 5m” sequence at time t = 1 for a
sliding window of length M = 10 and ε = 0.5.

sequences must be provided to the demonstrator as a TAR archive containing the frames. The TAR
file must not have been compressed.

References

[1] J.M. Beckers, Adaptive optics for astronomy: Principles, performance, and applications, An-
nual Review of Astronomy and Astrophysics, 31 (1993), pp. 13–62. https://doi.org/10.1146/
annurev.aa.31.090193.000305.

[2] D.L. Fried, Optical resolution through a randomly inhomogeneous medium for very long and
very short exposures, Journal of the Optical Society of America, 56 (1966), pp. 1372–1379.
https://doi.org/10.1364/JOSA.56.001372.

[3] , Probability of getting a lucky short-exposure image through turbulence, Journal of the
Optical Society of America, 68 (1978), pp. 1651–1658. https://doi.org/10.1364/JOSA.68.

001651.

[4] R. E. Hufnagel and N. R. Stanley, Modulation transfer function associated with image
transmission through turbulent media, Journal of the Optical Society of America, 54 (1964),
pp. 52–61. https://doi.org/10.1364/JOSA.54.000052.

[5] A.N. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very
large Reynolds numbers, Doklady Akademiia Nauk SSSR, 30 (1941), pp. 301–305.

[6] L. Lebart, A. Morineau, and M. Piron, Statistique exploratoire multidimensionnelle,
Dunod, 3 ed., 2000, ch. 1. ISBN 2100053515.

[7] D. Li, R.M. Mersereau, and S. Simske, Atmospheric turbulence-degraded image restoration
using principal components analysis, IEEE Letters on Geoscience and Remote Sensing, 4 (2007),
pp. 340–344. http://dx.doi.org/10.1109/LGRS.2007.895691.

[8] D. Li, S. Simske, and R.M. Mersereau, Blind image deconvolution using constrained vari-
ance maximization, in Proceedings of the IEEE Conference on Signals, Systems and Computers,
vol. 2, 2004, pp. 1762–1765. http://dx.doi.org/10.1109/ACSSC.2004.1399463.

[9] K. Liu, Q. Du, H. Yang, and B. Ma, Optical flow and principal component analysis-based
motion detection in outdoor videos, EURASIP Journal on Advances in Signal Processing, (2010),
pp. 1–1. http://dx.doi.org/10.1155/2010/680623.

[10] V.I. Tatarski, Wave propagation in a turbulent medium, Science, 134 (1961), pp. 324–325.
Translated from Russian by R. A. Silverman.

406

https://doi.org/10.1146/annurev.aa.31.090193.000305
https://doi.org/10.1146/annurev.aa.31.090193.000305
https://doi.org/10.1364/JOSA.56.001372
https://doi.org/10.1364/JOSA.68.001651
https://doi.org/10.1364/JOSA.68.001651
https://doi.org/10.1364/JOSA.54.000052
http://dx.doi.org/10.1109/LGRS.2007.895691
http://dx.doi.org/10.1109/ACSSC.2004.1399463
http://dx.doi.org/10.1155/2010/680623


Study of the Principal Component Analysis Method for the Correction of Images Degraded by Turbulence

[11] M. Turk and A. Pentland, Eigenfaces for recognition, Journal of Cognitive Neuroscience,
3 (1991), pp. 71–86. http://dx.doi.org/10.1162/jocn.1991.3.1.71.

[12] Zhou W., A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli, Image quality assessment:
from error visibility to structural similarity, IEEE Transactions on Image Processing, 13 (2004),
pp. 600–612. https://doi.org/10.1109/TIP.2003.819861.

407

http://dx.doi.org/10.1162/jocn.1991.3.1.71
https://doi.org/10.1109/TIP.2003.819861

	Introduction
	PCA Concept
	The Method of Li et al.
	Description
	Discussion of the Method of Li et al.

	Selected Principal Component Algorithm (SPCA)
	Analysis of the Gaussian Convolution Model

	Numerical Implementation
	Examples and Experiments
	Experiment 1
	Experiment 2

	Conclusion
	Acquisition of Image Sequences Seen Through Turbulence
	Description
	Acquisition
	Equipment details 
	Dataset description

	Practical computation of the eigenvectors
	Online demonstrator setup

