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Abstract

We present a detailed analysis of FALDOI, a large displacement optical flow method proposed
by P. Palomares et al. This method requires a set of discrete matches, which can be extremely
sparse, and an energy functional which locally guides the interpolation from the matches. It
follows a two-step minimization method at the finest scale which is very robust to the outliers of
the sparse matcher and can capture large displacements of small objects. The results shown in
the original paper consistently outperformed the coarse-to-fine approaches and achieved good
qualitative and quantitative performance on the standard optical flow benchmarks. In this
paper we revise the proposed method and the changes done to significantly reduce its execution
time while reporting nearly the same accuracy. Finally, we also compare it against the current
state-of-the-art to assess its performance.

Source Code

The C/C++ source code and its documentation are available at the IPOL web page of this
article1. Program usage and compilation details are described in the README.md file. Python
scripts to handle the calls to the binary files are also provided. If you need to report bugs,
issues or have any doubts about the source code, please, open an issue on the GitHub repository
https://github.com/fperezgamonal/faldoi-ipol.

Supplementary Material

We also attach a compressed file containing some auxiliar functions used to compute metrics,
generate random subsets or partitions from the MPI-Sintel dataset and convert flo files to png.
Additionally, we attach the full set of images included in the paper results and their output flow
files computed with FALDOI. You will find a README.txt in each directory that explains how
to use this material. If you run into any problems, please contact the e-mail address provided
in the README files mentioned above.

Keywords: optical flow; variational methods; coordinate descent methods; sparse matches;
parallelization
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An Analysis and Speedup of the FALDOI Method for Optical Flow Estimation

1 Introduction

In this work the problem of optimal flow estimation with variational approaches is addressed. Optical
flow is the apparent motion field between two consecutive frames of a video. More generally, it can
be defined as a dense correspondence field between an arbitrary pair of images.

We present a thorough description and a faster implementation of FALDOI [23], a strategy to
compute good local minima of any optical flow energy functional which is able to capture large dis-
placements. FALDOI stands for Large Displacement Optical Flow method by an Astute Initialization.
The method relies on a discrete set of matches between two input images, which can be extremely
sparse and contaminated by outliers. These matches are used as a guide to find a local minimum of
the energy functional. The novelties include how these matches are used in the optimization problem.
The method is a two-step minimization process of the optical flow energy. The first step computes
a good and dense local minimum by propagating the initial matches with a region growing strategy.
The propagation is driven by the minimization of the energy on patches and the order of update
is established by the value of the local version of the energy, i.e. the energy restricted to a square
patch of the image domain. In particular, given a priority queue where all candidates are stored, we
select the one with the lowest energy, minimize over the patch centered at it, insert the neighboring
pixels to the queue ranked according to the patch energy value and select again the candidate with
the lowest energy. This process is repeated iteratively as we will see in more detail in Section 2. In
this work, we analyze the method’s features in depth and propose an optimization scheme to reduce
the execution time while maintaining the same estimation accuracy. All the results included in this
paper have been computed with the updated version of the code.

The remainder of the paper is organized as follows. Section 2 describes the FALDOI method.
Section 3 explains in detail the changes made to the code to significantly reduce its execution time
while maintaining the same estimation error. Section 4 presents results for several energy functionals
and an analysis of the properties and performance of FALDOI depending on the density of the initial
set of discrete matches and selected parameters. We also include comparisons between employing
the speedup optimization or not in terms of error, run-time and qualitative evaluation. Finally, the
conclusions are summarized in Section 5.

2 Proposed Minimization Strategy

In this section we revise the main features of the FALDOI minimization strategy. The strategy is
compatible with any optical flow energy functional and is based on estimating a good local mini-
mum from a discrete set of matches (computed via Algorithm 2). It benefits both from the sparse
techniques, which handle arbitrarily large displacements, and from the continuous optimization of a
variational formulation, which yields dense flow fields with subpixel accuracy. The method assumes
that at least some matches are correct and propagates the correct information from those initial
correspondences (referred to as seeds) by minimizing the energy around them. A challenging situa-
tion, where each region of smooth movement has only one correct seed, is illustrated in Figure 1. In
particular, the optical flow has been obtained from four seeds; one on the head, arm, shoulder pad
and background, respectively (shown in red in Figure 1), which have been chosen randomly (inside
a limited area for each targeted image object) from the ones computed by SIFT.

The sparse set of seeds (computed with Algorithm 4) is used as a reference to recover a dense
flow field. This is done by iteratively growing the seeds by a local (patch-based) minimization of the
functional in a proper order (see Section 2.1). This dense optical flow is then refined by a global
minimization of the energy. The algorithm always works at the original image scale.

In order to describe the approach in more depth, we introduce some notation and assumptions.
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(a) First frame and four initial seeds (b) Color cod-
ing

(c) Second frame

(d) Our result (e) Ground truth

Figure 1: Example illustrating that it is enough to have a single match per each region with an expected smooth motion; in
this case, four seeds computed with SIFT (shown in red in (a)). The first row shows the original pair of frames It and It+1,
where It has the seeds positions superimposed in red (head, arm, shoulder pad and background). Last row shows FALDOI’s
result and the ground truth. The energy functional is the classical TV`2-L1 (denoted as E2 = E2

D + βE2
R in Section 4.1).

Algorithm 1: main algorithm (end-to-end)
input : Images I0, I1
input : Functional E
input : Image matcher M
input : Patch size w
output : Final forward flow uF

(xF ,yF ,xB ,yB)← compute-matches(I0, I1,M) 1. See Algorithm 2

(QF , QB ,uo
F ,uo

B)← sparse-flow(xF ,yF ,xB ,yF ) 2. See Algorithm 4

(uF ,uB)← dense-flow(QF , QB ,uo
F ,uo

B , E, w) 3. See Algorithm 5

(uF )← flow-refinement(I0, I1,u
F ,uB) 4. Global minimization via Algorithm 8

Let us denote two consecutive image frames of a video sequence as It, It+1 : Ω → R, where Ω is a
rectangle in R2. To compute the optical flow u : Ω → R2 between It and It+1, we use a discrete
set of matches M = {(xi,yi)}, i = 1, . . . , N , and an energy functional E(u), defined from It and
It+1. Minimizing E on an appropriate set, a minimum u of E represents an optical flow between
It and It+1. Section 4.1 describes several energies used in this paper. We assume that the discrete
matches in M have been computed in such a way that xi belongs to the image domain of It and yi
to the image domain of It+1. From these matches, we compute the initial set of seeds S by defining
u(xi) = yi − xi, i = 1, . . . , N . Each seed p stores the corresponding pixel coordinates xp, its optical
flow up and the local energy of the functional around it (see Algorithm 1).

2.1 Local Minimization

This step can be seen as an adaptive grouped coordinated descent approach guided by the lowest
local values of the energy on patches centered at pixels. It is inspired from the match propagation
principle [17], where a set of initial sparse matches is propagated to neighboring pixels using a
region growing-like strategy. This principle was also used in the work of [14] to obtain a quasi-dense
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Algorithm 2: compute-matches compute matches between I0 and I1

input : Images I0, I1
input : Image matcher M
input : (optional) Threshold for DeepMatching matches ρ
output : Sparse flow
(xF ,yF )←M(I0, I1) 1a. Forward matches

(xB ,yB)←M(I1, I0) 1b. Backward matches

if M=DeepMatching then 2. Filter matches by saliency (Algorithm 3)

(xF ,yF )← saliency-matches(I0, I1, (x
F ,yF ), ρ) 2a. forward matches)

(xB ,yB)← saliency-matches(I1, I0, (x
B ,yB), ρ) 2b. backward matches

disparity map, assuming that the seeds and their neighboring pixels present similar disparity values.
Moreover, it shares ideas with the coordinate descent methods, which are optimization techniques
for multi-variable functions that are minimized by solving a sequence of one-variable minimization
problems. Each problem improves an estimation by minimizing along a selected coordinate while
all other remain fixed. Generally, each coordinate is visited several times to reach a minimum. The
sweep pattern is the name used to define in which order the coordinates are visited. If the order is
fixed, it is called path-wise coordinate descent [10] or cyclic coordinate.

In the case of FALDOI, the selection of the sweep pattern has a key role during the minimization
process; it follows an adaptive choice of the coordinates driven by a seed growing algorithm which is
based on the value of the local minimization of the energy in the patch centered at the coordinate.
This process is managed by a priority queue where the potential candidates for each coordinate are
inserted. Each of them has a related energy used to determine its position in the queue.

Next, we will first present the baseline algorithm for the local minimization step, where every
pixel is visited just once, and then we will show how this is extended to several iterations that it also
benefits from a further outlier filtering.

2.1.1 Baseline Algorithm: FALDOI

Initially, the seeds are inserted into the priority queue with zero energy. During the minimization
process, new candidates are added to the queue. This collection of potential candidates for each
coordinate is sorted based on their local energies.

Whenever an element is extracted from the queue, the energy E is minimized on a square patch
centered on the element’s pixel coordinates. Once this is done, we consider the pixel to be fixed. Next,
the estimated optical flow values of its 4-connected neighbors (up, down, left and right) are inserted
as potential candidates into the queue with the energy of the patch (after local minimization).

The aforementioned process is repeated until the priority queue is empty and a dense optical flow
is obtained. There may be several candidates for the same pixel in the queue; when a candidate is
extracted from the queue to fix it, if its corresponding pixel has already been fixed (by a candidate
with lower energy) the candidate is discarded.

When the energy is minimized in a patch P , we need to specify an initial flow for the unknown
values in P ∩W (W is the set of locations where the optical flow has not been fixed). To do this we
use the Laplace equation resulting from the minimization of the following Dirichlet energy

min
ui

∫
P |∇ui|

2 dx s.t. ui = u0
i in P ∩WC ,

where i = 1, 2, u = (u1, u2), and u0 = (u0
1, u

0
2) contains the optical flow of the fixed coordinates

in P ∩WC (WC is the complementary set of W ). The Euler-Lagrange equation derived from the
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previous energy is the Laplace equation, which is solved by gradient descent with Neumann boundary
conditions.

The details of the minimization process are given in Appendix A and Algorithm 8. In practice,
we consider patches of 11 × 11 pixels, if not stated otherwise. Bigger patches may be used but the
computational cost increases linearly with their size. We perform 4 iterations of the minimization
process, in every local patch (step 5 of Algorithm 6), of a version of E(u) where the warped image
has been linearized with one warping.

Algorithm 3: saliency-matches filter DeepMatching matches by saliency
input : Images IA, IB
input : Matches m
input : Threshold ρ
output : Filtered matches mf

Cs ← confidence-scores(IA, IB ,m) 1. Compute confidence scores

mf ← delete-outliers(m,Cs, ρ) 2. Delete outliers

mf ← cut-deepmatches(mf ) 3. Cut filtered list (remove scores)

Algorithm 4: sparse-flow compute sparse flow from the matches
input : Images I0, I1
input : Matches xF ,yF ,xB ,yF

output : Candidates queues QF , QB

QF ← ∅, QB ← ∅ 1. Initialize empty priority queues

for i = 1, . . . N do 2a. Add the forward matches with zero energy

QF .push(0,xF [i],yF [i]− xF [i]) Initial forward flow: uo
F [i] = yF [i]− xF [i]

for i = 1, . . .M do 2b. Add the backward matches with zero energy

QB .push(0,xB [i],yB [i]− xB [i]) Initial backward flow: uo
B[i] = y[i]B − x[i]B

Algorithm 5: dense-flow compute dense flow from the initial sparse flow
input : Images I0, I1
input : Functional E
input : Candidates queues: QF , QB

input : Patch size w
output : Forward and backward flows uF ,uB

uF ← NULL

uB ← NULL
i←MAX IT

while i > 0 do 1. Compute local minimization (Algorithm 6)

uF ← basic-faldoi-growing(I0, I1,u
F , E,QF , w) 1a. Forward

uB ← basic-faldoi-growing(I1, I0,u
B , E,QB , w) 1b. Backward

(uF ,uB)← forwardBackward-pruning(uF ,uB) Algorithm 7
i← i− 1
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Algorithm 6: basic-faldoi-growing (densify an incomplete flow)
Input : Images IA, IB
Input : Flow u0

Input : Functional E
Input : Priority queue Q
Input : Patch size w
Output : Flow u
while Q.num elements() > 0 do

e,x,v← Q.pop() 1. get the candidate with lowest energy
if u(x) = NULL then

u(x)← v 2. fix the field for this candidate

Ωy ← extract-patch(Ω,y, w) 3. extract patch of size w × w
u← interpolate(u,Ωy) 4. fill-in missing values

u← flow-refinement(IA, IB ,Ωy, E,u) 5. minimize EIA,IB (u) over Ωy (Algorithm 8)

e← EA,B(u,Ωy) 6. compute the energy of the solution

for y ∈ N (x) do 7. add the neighbors of x

if u(y) = NULL then

Q.push(e,y,u(y)) 8. push this candidate value

Algorithm 7: forwardBackward-pruning consistency check

input : Forward and backward flows uF ,uB

input : Image width and height: w, h
input : Tolerance ε
output : Updated forward and backward flows uF ,uB

size = w ∗ h
n consistent = 0

consistent flow ← ~0

uW
1 ← NULL 1a. Initialize warped flow (horizontal field)

uW
2 ← NULL 1b. Initialize warped flow (vertical field)

bicubicInterpolation-warp(uB
1 ,u

F
1 ,u

F
2 ,u

W
1 , w, h) 2a. Horizontal warping

bicubicInterpolation-warp(uB
2 ,u

F
1 ,u

F
2 ,u

W
2 , w, h) 2b. Vertical warping

for i = 0, . . . size− 1 do 3. Actual filtering

tolerance = || (uF
1 [i] + uW

1 [i],uF
2 [i] + uW

2 [i]) ||
if tolerance > ε then

consistent flow[i] = 0 i-pixel flow is NOT consistent
else

consistent flow[i] = 1 i-pixel flow is consistent
n consistent+ +;

2.1.2 Iterated FALDOI

We perform several iterations of the baseline Algorithm 6 due to the fact that in coordinate descent
methods, each coordinate usually has to be visited several times to reach a minimum.

Moreover, between two consecutive iterations, we perform a pruning based on a forward-backward
consistency check to remove wrong matches (Algorithm 7), specially in occluded areas and also due
to self-similarity. The latter may appear by the presence of outliers in the initial seeds that have been
expanded by the region growing. To achieve this, we compute both the forward, uF , and backward,
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uB, optical flows between frames It and It+1. Then, the consistency check of these flows is calculated
and the forward flow values at points x ∈ Ω not verifying ‖uF (x)+uB(x+uF (x))‖ < ε are removed;
where ε > 0 is a small constant (2 for all experiments performed in this paper). Similarly, the
backward flow values at points x ∈ Ω not verifying ‖uB(x) + uF (x + uB(x))‖ < ε are removed.

(a) First frame (b) Second frame

(c) iter=1, EPEall = 6.4730 (d) iter=2, EPEall = 5.2030 (e) iter=3, EPEall = 5.1831

(f) iter=4, EPEall = 5.1258 (g) iter=5, EPEall = 5.1114 (h) iter=6, EPEall = 5.0999

(i) Occlusions mask (j) Ground truth

Figure 2: Iterated FALDOI strategy with the TV`2 -L1 energy and MAX IT=6 in Algorithm 5. The evolution of the optical
flow estimate is shown from left to right and top to bottom. The second and third row show the iterative local minimization
(Section 2.1.2).

In the iterated FALDOI (dense-flow) algorithm, the iterations after the first one are slightly
different from the baseline iteration of Section 2.1.1 as they start from a dense motion field with
holes that arise after the forward-backward pruning instead of a sparse set of optical flow values.
More precisely, there are two main differences with respect to the first iteration:
1. Initialization of the queue. The seeds that survive the forward-backward consistency check are
inserted into a new queue with zero energy. The rest of optical flow values that survive are added
with its associated energy.
2. Initialization of the optical flow in a patch before local minimization. Every time a local patch
is minimized, an initial flow in the patch is needed. We make a distinction between the pixels that
passed the forward-backward consistency test and those that did not. For the former, the initial
flow is the most updated value from the last iteration for that pixel. For that, we store the flow
value from the previous iteration in an auxiliary variable. On the other hand, for the non-surviving
pixels, we fill-in the initial flow by using the Laplace interpolation explained above. This intra-patch
initialization could also be used in the first baseline iteration of Section 2.1.1.
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A pseudo-code of the iterated FALDOI strategy is presented in Algorithm 5. Figure 2 shows
the relevance of several iterations in the local minimization step. The optical flow is improved from
one iteration to the next (second and third rows). Specially, the motion boundaries are progressively
better recovered and the effect of the piece-wise constant flow disappears. Furthermore, the iterated
FALDOI strategy adds robustness against outliers in the initial seeds and against occlusions thanks to
the forward-backward consistency check performed between two consecutive iterations. For instance,
the densified flow obtained after the first iteration is incorrect on the leg that disappears behind
the barrel. Nonetheless, this problem, which usually happens in the first iteration, is easy to detect
and solve with the forward-backward pruning and the optical flow is improved in the subsequent
iterations. After six iterations, the initial outlier regions are significantly reduced.

Also notice that the ground truth of the MPI-Sintel dataset is created from the albedo pass, where
no external effects (motion blur, defocus blur, atmospheric effects or shading) are present. In this
experiment the seeds have been computed with DeepMatching.

2.2 Global Minimization

The last step is a global minimization of E(u), taking as initial condition the dense solution produced
in the last step 2.1.2: the local minimization guided by the initial set of matches. Let us remark
that we minimize the global energy at the finest scale, avoiding the multi-level approach. For both
steps, local and global, the minimization uses the same energy functional with the numerical scheme
detailed in Algorithm 8 and Appendix A. In this step, 5 warpings of the energy are performed.

Algorithm 8: flow-refinement minimization to compute refined optical flow
Input : Two input frames I0, I1 and an initial optical flow u0

Output : Flow field u

Initialize ξ = v = ~0;
Initialize u = u0;
for w ← 1 to Nwarps do

Compute It+1(x + v0(x)), Ixt+1(x + v0(x)), Iyt+1(x + v0(x)), using bicubic interpolation;
while n < Nmax or tol < error do

if CSAD then
Compute v as described in point 2.1 in Appendix A;

else if L1 then
Compute v as described in point 2.2 in Appendix A;

if NLTV then
Compute ξ or p and u as described in point 1.1 in Appendix A;

else if TV`2-L1 then
Compute ξ or p and u as described in point 1.2 in Appendix A;

3 Code Optimization

In this section we detail the changes done to the code in order to significantly boost the algorithm’s
speed to create a live demo in the IPOL journal (under 1 minute and up to 1GB of memory) while
keeping the same accuracy results of the original algorithm. Note that we have focused our efforts
in optimizing the algorithm for all energy functionals but some of them are significantly slower than
others (e.g.: NLTV -CSAD versus classical TV`2-L1, as denoted in the original paper).

As explained in Section 2, FALDOI performs two main steps: a local and a global minimization.
The former can be parallelized by executing the forward and backward growings in separate CPUs
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since they do not share data. In particular, we need to add an OpenMP’s parallel for instruction
before a naive loop with two iterations, one per growing and OpenMP will handle the rest.

With the goal of using as many CPUs as possible, we choose to split the image in subimages
(partitions) so that each of them can be processed by a CPU. More precisely, we divide both the
forward (fwd) and backward (bwd) growing into m × n parts. We have to be careful selecting
the number of partitions since there is a trade-off: a large number of partitions will led to more
parallelization but it will also generate more discontinuities in the flow since each partition will have
fewer seeds and the growing could suffer as a consequence; on the other hand, a smaller number of
partitions may yield a negligible improvement in time since the memory overhead needed to copy the
information for all threads may be too large. The decision will also be affected by the original image’s
size, since smaller images will probably benefit from fewer partitions. In order to avoid undesired
flow discontinuities on the partition boundaries we divide the horizontal and vertical dimensions of
the image into a different number of divisions (m×n, where m 6= n) so that we can alternate between
m× n and n×m partitions in consecutive iterations of the FALDOI algorithm.

We have tested two different types of partitions: 3× 2 and 4× 3, that is, 6 and 12 partitions per
growing, respectively. This means that up to 6 or 12 CPUs (if available) may be working at once
instead of only 2 (fwd + bwd). It is also important to note that in order to let the initial seeds
grow significantly, the first iteration is performed using the whole image, without partitions. This
ensures that latter iterations work with a good initial flow estimate but it also acts as a bottleneck
for the algorithm’s performance (as only the forward and backward growings for the whole image
can be done in parallel, i.e.: 2 cpus). One can clearly notice that in the in-depth analysis presented
in Tables 1, 2, 3, 4, 5 and 6.

Figure 3: Comparison of execution times of sequential and parallel calls of Deepmatching vs the number of CPUs used.
In red, forward and backward matches computed sequentially, in blue both calls in parallel. SIFT reference in purple
(single-threaded).

We have also parallelized the global step by using detailed profiling to find the critical sections
in the code that take most of the time. We have sorted them, from more to less critical. Then, we
have optimized their internal for loops one at a time, measuring the improvement (in percentage)
and only keeping the ones that have given a significant improvement. Finally, the chosen ones can
be combined to reduce the execution time further.

As for the matches, we computed both SIFT and DeepMatching in parallel (for frames It and
It+1). We used the multiprocessing2 library in Python to call the binaries for computing matches

2Multiprocessing library for Python3: docs.python.org/3/library/multiprocessing.html
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(SIFT or DeepMatching) at once in order to compute the forward and backward matches in parallel
and thus halve the computation time compared to the sequential execution. Moreover, the SIFT
implementation does not exploit multithreading so its execution time remains fairly constant for any
number of CPUs. On the other hand, the implementation of DeepMatching is fully multi-threaded
and significantly reduces its execution time as the number of available CPUs increases (see Figure 3).
Note that the reported times have been computed for only one image in the MPI-Sintel Final pass
(clean pass may take longer as more matches are found, specially for SIFT due to the lack of multi-
threading). We could obtain a similar boost in speed for SIFT by using other implementations which
are more optimized such as that integrated in the VLFeat3 open source library by A. Vedaldi and B.
Fulkerson.

Figure 4: Illustration of the CPUs usage in the original code (left) and the optimized one (right). Note how, thanks to the
use of partitions, several growings can be processed at once instead of sequentially.

Figure 4 illustrates the use of CPUs in the original and the speedup code: in the former, only
the forward and backward growings for the whole image were being executed at the same time while
in the latter, up to 2 × m × n growings can be executed at once. Each growing handles its own
priority queue that, as explained in Section 2.1.1, stores the candidates to be visited during the
local minimization. It is important to notice that these queues are significantly smaller than the
original queue (one per image) and hence faster to manage. This can be clearly seen if one compares
the case for one CPU with and without partitions: despite both cases use a single CPU, handling
2m×n smaller queues is faster than doing the same with 2 significantly bigger ones (see for example,
Tables 1 and 2).

Another important aspect to remark, is that the performance of parallelization can be reduced
significantly in two critical scenarios. First, when we have few matches/seeds; for instance, when we
employ SIFT with a texture-less image, which yields very few seeds that will probably fall only in a
few partitions (and thus the remaining partitions will not contain seeds). As a result, these empty
partitions will have empty queues and will not be used at all, reducing the number of active CPUs
and thus the general code speedup. To simplify the implementation of such cases, we revert to using

3VLFeat: An Open and Portable Library of Computer Vision Algorithms: www.vlfeat.org/
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the whole image (without partitions) when any of the queues is empty (notice that, on the other
hand, the forward and backward optical flow estimations are always computed in parallel). Secondly,
we may have the opposite case: a lot of matches, which also increases the execution time, yielding
bigger queues that are harder to handle and hence, slower. It is important to notice that in such
cases, the following iteration is divided into partitions again as long as no queue is still emtpy.

In these critical cases, the parallelized code with partitions may take almost the same time as its
counterpart without partitions and may be above the 1 minute threshold. If that is the case, your
execution may be stopped by the server. If so, we advise you to do one of the following things: if
you are using SIFT, try DeepMatching instead as it gives more initial seeds and is less likely to yield
as many empty partitions as SIFT (depends on the number of outliers); alternatively, execute the
code locally with the original parameters but be aware that execution time will be notably increased
(also depending on your hardware).

In order to properly evaluate the speedup of the algorithm, we have averaged the timings reported
by the algorithm with 17 images that include the critical cases commented above so the estimation is
more accurate. It is important to notice that including such cases, the average execution time grows
slightly with respect to not considering these cases. Nevertheless, these critical cases are very rare
even in the challenging final pass of MPI-Sintel (under a 1%).

We opt to use 3×2 instead of 4×3 partitions because the difference in execution time is negligible.
This is probably due to the bigger memory overhead of using more threads in parallel. This is why
all results in this paper with the TV`2-L1 functional have been computed with a 3× 2 partition.

We also report the average endpoint error (EPE) for each setup to proof that the improvement
in speed has a negligible effect on the accuracy of the method. It is defined as follows

EPE = EPEall =
1

n

∑
i∈Ω

√
(uies − uigt)2 + (vies − vigt)2, (1)

where n is the number of pixels, Ω is the image domain. The ground truth optical flow is composed
of the vectors (ugt, vgt) and similarly, the estimated flow is defined by the fields (ues, ves).

Step NP1 WP1 NP2 WP2 NP4 WP4 NP8 WP8 NP16 WP16

Total 216.98 183.08 130.74 109.27 129.39 84.37 123.64 74.62 123.49 66.55
Descriptors 8.18 8.27 7.31 4.17 4.22 4.17 4.15 4.09 4.14 4.11
Matches 7.80 7.63 6.18 3.86 3.92 3.84 3.80 3.78 3.60 3.80
Local min. 178.28 158.60 108.02 86.70 110.20 66.02 106.09 58.18 106.51 50.73

LM-iter1 52.62 53.08 46.57 28.08 28.31 27.81 27.13 26.99 27.23 27.11
LM-iter2 49.86 42.19 26.86 22.81 27.48 15.63 25.93 13.26 26.05 10.14
LM-iter3 49.64 43.25 27.12 22.56 27.96 13.48 26.11 10.81 26.38 6.63
LM-last 24.97 20.85 24.63 11.09 25.27 8.24 25.54 5.81 25.46 5.27

Global min. 22.61 20.30 14.65 14.49 10.42 10.22 9.53 8.52 8.91 7.85

EPE 22.13 22.19 22.13 22.19 22.13 22.19 22.13 22.19 22.13 22.19
Speedup vs OG 4.91 5.82 4.38 5.24 4.23 6.48 6.51 10.79 5.81 10.78
Speedup vs NP1 N/A 1.2 1.7 2.0 1.7 2.6 1.8 2.9 1.8 3.3

Table 1: FALDOI’s mean execution time (seconds) for 11 × 11 patch size with SIFT matches. The results with (WP)
and without partitions (NP) are compared for different number of CPUs (number next to initials). OG denotes FALDOI’s
original (non-optimized) code. The energy functional is the TV`2-L1.

Tables 1 and 2 show a detailed profiling of FALDOI for different number of CPUs and default
parameters (see Appendix B). We have included the total execution time and the partial timings from
the matching computation, each local growing iteration and the global estimation. Note that the
‘Total’ time is composed of the addition of ‘Descriptors’ (only for SIFT), ‘Matches’, ‘Local min.’ and
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Step NP1 WP1 NP2 WP2 NP4 WP4 NP8 WP8 NP16 WP16

Total 239.93 216.76 159.33 135.42 133.00 83.43 126.15 71.00 122.18 58.13
Matches 37.11 37.62 37.05 36.31 11.46 11.40 8.02 8.53 5.24 5.13
Local min. 180.19 158.53 107.72 83.87 110.31 61.62 108.31 53.49 107.85 44.87

LM-iter1 53.01 53.21 27.64 28.41 28.20 27.62 27.64 27.03 27.39 27.27
LM-iter2 50.70 42.85 27.06 22.39 27.88 13.24 27.00 10.81 26.89 6.62
LM-iter3 50.04 43.44 26.87 22.39 27.56 12.54 26.93 9.68 26.67 5.30
LM-last 25.05 20.18 24.81 10.43 25.21 7.25 25.36 4.50 25.47 3.97

Global min. 21.68 20.24 14.22 13.58 10.89 10.07 9.48 8.64 8.90 7.78

EPE 17.89 16.97 17.89 16.97 17.89 16.97 17.89 16.97 17.89 16.97
Speedup vs OG 5.97 6.60 6.87 8.09 8.11 12.94 10.51 18.68 10.30 21.65
Speedup vs NP1 N/A 1.1 1.5 1.8 1.8 2.9 1.9 3.4 2.0 4.1

Table 2: Execution times with 11× 11 patch size and DeepMatching (see Table 1 for details).

Step NP1 WP1 NP2 WP2 NP4 WP4 NP8 WP8 NP16 WP16

Total 217.35 147.16 101.31 86.31 97.49 71.10 92.25 62.62 91.99 54.10
Descriptors 8.24 8.30 4.27 4.42 4.23 4.47 4.14 4.23 4.12 4.21
Matches 7.68 7.69 3.99 3.99 3.95 3.93 3.81 3.81 3.63 3.87
Local min. 179.41 110.98 78.27 63.15 78.25 51.60 74.88 45.21 75.48 39.59

LM-iter1 53.24 37.43 20.25 20.19 20.04 20.19 19.23 19.30 19.25 19.73
LM-iter2 49.65 29.75 19.41 16.26 19.48 12.31 18.11 10.43 18.36 8.43
LM-iter3 49.93 29.88 19.59 16.15 19.64 10.23 18.30 8.08 18.64 4.80
LM-last 25.20 14.31 17.62 8.41 17.71 6.58 17.84 5.11 17.81 4.46

Global min. 21.99 20.14 14.72 14.69 11.00 10.98 9.36 9.31 8.48 8.60

EPE 23.36 23.25 23.36 23.25 23.36 23.25 23.36 23.25 23.36 23.25
Speedup vs OG 4.26 6.29 5.62 6.60 5.61 7.69 8.00 11.79 7.80 13.26
Speedup vs NP1 N/A 1.5 2.1 2.5 2.2 3.1 2.4 3.5 2.4 4.0

Table 3: Execution times (similar to Table 1) with 9× 9 patch size and SIFT matches.

Step NP1 WP1 NP2 WP2 NP4 WP4 NP8 WP8 NP16 WP16

Total 188.45 172.12 131.45 114.46 99.68 72.07 94.33 59.35 89.83 47.83
Matches 37.71 37.33 37.61 37.55 11.34 12.71 8.83 9.54 5.07 5.49
Local min. 128.52 78.81 77.15 75.82 75.92 106.39 61.92 48.09 40.45 33.43

LM-iter1 37.56 20.19 19.58 19.25 19.15 37.45 20.21 20.32 19.29 19.55
LM-iter2 36.12 19.79 19.23 18.52 19.08 29.88 15.99 10.26 8.02 4.84
LM-iter3 35.66 19.70 19.29 18.41 18.60 29.67 16.14 9.76 7.40 3.91
LM-last 17.79 17.76 17.62 18.27 17.73 13.91 7.35 5.33 3.40 2.88

Global min. 21.86 14.67 10.86 9.33 8.49 21.57 14.64 10.93 9.01 8.54

EPE 17.86 17.33 17.86 17.33 17.86 17.33 17.86 17.33 17.86 17.33
Speedup vs OG 6.57 9.42 9.66 10.22 10.56 5.51 10.02 15.92 18.70 23.21
Speedup vs NP1 N/A 1.1 1.4 1.6 1.9 2.6 2.0 3.2 2.1 3.9

Table 4: Execution times (similar to Table 2) with a 9× 9 patch and DeepMatching.

‘Global min.’. Additionally, the local minimization is the sum of all its iterations, that is, ‘LM-iter1’
through ‘LM-last’.

We have also included an extra row for the speedup factor between that particular setup and the
original (non-optimized) FALDOI code executed under the same conditions.

We have also included results for two other patch sizes (9 × 9 pixel size in Tables 3 and 4, and
7× 7 in Tables 5 and 6) detailing the differences between the original code, the current code without
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Step NP1 WP1 NP2 WP2 NP4 WP4 NP8 WP8 NP16 WP16

Total 119.87 106.58 73.85 62.86 70.07 52.50 65.94 46.00 66.12 42.61
Descriptors 8.29 8.23 4.29 4.26 4.26 4.24 4.15 4.15 4.17 4.11
Matches 7.64 7.59 3.74 4.02 3.96 3.99 3.76 3.78 3.91 3.82
Local min. 82.12 71.97 50.83 40.80 50.83 31.96 48.72 29.53 49.45 26.65

LM-iter1 23.94 23.81 12.92 12.92 12.78 12.75 12.20 12.20 12.30 12.31
LM-iter2 22.63 18.73 12.54 10.46 12.58 7.74 11.63 6.73 12.18 5.62
LM-iter3 22.79 18.75 12.68 10.37 12.73 6.79 11.72 5.74 12.24 4.12
LM-last 11.33 8.79 11.32 4.90 11.35 3.68 11.78 2.63 11.31 2.35

Global min. 21.78 20.03 14.70 13.73 10.97 10.27 9.25 8.49 8.50 7.95

EPE 22.88 22.89 22.88 22.89 22.88 22.89 22.88 22.89 22.88 22.89
Speedup vs OG 7.65 8.60 7.73 9.08 7.81 10.43 12.17 17.45 10.88 16.88
Speedup vs NP1 N/A 1.1 1.6 1.9 1.7 2.3 1.8 2.6 1.8 2.8

Table 5: Execution times (similar to Table 1) with a 7× 7 patch and SIFT matches.

Time events NP1 WP1 NP2 WP2 NP4 WP4 NP8 WP8 NP16 WP16

Total 141.82 128.79 103.58 87.90 72.78 52.05 67.62 43.60 63.51 35.91
Matches 37.72 37.71 37.64 37.90 11.50 11.51 9.04 8.32 5.06 5.21
Local min. 82.05 70.16 50.92 39.00 50.09 29.86 48.84 25.87 49.60 22.36

LM-iter1 23.66 23.81 12.83 12.85 12.54 12.74 12.17 12.18 12.27 12.23
LM-iter2 22.89 18.61 12.67 10.13 12.51 6.28 11.76 4.99 12.38 3.43
LM-iter3 22.75 18.47 12.65 10.18 12.51 6.03 11.68 4.83 12.20 2.91
LM-last 11.33 8.53 11.39 4.57 11.19 3.20 11.80 2.03 11.39 1.82

Global min. 21.69 20.56 14.60 13.84 10.86 10.34 9.39 9.07 8.50 7.99

EPE 17.85 17.41 17.85 17.41 17.85 17.41 17.85 17.41 17.85 17.41
Speedup vs OG 7.31 8.05 8.24 9.71 11.56 16.17 14.75 22.87 15.65 27.67
Speedup vs NP1 N/A 1.1 1.4 1.6 1.9 2.7 2.1 3.3 2.2 3.9

Table 6: Execution times (similar to Table 2) with a 7× 7 patch and DeepMatching.

win size 11× 11 9× 9 7× 7

w.r.t. to current code w. downscale = 1

Increase in error 5.13% 3.9% 5.6%
Decrease in matching time 8.7x 8.7x 8.7x
Decrease in total time 1.7x 1.9x 2.2x
Decrease in memory used 8x 8x 8x

w.r.t. to original code w. downscale = 1

Increase in error −0.4% 2.88% −2.70%
Decrease in matching time 104.9x 104.9x 104.9x
Decrease in total time 18.6x 19.8x 23.4x
Decrease in memory used 8x 8x 8x

Table 7: Advantages and disadvantages of using a downsample = 2 for deepmatching (half-resolution) instead of the
original scale.

partitions and its version with partitions. One can see that for 11× 11 and SIFT matches (Table 1),
the execution time is slightly above 60 seconds due to the inclusion of a very complex example with
very few seeds in the processed images. It is also important to note the speedup introduced by using
partitions even when only one CPU is available: it significantly reduces the execution time. One can
also see that, despite being quite slower with few CPUs, DeepMatching ends up being faster with
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16 CPUs, resulting in an overall smaller execution time thanks to its better scaling (Figure 3). In
that regard, note that the DeepMatching version already has an execution time below the 1 minute
threshold while the SIFT version is still above it.

Comparing it to FALDOI’s original source code, we can see that the speedup factor is always
above 4 and it is even larger for more CPUs which is mainly due to the fact that the original code did
not scale properly when using 8 or more CPUs. This may be due to the fact that FALDOI’s original
code parallelizes several for-loops which are nested inside others which yields a big memory overhead
and takes more time. Additionally, in the case where DeepMatching seeds are used, the scalability
commented above is not reproduced since the original code used an older version of DeepMatching
that only used 1 CPU. This fact is critical as one can see in Table 7, where the combination of
a multi-threaded version of DeepMatching and parallel calls for the forward and backward image
yields a 8.7 times faster matching computation. Moreover, FALDOI’ original code computed the
seeds at the original image scale instead of at half-resolution, as the current method does, which
produces reasonably similar results (about 5% worse for an 11× 11 patch) but it is almost 2x faster
in mean execution time (averaged over several frames) than using the original scale. The difference
is more pronounced when we use the original image scale (more computationally expensive) for
which the current version of the code is 18.6 times faster in execution time due to the null scaling
of DeepMatching and the other speedup optimizations commented throughout this section. This
time reduction is consistent with the other two patch sizes tested. Another reason for not using
downscale = 1 is that it uses more memory than the limit specified by IPOL for the online demo.
All remaining tests, if not stated otherwise, use half-resolution images to compute the DeepMatching
seeds.

In the second pair of tables 3, 4 (9 × 9 patch), we can see the same trend but with all timings
reduced approximately by a 25% with respect to the default parameters and SIFT as the matching
algorithm. The difference between SIFT and DeepMatching is maintained and the minimum run-
time reported is below the threshold for both matchers. Finally, in the third pair of tables 5, 6 (7×7
patch size), the same observations can be drawn, obtaining a speedup of about 60% with respect
to the default setup. The minimum time is around 35 seconds per image (with resolution around
1024 × 436). Nevertheless, in this last scenario the error is bigger than in the default case despite
being approximately equal to the one reported for a 9× 9 patch size.

In Section 4.1, several possibilities for the optical flow energy functional are presented, all of them
available in the provided code. In particular TV`2-L1, TV`2-CSAD, NLTV -CSAD, and NLTV -L1
models. The fastest functional is TV`2-L1 while the slowest one is the NLTV -CSAD. Given the
nature of NLTV , a GPU implementation would probably boost its speed remarkably.

This is the reason why in the live demo in IPOL, only the TV`2-L1 functional will be avail-
able. Nonetheless, the provided code can be executed in local mode with all energies mentioned in
Section 4.1.

In all cases, the speedup with respect to the original code is very noticeable, specially in the case
of TV`2-L1.

4 Results

FALDOI assumes that two ingredients are given: a discrete set of correspondences between two
frames of a video (seeds) and an optical flow energy functional, namely, E(u). Section 4.1 presents the
different energies we have used in this paper and Section 4.2 briefly discusses several possibilities for
the initial sparse correspondences. Later on, in Section 4.3 we provide a quantitative and qualitative
comparison among the several possibilities for the energy terms, as well as a comparison between
FALDOI and several state-of-the-art methods, including methods based on the combination of sparse
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matches and variational techniques [5, 16, 24, 31] or methods that rely on CNNs [9, 13, 29] to estimate
the flow.

4.1 Different Possibilities for the Energy

The proposed framework is independent from the energy functional E(u) and we validate it by using
several energies. Following most of the optical flow variational approaches in the literature, the
different possibilities will share the common feature of being made of two terms: a data fidelity term
ED(u) and a regularization term ER(u),

E(u) = ED(u) + βER(u), (2)

where u : Ω → R2, Ω is the image domain, It, It+1 : Ω → Rd are two consecutive frames (d = 1 for
gray level images and d = 3 for color images), and u = (u1, u2) represents the motion field between
them.

Let us also state that FALDOI allows the inclusion of other terms, e.g.: a third term dealing with
the occlusions, as in [4, 1]. In fact, the provided code includes an energy for the joint estimation of
optical flow and occlusions for the TV`2 − L1 functional [22] as proposed in [4]. We do not describe
it in this document or used it in the online demo but we have opted to leave it in the code for the
sake of completeness. If you wish to test the code with occlusions, please go to the Github repository
linked at the top of this article.

In order to have a robust data cost, specially under illumination changes, we use a convex and
continuous approximation of the data cost based on the Census transform [12, 27, 34], approximated
by a sum of centralized absolute differences, denoted as CSAD [30], and defined as

E1
D(u) =

∫
Ω

∫
Ω

|It(x)− It(y)− It+1(x + u) + It+1(y + u)|χ(x− y)dydx, (3)

where χ denotes the characteristic function of a square of size P × P centered at the origin (P = 7
in our experiments, as in [30]).

Secondly, we also consider the classical point-wise L1 data term that imposes the well-known
brightness constancy assumption, namely,

E2
D(u) =

∫
Ω

|It+1(x + u)− It(x)| dx. (4)

It is important to correctly preserve the motion boundaries in order to obtain an accurate optical
flow. These boundaries are usually aligned with image boundaries, which has motivated the use
of edge detectors (e.g.: [8, 15]) in previous optical flow methods [16, 20, 24]. Instead, FALDOI
opts for using the Non-Local Total Variation (NLTV ) regularizer. NLTV was used for optical flow
estimation in [32], where the authors show its ability to better recover motion boundaries, particularly
in low-textured areas, occluded regions, and in small objects (when used in a coarse-to-fine scheme).
In our case, a non-local regularizer that better captures motion discontinuities is also very useful
in the local minimization step where the initial correspondences are densified. The regularizer is
applied to each flow channel independently

E1
R(u) =

∫
Ω

∫
Ω

ω(x,y) (|u1(x)− u1(y)|+ |u2(x)− u2(y)|) dydx, (5)

where ω(x,y) = 1
W(x)

e
−∆c(x,y)

σc e
−∆s(x,y)

σs , ∆c(x,y) denotes the Euclidean distance between the color

values at x and y in the Lab space, ∆s(x,y) is the Euclidean distance between points x and y,
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W(x) =
∫

Ω
ω(x,y)dy is a normalizing constant, and σc, σs > 0 are constant parameters (set to

σc = 2 and σs = 2).

As before, with the purpose of testing the proposed minimization algorithm with different energies,
we consider other regularization terms such as the classical coupled Total Variation (called TV`2(u)
in [28]), that is,

E2
R(u) =

∫
Ω

‖∇u‖2dx =

∫
Ω

√
|∇u1(x)|2 + |∇u2(x)|2dx, (6)

Appendix A details the optimization algorithms for all the energy terms. Let us say that the data
and the regularization terms are decoupled and standard methods such as primal-dual, thresholding
or median schemes are used.

4.2 Different Possibilities for the Initial Set of Seeds

In this work, the initial seeds are computed with one of the sparse matchers in the literature. There
are several methods that provide a set of sparse matches between two different images containing
common objects, representing two views of a scene or, as in our case, two frames of a video. Some of
them are based in the estimation of distinctive point location and matching [19, 21]. Being based on
local properties, they can be used to estimate arbitrarily large displacements. In our experiments,
we use SIFT [19] or DeepMatching [31]. Although SIFT is very effective, it has some disadvantages
when dealing with small texture-less objects or with non-rigid deformations. The DeepMatching
algorithm handles these problems and generates a more dense set of matchings. We have compared
these two different methods to compute the initial set of matches (the seeds). The first column of
Figures 5 and 6 show some examples of the set of seeds obtained by each one of the algorithms.

We use the SIFT [25] and DeepMatching4 implementations, with its default parameters.

With the aim of avoiding outliers in homogeneous areas, when we employ DeepMatching, we
initially remove the seeds having a low local saliency, which is determined by the minimum eigenvalue
of the autocorrelation matrix computed locally (Algorithm 3). If the value is below a threshold (set
to 0.045 in our experiments), these seeds are removed. This pruning is also used in other works,
e.g.: [24].

In FALDOI, the authors claim that the algorithm is able to recover the dense motion even
if very few initial seeds are available; the only condition is to have at least one correct seed in
every region Ωi ⊂ Ω where the motion is smooth. As a proof of concept, in Figure 1 we use a
single seed per Ωi, which has been extracted from the ground truth flow. The estimated optical flow
compares favorably to the ground truth even in the cases where the initial set of matches is extremely
sparse. In contrast, other sparse-to-dense methods, like EpicFlow, with very competing results are
not capable of estimating the optical flow in this challenging situation (see Figure 9 for a more
complex example of this). Another example is shown in Figure 5 where similar optical flow results
are obtained independently of the cardinality of the set of seeds, which have been computed using
either SIFT (Figure 5, second row) or DeepMatching (Figure 5, third row) algorithms. Let us notice
that DeepMatching produces in general more matches than SIFT but also introduces potentially
more outliers.

On the other hand, Figure 6 shows a situation where the lack of seeds in some regions Ωi (second
row, seeds provided by SIFT matches) produces an incorrect flow estimation in these areas. A much
better estimation is obtained when there is at least one seed in these regions, as it happens when we
use as seeds the matches provided by DeepMatching (Figure 6, third row).

4Deep Convolutional Matching: http://lear.inrialpes.fr/src/deepmatching/
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(a) First frame (b) Second frame (c) Ground truth

(d) SIFT seeds (e) Local (f) Global

(g) DeepMatching seeds (h) Local (i) Global

Figure 5: Sequences with enough initial seeds for both matchers to recover a correct dense flow. The energy functional
used is the classical TV`2 -L1.

(a) First frame (b) Second frame (c) Ground truth

(d) SIFT seeds (e) Local (f) Global

(g) DeepMatching seeds (h) Local (i) Global

Figure 6: Sequence where only the second matcher (DeepMatching [31]) gets enough seeds to estimate a correct flow. The
energy functional is the classical TV`2 -L1.

4.3 Experimental Results

The method has been tested on two publicly available databases: Middlebury [3] and MPI-Sintel [6],
and on proof of concept examples, chosen in order to obtain a better understanding of the key
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features of the algorithm. Let us remark that all results have been obtained by using the grayscale
versions of the original color frames. The color version is only used to compute the seeds in case
they come from the DeepMatching algorithm and to compute the local regularization weights in case
of the Non-Local Total Variation as regularization term. All the results in this section have been
obtained with the FALDOI minimization strategy (Algorithm 1) presented in Section 2.1.2. If not
stated otherwise, the parameters used are the same for all experiments, listed in Appendix B.

First, we present a comparison of FALDOI against the multi-scale approach using different func-
tionals. Our implementation of those multi-scale approaches is based on the implementation pub-
lished in [26]. In order to assure that the method is a real alternative to the coarse-to-fine warping
strategy and, therefore, also valid for sequences that do not have large displacements of small objects,
experiments on the Middlebury optical flow dataset [3] have been performed for both approaches.
Table 8 shows how FALDOI achieves better results in all the samples in the dataset5, even if the
difference is slight is some cases. Nevertheless, it is interesting to note that the functional that ob-
tains the better results changes for some of the sequences. For instance, the sequence urban3 yields
much worse results for the TV`2-CSAD and the NLTV -CSAD energies than the simpler TV`2-L1.
On the other hand, on RubberWhale, the opposite can be observed, with NLTV -CSAD obtaining
significantly lower error.

Method Dim. Hyd. Rub. Gro2. Gro3. Urb2. Urb3. Ven.

Multi TV − L1 [26] 0.1624 0.2581 0.2154 0.1561 0.7208 0.3833 0.7101 0.3947
TV`2 -L1 0.1736 0.2747 0.2062 0.1506 0.6609 0.3486 0.5028 0.3417
TV`2 -CSAD 0.1952 0.1832 0.2031 0.2115 0.8104 0.3954 1.0403 0.3486
NLTV -CSAD 0.1332 0.1934 0.1377 0.2060 0.7021 0.4098 1.1968 0.2998

Table 8: Average endpoint error (EPE) in the Middlebury dataset with public ground truth.

Some qualitative results are shown in Figure 7 for images of the MPI-Sintel database that con-
tain large displacements, the initial seeds have been computed using DeepMatching. The first row
displays, from left to right, two consecutive frames and the optical flow ground truth (color coded).
The image (d) of the second row displays the ground truth occlusion map (the occluded points are
shown in white). The multi-scale results obtained using the TV`2-L1 energy are shown in (e), while
the corresponding results obtained by the FALDOI strategy are shown in the third row. As it can
be observed, the use of an advanced data term based on patches reduces the outlier area and better
recovers the human shape. After adding the non-local regularizer the motion boundaries are more
accurate and the outlier is removed.

Table 9 provides a quantitative comparison of different estimations of the optical flow obtained
with different energy functionals (we average the results for 10 subsets of 10% of frames randomly
selected from the final training set of the MPI-Sintel database). In order to provide for a more
complete analysis of the results, the authors of MPI Sintel also proposed to evaluate different ver-
sions of the average endpoint error (EPE). When we compute the EPE for all pixels, we denote it
EPEall as introduced in Equation 1; if we only compute the EPE for non-occluded pixels, we have
EPEmat, where mat stands for matched pixels, as those which are not occluded in the current frame.
Contrarily, when we only evaluate the error on occluded or unmatched areas, this is expressed as
EPEumat for briefness. Finally, to distinguishing how good one method performs for small, average
and large displacements, the authors of MPI-Sintel introduced the measures s0−10, s10−40 and s40+

which compute the EPE for pixels that have a velocity in a pre-specified range (e.g.: s0−10 is com-
puted for velocities bigger or equal than 0 and strictly smaller than 10). Similarly, s10−40 and s40+

5Middlebury images available from http://vision.middlebury.edu/flow/data/
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compute the EPE for pixels with velocities in the ranges 10-40 and 40 to infinity. The velocity of a
pixel is expressed in pixels per frame and can be defined as follows

r(x, y) =
√
u(x, y)2 + v(x, y)2, (7)

where u(x, y) and v(x, y) specify the horizontal and vertical flow fields of the pixel located at coor-
dinates (x, y).

Let us notice that the energy based on the non-local Total Variation and a smooth approximation
of the Census transform (CSAD) is the one which achieves the best results, both quantitative and
qualitatively. We have also included the results obtained with 9× 9 (Table 10) and 7× 7 (Table 11)
patch sizes. The main advantage of using a smaller patch size is the linear reduction in execution
time despite obtaining a slightly worse estimation of the flow and hence a larger error. A more in
depth analysis of the trade-off between speed and performance can be seen in Tables 1-6.

(a) First frame (b) Second frame (c) Ground truth

(d) Occlusion map (e) Multi. TV`2-L1[26], EPE =
3.8753

(f) FALDOI TV`2 -CSAD,EPE =
2.2078

(g) FALDOI TV`2 -L1, EPE =
2.3576

(h) FALDOI NLTV -
CSAD,EPE = 2.0668

Figure 7: Comparison of FALDOI against the multiscale approach using different functionals. The initial seeds have been
computed using DeepMatching.

Table 12 and Figure 8 show a quantitative and qualitative comparison, respectively, among FAL-
DOI and several state-of-the-art methods, including methods based on the combination of sparse
matches and variational techniques [5, 31] via an extra coupling term and that can also be adapted
to any energy. FALDOI’s results are computed with DeepMatching seeds (original image subsampled
by 2) and the NLTV -CSAD functional. The method obtains similar or better results than both
FlowNet1 models in both Clean and Final passes. Compared to Epicflow [31], FALDOI obtains
competing results, about a fifteen percent worse. We also compare FALDOI against the current and
its co-temporary state-of-the-art. FlowFields, obtains better results in both passes and can compete
with current state-of-the-ar methods like S2F-IF and PWC-Net, both methods released in late 2017.

The images in Figure 8 have been taken from the MPI-Sintel webpage. Compared to S2F-
IF [33] and FlowFields [2], FALDOI better recovers the silhouettes of the girl (head, shoulder and
upper arm), although it produces some halos around the girl’s head and the right side of her shirt.
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(a) First frame (b) Color cod-
ing

(c) Second frame

(d) FlowNetS+ft+v [9], EPE = 7.387 (e) FlowNetC+ft+v [9], EPE = 6.633

(f) FlowFields [2], EPE = 4.544 (g) EpicFlow [24], EPE = 4.904

(h) S2F-IF [33], EPE = 4.649 (i) PWC-Net [29], EPE = 3.899

(j) FALDOI, EPE = 6.928 (k) Ground truth

Figure 8: Qualitative and quantitative comparison of different optical flow methods for a frame in the MPI-Sintel database
(final pass). FALDOI uses the NLTV -CSAD energy with DeepMatching seeds.
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Functional, min. EPEall EPEmat. EPEumat. s0-10 s10-40 s40+

TV`2-L1, multi. 6.6453 5.1181 15.8828 2.9261 8.0172 45.3955
NLTV -CSAD, multi. 8.4243 7.0860 16.8037 2.8129 9.3389 50.4899
TV`2-L1, FALDOI min. w. part (SIFT) 7.2319 5.7715 15.8981 3.6300 8.8661 45.4429
TV`2-L1, FALDOI min. no part. (SIFT) 7.2329 5.7530 15.7296 3.4905 8.8184 46.9513
TV`2-CSAD, FALDOI min. (SIFT) 6.9430 5.7155 14.2069 3.5303 8.9697 46.6987
NLTV -CSAD, FALDOI min. (SIFT) 7.3158 6.1158 14.3742 3.8012 9.5212 47.5871
TV`2-L1, FALDOI min. w. part. (Deep) 5.6260 4.1473 14.6818 2.9624 7.7698 33.2298
TV`2-L1, FALDOI min. no part. (Deep) 5.6487 4.1213 14.8457 3.0859 7.8953 32.7651
TV`2-CSAD, FALDOI min. (Deep) 4.6194 3.1548 13.2884 2.4288 7.3606 31.1472
NLTV -CSAD, FALDOI min. (Deep) 4.8263 3.4077 13.1599 2.6155 7.5386 32.4096

Table 9: Results for several methods based on an average of 10 randomly selected subsets of the MPI-Sintel Final training
set. Both results with (w. part) and without partitions (no part) are shown separately.

Functional, min. EPEall EPEmat. EPEumat. s0-10 s10-40 s40+

TV`2-L1, FALDOI min. w. part (SIFT) 7.2341 5.7638 15.9482 3.5542 8.6800 45.4984
TV`2-L1, FALDOI min. no part. (SIFT) 7.2389 5.7520 19.5304 3.5085 8.7043 46.8969
TV`2-CSAD, FALDOI min. (SIFT) 7.0404 5.8109 14.3061 3.4952 8.9544 46.8746
NLTV -CSAD, FALDOI min. (SIFT) 7.3300 6.1278 14.3654 3.8382 9.3472 47.6396
TV`2-L1, FALDOI min. w. part. (Deep) 5.6818 4.1811 14.8290 2.9657 7.8635 33.0877
TV`2-L1, FALDOI min. no part. (Deep) 5.6616 4.1535 14.9053 3.0657 7.9137 32.6208
TV`2-CSAD, FALDOI min. (Deep) 4.6514 3.1736 13.3693 2.5764 7.2818 32.2529
NLTV -CSAD, FALDOI min. (Deep) 4.7747 3.3822 13.0989 2.7163 7.5626 31.9610

Table 10: Results similar to Table 9 but for a smaller patch size, 9× 9 instead of 11× 11.

Functional, min. EPEall EPEmat. EPEumat. s0-10 s10-40 s40+

TV`2-L1, FALDOI min. w. part. (SIFT) 7.2525 5.7738 16.0008 3.5576 8.7003 45.0942
TV`2-L1, FALDOI min. no part. (SIFT) 7.3161 5.7987 16.2589 3.6013 8.6588 46.5200
TV`2-CSAD, FALDOI min. (SIFT) 6.9702 5.7380 14.3010 3.4938 8.7972 46.7206
NLTV -CSAD, FALDOI min. (SIFT) 7.2541 6.0569 14.3081 3.6790 9.3258 47.4345
TV`2-L1, FALDOI min. w. part. (Deep) 5.6725 4.1920 14.7663 2.9484 7.6773 32.9252
TV`2-L1, FALDOI min. no part. (Deep) 5.8099 4.1907 14.9475 3.0335 7.8695 32.5713
TV`2-CSAD, FALDOI min. (Deep) 4.6294 3.1621 13.3178 2.5894 7.2129 30.9025
NLTV -CSAD, FALDOI min. (Deep) 4.7831 3.3417 13.2363 2.6508 7.5149 32.1324

Table 11: Results similar to Table 9 but for a smaller patch size, 7× 7 instead of 11× 11.

FlowNetS and FlowNetC [9] obtain better contours than FALDOI but they fail to properly estimate
the motion of the left arm, unlike the rest of the methods. EpicFlow shows very good results, with
good boundaries and not noticeable blurred regions. Finally, PWC-Net [29], the best performing
method on Sintel’s final pass at the time of writing, computes a very good estimation of the flow,
only missing the extremely difficult motion of the girl’s hair and the occluded region (bottom-left
corner of the image). It is important to note that a better-performing version of FlowNet is available
(FlowNet2) which significantly improves the performance of its former iteration (the one tested in
this paper).

In the approach of Brox et al. [5] or Weinzaepfel et al. [31] the matches are precomputed and then
added as a constraint to the energy term. Thanks to these matches the motion of small objects that
disappear at the coarser scales is recovered. However, these approaches need a minimum density of
sparse matches over the area of the small object in order to correctly capture large displacements,
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EPEall EPEmat. EPEumat. s0-10 s10-40 s40+

Final

PWC −Net(1) [29] 4.596 2.254 23.696 0.945 2.978 26.620
S2F − IF (6) [33] 5.417 2.549 28.795 1.157 3.468 31.262
FlowFields(15) [2] 5.810 2.621 31.799 1.157 3.739 33.890
EpicF low(28) [24] 6.285 3.060 32.564 1.135 3.727 38.021
FALDOI(41)NLTV -CSAD 7.337 3.580 37.904 1.487 4.355 43.526
FALDOI(44)TV`2-CSAD 7.435 3.684 37.963 1.646 4.729 42.663
FlowNetS + ft+ v(73) [9] 7.218 3.752 32.445 1.358 4.609 42.571
FlowNetC + ft+ v(72) [9] 7.883 4.132 38.426 1.369 5.049 47.005

Clean

PWC −Net(26) [29] 3.454 1.413 20.116 0.751 2.230 19.846
S2F − IF (11) [33] 3.500 0.988 23.986 0.524 1.976 21.960
FlowFields(22) [2] 3.748 1.056 25.700 0.546 2.110 23.602
EpicF low(33) [24] 4.115 1.360 26.595 0.712 2.117 25.859
FALDOI(43)NLTV -CSAD 4.927 1.542 32.535 1.047 2.647 29.719
FALDOI(45)TV`2-CSAD 5.026 1.648 32.569 1.160 2.820 29.566
FlowNetS + ft+ v(37) [9] 6.158 2.800 33.491 0.766 2.938 40.686
FlowNetC + ft+ v(54) [9] 6.081 2.576 34.620 0.764 2.686 40.676

Table 12: MPI-Sintel test set results (27, Oct. 2018). The number inside the parentheses indicates the rank of the
submission.

even if the matches are weighted strong enough and enough iterations are performed. By contrast,
FALDOI only needs one single seed per area motion to recover the whole motion field. This is
illustrated in Figure 9 where FALDOI is able to recover the four large displacements with just a single
seed in each region, while none of the other methods succeed. EpicFlow6, a very competing sparse-
to-dense technique, obtains the worst results, specially analytically, showing its lack of robustness
with a very limited number of seeds. Visually it is more or less capable of discerning the direction of
the moving objects despite totally missing their boundaries. The multi-scale approach with TV -L1
energy fails to correctly estimate the flow direction and magnitude despite being able to identify the
moving areas. We also include the result obtained with LDOF7, which obtains comparable results to
the latter method. In this case it has been obtained with their own seeds (using their original binary
code).

Recent optical flow datasets as MPI-Sintel [6] contain different and challenging effects, such as
illumination changes, large displacements, blur, etc. In MPI-Sintel these effects have been artificially
created to provide naturalistic video sequences. However, the evaluation on these datasets does not
take into account the robustness to the shot noise that appears in any real sequence, being noise
one of the main limitations to any imaging system. Thus, we evaluate the robustness of several
approaches to noise. To this goal, we corrupt the clean images from [6] with additive white Gaussian
noise for different standard deviations σ.

Sparse-to-dense techniques are very dependent of the initial seeds that are used to obtain a dense
optical flow. It is important to note that FALDOI works even with an extremely sparse set of initial
seeds. This fact allows us to choose the best matching method according to the image peculiarities,
without caring that much about the density of the correspondences. In particular, for highly noisy
images, SIFT correspondences are more robust than DeepMatching. Table 13 shows a comparative
of FALDOI different optical flow estimation methods for different levels of Gaussian noise. We use

6EpicFlow from https://thoth.inrialpes.fr/src/epicflow/
7Large Displacement Optical Flow from https://www.cs.cmu.edu/~katef/LDOF.html
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(a) First frame (b) Second frame (c) Ground truth

(d) Multi-scale w. TV-L1[26],
EPE = 56.2357

(e) FALDOI [23] TV-L1 energy,
EPE = 15.5351

(f) EpicFlow [24], EPE = 348.9911 (g) LDOF [5], own seeds, EPE =
56.7676

Figure 9: Large displacement on a composition made of the images Barbara, Baboon, Cameraman, Lena and Peppers.
It contains large diagonal translations and a slight deformation of the background. Five initial seeds have been manually
selected and are shown in (a).

the TV`2-L1 functional with SIFT matches. As shown in the table, the multi-scale method provides
the best optical flow estimation in noisy images. For noise levels of standard deviation greater or
equal to 10 and 20 respectively, FALDOI produces better results than EpicFlow and DeepFlow.

5 Conclusions and Future Work

We have presented an in-depth analysis of the FALDOI method for optical flow estimation. The
method works at the original image scale and finds a good local minimum of any optical flow energy
functional using an adaptive coordinate descent strategy guided by a sparse set of initial matches.
This is a general technique that consistently outperforms the multi-scale strategy for the same energy
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σ 10 20 30 40

DeepF low without matches (pure multi-scale) 0.7468 1.0353 1.3832 1.4808
DeepF low [31] 0.7766 1.5796 2.6128 4.3918
EpicF low [24] 1.1418 1.6654 2.3386 3.2328
FALDOI (TV -L1) with SIFT matches 0.9486 1.5634 2.1090 2.9830

Table 13: Results over a set of five samples from the MPI-Sintel clean dataset with different standard deviation (σ) levels
of Gaussian noise.

functional. With respect to alternative techniques that also include sparse matches in an energy
functional, the performance is comparable to DeepFlow [31] and superior to LDOF [5] while being
more robust to a low density of matches, high levels of noise and outliers in the matches. The
only requirement is that at least one correct match is given for each object in motion. For best
overall results, we propose to use an energy with advanced data and regularization terms, namely, a
smooth variant of the Census transform with a non-local TV regularization, providing robustness to
illumination changes and occlusions while handling motion discontinuities.

We present accurate quantitative and qualitative results that are comparable with state-of-the-art
methods. We have also compared the method against the current state of the art techniques, which
mainly use CNNs to learn to estimate the optical flow, and are specially fit to handle more complex
and realistic scenarios (e.g., the final pass in MPI-Sintel) where edge-refining post-processing tech-
niques are not viable since the edges are corrupted by noise and motion blur. The main contribution
presented in this paper is the speedup optimization through the use of OpenMP parallel sentences
and also the usage of image partitions to process different parts of the image at the same time.
The final reduction in execution time is pretty significant and makes the method more useful for
applications where run-time is fairly critical.

As future work we plan to extend the joint occlusion estimation to the other functionals (currently,
only TV`2-L1 is included) to reduce the halo effect in occluded regions. In addition, the best-
performing functional, NLTV -CSAD, could be fairly improved in terms of speed, given its nature,
by developing a scheme that exploits GPU parallelization (the same applies to TV`2-CSAD).

A Minimizing the Energy

The numerical minimization algorithm for the general energy (2) is obtained in this paper by decou-
pling both terms. We linearize the image It+1 near a given optical flow u0 = (u0,1, u0,2) and make
the following approximation It+1(x + u(x)) ≈ I lint+1(x + u(x)), where

I lint+1(x + u(x)) =It+1(x + u0(x))

+ Ixt+1(x + u0(x))(u1 − u0,1)(x)

+ Ixt+1(x + u0(x))(u2 − u0,2)(x),

and Ixt+1, Iyt+1 denote the partial derivatives of It+1 with respect to x and y respectively. Let us recall
that the two data terms ED that we have considered in Section 4.1 depend on It(x) and It+1(x+u(x));
we will denote as ED,lin the same data term but depending on It(x) and I lint+1(x + u(x)). In order
to decouple the fidelity term ED,lin(u) and the regularization term ER(u) in (2), we introduce an
auxiliary variable v representing the optical flow and we penalize its deviation from u. Thus, the
energy to minimize is

J(u,v) = JD,lin(v) + βJR(u) +
1

2θ

∫
Ω

‖u− v‖2, (8)
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depending on the two variables u,v, where θ > 0. The decoupled energy (8) can be minimized by an
alternating minimization procedure; alternatively fixing one variable and minimizing with respect to
the other one. Section 4.1 presents the different possibilities for the energy.

1. For v fixed, let us consider each of the two different regularization terms, J1
R(u) and J2

R(u),
presented in Section 4.1.

1.1. In the case of J1
R(u), we reformulate the problem as a min-max problem incorporating the

dual variables. Then, the minimization problem can be solved as a saddle-point problem.
Following the notation of Osher et al [11], for v = (v1, v2) fixed, we solve∫

Ω

∫
Ω

ω(x,y)(ui(x)− ui(y))p(x,y)dydx +
1

2θ

∫
Ω

(ui − vi)2 dx, (9)

for i = 1, 2, and p is the dual variable defined on Ω×Ω. Let us explain it in detail. First,
it is necessary to extend the notion of derivatives to a non-local framework. The non-local
derivative can be written as

∂yui(x) =
ui(x)− ui(y)

d(x,y)
, (10)

where d(x,y) is a positive measure between two points x,y. By taking d(x,y) such that
w(x,y) = d(x,y)−2, the non-local gradient∇wui(x,y) is defined as the vector of all partial
derivatives

∇wui(x,y) = (ui(x)− ui(y))
√
w(x,y) x,y ∈ Ω. (11)

Now, by writing ~p := p(x,y) for (x,y) ∈ Ω × Ω, the non-local divergence divw~p(x) is
defined as the adjoint of the non-local gradient

divw~p(x) =

∫
Ω

(p(x,y)− p(y,x))
√
w(x,y)dy. (12)

Definition 1. The solution of (9) is given by the following iterative scheme

p(x,y)n+1 =
p(x,y)n + τ(uni (x)− uni (y)

√
w(x,y))

1 + τ |∇wui(x,y)|
, (13)

un+1
i (x) = uni (x)− σ

(
(uni (x)− vi(x))

θ
− divw~p(x)

)
, (14)

un+1
i (x) = 2un+1

i (x)− uni (x), (15)

where ui is the primal variable and ~p is the dual variable.

1.2. In the case of J2
R(u) we use the primal-dual algorithm that Chambolle proposed to mini-

mize the ROF model [7] and which is based on a dual formulation of the TV . Then, the
minimization problem can be solved as a saddle-point problem. For v fixed, we solve

min
u

max
ξ

∫
Ω

〈Du, ξ〉dx +

∫
Ω

1

2θ
‖u− v‖)2dx, (16)

where the dual variables are ξ =

(
ξ11 ξ12

ξ21 ξ22

)
and satisfy ||ξ||F ≤ 1.
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Definition 2. The solution of (16) is given by the following iterative scheme

ξn+1
i1 =

ξni1 + τunix
max(1, ||ξ||2)

, ξn+1
i2 =

ξni2 + τuniy
max(1, ||ξ||2)

, (17)

un+1
i = uni − σ

(
(uni − vi)

θ
− div (ξni1, ξ

n
i2)

)
, (18)

un+1
i = 2un+1

i − uni , (19)

where i = 1, 2.

2. For u fixed, let us consider each of the two different data terms, J1
D(v) and J2

D(v), presented
in Section 4.1.

2.1. Case J1
D(v), Li and Osher [18] present a simple algorithm to find the optimal value of

the function E(x) =
n∑
i

wi|x− ai| + F (x) when the wi are non-negative and F is strictly

convex. If F is also differentiable and F ′ is bijective, it is possible to obtain an explicit
formula in terms of the median. For u fixed, we solve∫

Ω

C(v,x)dx +
1

2θ

∫
Ω

‖u− v‖2dx. (20)

Following the ideas of [30], we solve the discrete version of this problem. Due to the
isotropy of the quadratic term, the optimal solution of C(v,x) can be obtained solving

a one dimensional problem. In particular, setting v = v̂ + δ ∇I(x+vo)
|∇I(x+vo)| + δ ∇

+I(x+vo)
|∇+I(x+vo)| being

∇+I an orthogonal vector to the gradient, where δ is the new variable. Then, we minimize
over δ

1

2τ
δ2 + λ

∫
Ω

|∇It+1(x + v̂o)| |G(v̂) + δ| dy, (21)

where

Gy(v̂) =
It(x)− It(y)− It+1(x + v̂o) + It+1(y + v̂o)

|∇It+1(x + v̂o)|

+
(v̂ − v̂o)

T∇It+1(x + v̂o)

|∇It+1(x + v̂o)|
.

Definition 3. The minimum of (21) with respect to δ is

δ∗ = median{b1, . . . , bn, a0, . . . an} (22)

where bi = −Gi(v̂) and ai = (n − 2i)λ|∇It+1(x + vo)| for all the discrete neighbors i
(corresponding to y above), where n is the number of points in the discrete neighborhood.

2.2. Case J2
D(v). Notice that this term is a particular case of the previous data term. The

functional to minimize ∫
W

λ|ρ(v)|+ 1

2θ

∫
W

‖u− v‖2dx, (23)

where ρ(v) = It+1(x,vo) + 〈∇It+1(x + vo), (v − vo)〉 − It(x), does not depend on spatial
derivatives on v. Then, a simple thresholding step gives an explicit solution [35].

Definition 4. The minimum of (23) with respect to v is

v = u +


λθ∇It+1 if ρ(u) < −λθ|∇It+1|2,
−λθ∇It+1 if ρ(u) > λθ|∇It+1|2,
−ρ(u) ∇It+1

|∇It+1|2 if |ρ(u)| ≤ λθ|∇It+1|2.
(24)
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B Implementation Details

Our code is based on the original code from [23] and is written in C/C++. Image warpings use bicubic
interpolation. The image gradient is computed using centered-derivatives. Input images have been
normalized between [0, 1]. The algorithm parameters are initialized with the same default setting for
all the experiments. Both time steps are set to τ = σ = 0.125 to ensure convergence. As stopping
criterion, the optical flow algorithm uses the infinite-norm of the difference between two consecutive
values of u with a threshold of 0.01. The coupling parameter θ is set to 0.3. The smoothness term
weight β is set to 1/40 for the TV`2-L1 functional and to β = N−1

80
for the NLTV -CSAD one, as

suggested by [30], where N is the cardinality of the neighborhood considered in the CSAD term (we
use a neighborhood of 7× 7 pixel size in the data term and then N = 49) and we fixed σc = 2 and
σs = 2 for the spatial an color domain of the NLTV term. For the iterated FALDOI strategy we
set MAX IT to 3. The size of the patch Ωpatch in the local minimization is 11 × 11 pixels. When
partitions are used (split img parameter set to 1), by default we set hparts = 3 and vparts = 2 (which
implies 6 partitions per image). At the time of writing, only the TV`2-L1 energy is compatible with
the partitioning scheme presented before. We manage all the variables involved in the minimization
through a vector of structs with length equal to the number of partitions used.
It is important to notice that we have generated all the results of this paper with a forward-backward
consistency check threshold ε = 2. Nevertheless, further testing during the submission of this article
comparing the End Point Error and the selected threshold, suggested that other values gave lower
error rates. These tests were analyzed with the entire MPI-Sintel Dataset (final and clean pass)
and average and median results were plotted. Moreover, the optimal values were different for each
matcher: SIFT benefited of smaller (more restrictive) thresholds, minimum error with ε = 0.45;
while DeepMatching yielded better results with bigger values, minimum error with ε = 12.55. As a
consequence, in the online demo, the default values are the ones which yield the minimum error for
the approximated range specified above.
In the online demo, four parameters can be tuned: 1) the matcher algorithm used (SIFT or Deep-
Matching); 2) the patch radius (patch size = 2 ∗ patch radius + 1), assuming square patches. The
allowed values are those tested throughout this article, that is: 3, 4 or 5 (equivalent to 7× 7, 9× 9
and 11 × 11 patch sizes, respectively). The default value used in this paper is 5. However, in the
online demo we set 4 as default instead to ensure that the code can executed in less than a minute; 3)
the number of local iterations (local minimization), each one following the steps in Algorithm 6. In
Algorithm 5 (FALDOI algorithm end-to-end with pruning), the number of local iterations is referred
to as MAX-IT . By default, 3 iterations are performed but one may choose only 2 for a faster (but
worse) estimation; 4) the number of iterations for each patch visited in each local iteration. Define
how many times step 5 of Algorithm 6 (u ← flow-refinement(A,B,Ωy, E,u)) is repeated to es-
timate the energy over the patch Ωy. In the demo, the default and recommended value is 4 (used
for all results in this paper) but one may also use 3 to reduce the run-time despite losing estimation
accuracy. It is also important to notice that the only available energy functional in the online demo
is the TV`2-L1 due to the execution time limits of IPOL. Moreover, the partition scheme described
in Section 3 is always used in the demo so as to reduce the execution time further.
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Image Credits

All images with the exception of the one in Figure 9 (which has been generated by us) have been
extracted from the MPI-Sintel Dataset at http://sintel.is.tue.mpg.de/downloads.
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[10] J. Friedman, T. Hastie, H. Höfling, and R. Tibshirani, Pathwise coordinate optimiza-
tion, tech. report, Annals of Applied Statistics, 2007.

[11] G. Gilboa and S. Osher, Nonlocal operators with applications to image processing, Multiscale
Modeling & Simulation, 7 (2008), pp. 1005–1028. https://doi.org/10.1137/070698592.

[12] D. Hafner, O. Demetz, and J. Weickert, Why is the census transform good for robust
optic flow computation?, in Scale-Space and Variational Methods in Computer Vision, 2013,
pp. 210–221. https://doi.org/10.1007/978-3-642-38267-3_18.

121

http://sintel.is.tue.mpg.de/downloads
https://doi.org/10.1007/s11263-011-0490-7
https://doi.org/10.1007/s11263-011-0490-7
https://doi.org/10.1109/TPAMI.2018.2859970
https://doi.org/10.1007/s11263-010-0390-2
https://doi.org/10.1007/978-3-642-32717-9_4
https://doi.org/10.1109/TPAMI.2010.143
https://doi.org/10.1007/978-3-642-33783-3_44
https://doi.org/10.1007/s10851-010-0251-1
https://doi.org/10.1109/ICCV.2013.231
https://doi.org/10.1109/ICCV.2013.231
http://dx.doi.org/10.1109/ICCV.2015.316
https://doi.org/10.1137/070698592
https://doi.org/10.1007/978-3-642-38267-3_18


Ferran P. Gamonal, Coloma Ballester, Gloria Haro, Enric Meinhardt-Llopis, Roberto P. Palomares

[13] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox, Flownet 2.0:
Evolution of optical flow estimation with deep networks, in Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Jul 2017. https://doi.org/10.1109/
CVPR.2017.179.

[14] J. Kannala and S.S. Brandt, Quasi-dense wide baseline matching using match propagation.,
in Proc. IEEE Conference on Computer Vision and Pattern Recognition, 2007, pp. 1–8.

[15] M. Leordeanu, R. Sukthankar, and C. Sminchisescu, Efficient closed-form solution
to generalized boundary detection, in Proceedings of European Conference on Computer Vision
(ECCV), 2012, pp. 516–529. https://doi.org/10.1007/978-3-642-33765-9_37.

[16] M. Leordeanu, A. Zanfir, and C. Sminchisescu, Locally affine sparse-to-dense match-
ing for motion and occlusion estimation, in Proceedings of IEEE International Conference on
Computer Vision (ICCV), 2013, pp. 1721–1728. https://doi.org/10.1109/ICCV.2013.216.

[17] M. Lhuillier and L. Quan, Match propagation for image-based modeling and rendering,
IEEE Transactions on Pattern Analysis and Machine Intelligence, 24 (2002), pp. 1140–1146.
https://doi.org/10.1109/TPAMI.2002.1023810.

[18] Y. Li and S. Osher, A new median formula with applications to PDE based denoising, Com-
munications in Mathematical Sciences, 7 (2009), pp. 741–753. https://doi.org/10.4310/CMS.
2009.v7.n3.a11.

[19] D.G. Lowe, Object recognition from local scale-invariant features, in Proceedings of Interna-
tional Conference on Computer Vision (ICCV), 1999. https://doi.org/10.1109/ICCV.1999.
790410.

[20] M. Menze, C. Heipke, and A. Geiger, Discrete optimization for optical flow, in Pattern
Recognition. DAGM, vol. 9358 of Lecture Notes in Computer Science, 2015, pp. 16–28. https:
//doi.org/10.1007/978-3-319-24947-6_2.

[21] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaf-
falitzky, T. Kadir, and L. Van Gool, An Algorithm for Total Variation Minimization
and Applications, International Journal of Computer Vision, 65 (2005), pp. 43–72. https:

//doi.org/10.1023/B:JMIV.0000011325.36760.1e.

[22] O. Martorell Nadal, Sparse to dense optical flow with occlusion estimation, master’s thesis,
Master in Computer Vision, Computer Vision Center, UAB Campus, September 2017.

[23] R.P. Palomares, E. Meinhardt-Llopis, C. Ballester, and G. Haro, FALDOI: A New
Minimization Strategy for Large Displacement Variational Optical Flow, Journal of Mathemati-
cal Imaging and Vision, 58 (2017), pp. 27–46. https://doi.org/10.1007/s10851-016-0688-y.

[24] J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid, EpicFlow: Edge-Preserving
Interpolation of Correspondences for Optical Flow, in Proceedings of IEEE International Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2015. https://doi.org/10.

1109/CVPR.2015.7298720.

[25] Ives Rey Otero and Mauricio Delbracio, Anatomy of the SIFT Method, Image Process-
ing On Line, 4 (2014), pp. 370–396. https://doi.org/10.5201/ipol.2014.82.

122

https://doi.org/10.1109/CVPR.2017.179
https://doi.org/10.1109/CVPR.2017.179
https://doi.org/10.1007/978-3-642-33765-9_37
https://doi.org/10.1109/ICCV.2013.216
https://doi.org/10.1109/TPAMI.2002.1023810
https://doi.org/10.4310/CMS.2009.v7.n3.a11
https://doi.org/10.4310/CMS.2009.v7.n3.a11
https://doi.org/10.1109/ICCV.1999.790410
https://doi.org/10.1109/ICCV.1999.790410
https://doi.org/10.1007/978-3-319-24947-6_2
https://doi.org/10.1007/978-3-319-24947-6_2
https://doi.org/10.1023/B:JMIV.0000011325.36760.1e
https://doi.org/10.1023/B:JMIV.0000011325.36760.1e
https://doi.org/10.1007/s10851-016-0688-y
https://doi.org/10.1109/CVPR.2015.7298720
https://doi.org/10.1109/CVPR.2015.7298720
https://doi.org/10.5201/ipol.2014.82


An Analysis and Speedup of the FALDOI Method for Optical Flow Estimation
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